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Abstract

We will give a tight minimum co-degree condition for a 4-uniform hypergraph

to contain a perfect matching.

1 Introduction

A k-graph H is a pair (V,E) such that E is a family of k-subsets of V . For a k-graph H =
(V,E), 1 6 i < k, and S ⊂ V with |S| = i we set L(S) = {A ∈

(

[n]
k−i

)

|S ∪ A ∈ E}, write
L(u) for L({u}), L(u, v) for L({u, v}), and define δi(H) := min{|L(S)| : S ⊂ V, |S| = i}.
A matching in H = (V,E) is a subset M of E such that every two distinct edges in M are
disjoint. A matching M is called perfect if V (M) = V (H). For k ∈ Z+ and n divisible by
k, let mi(k, n) be the minimum positive integer such that every k-graph H on n vertices
that satisfies δi(H) > mi(k, n) has a perfect matching. Function mi(k, n) has been subject
of intensive studies. In the case of graphs, Dirac’s theorem gives m1(2, n) = n/2. On the
other hand, for k > 2 the behavior of mi(k, n) is much more elusive. The exact values of
mi(k, n) are known only for very few values of i and k and even the asymptotic value of
mi(k, n) is not well understood. For general k > 2 only mk−1(k, n) has been determined
exactly. In [8], Rödl, Ruciński, Szmerédi proved the following impressive result:

mk−1(k, n) =















n/2 + 3− k if k/2 is even and n/k is odd
n/2 + 5/2− k if k is odd and (n− 1)/2 is odd
n/2 + 3/2− k if k is odd and (n− 1)/2 is even
n/2 + 2− k otherwise.

(1)

In [2], H. Hán, Y. Person, and M. Schacht found the asymptotic value of m1(3, n) and
offered the following conjecture.
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Conjecture 1.1 For all 1 6 i 6 k − 1,

mi(k, n) = (1 + o(1))max

{

1

2
, 1−

(

k − 1

k

)k−i
}

(

n− i

k − i

)

.

Subsequently, I. Khan [3] and independently Kühn, Osthus, and Treglown [5] proved
that m1(3, n) =

(

n−1
2

)

−
(

2n/3
2

)

+ 1. In addition, I. Khan [4] showed that m1(4, n) =
(

n−1
3

)

−
(

3n/4
3

)

+ 1 and in a recent paper Alon et al. [1] proved a general result on the
fractional matching number and used it to find asymptotic values of m2(5, n),m1(5, n),
m2(6, n),m3(7, n).

As suggested by Conjecture 1.1, the function mi(k, n) behaves differently when i >
k/2. This is indeed the case as proved by Pikhurko in [6]:

mi(k, n) = (1 + o(1))
1

2

(

n− i

k − i

)

. (2)

In this paper we give exact value of m2(4, n).

Theorem 1.2 There is n0 ∈ N such that every 4-graph H on n > n0 vertices with 4|n
that satisfies

δ2(H) >
n2 − 5n

4
− ⌈

√
n− 3− 3

2
⌉+ 1, (3)

has a perfect matching.

Recently and independently, m2(4, n) was found by Traglow and Zhao in [11].
Note that (2) gives m2(4, n) =

(

1
2
+ o(1)

) (

n−2
2

)

and the expression in (3) is obtained

by rounding 1
2

(

n−2
2

)

−
√
n−3
2

. In addition to the upper bound from Theorem refmain we
show that (3) is tight.

Theorem 1.3 For every m0 there is m > m0 and a 4-graph H on n = 4m vertices with
δ2(H) = n2−5n

4
− ⌈

√
n−3−3
2

⌉ that has no perfect matching.

As in the case of [2], [3], [4], [5] we use the absorbing method from [8]. Specifically, we
prove that it is possible to find a large matching in H and extend it to a perfect one
using an absorbing structure unless H has a special structure and approximately one of
the two extremal 4-graphs in Figure 1. The first of the extremal configurations, H1, is
a 4-graph on n = 4m vertices of which can be partitioned into two sets A and B, with
|A| = |B| = 2m so that E(H1) =

(

A
4

)

∪
(

B
4

)

∪
(

A
2

)

×
(

B
2

)

. The second extremal 4-graph, H2

is the complement of H1 (see Figure 1). Although H1, H2 have their δ2 larger than the
bound in (3) a small modification of them can be used to verify Theorem 1.3.

Before proceeding to the next section, we fix some notation. Let H = (V,E) be a
4-graph. For Z ⊆ V , we write

(

Z
k

)

to denote the set of k-subsets of Z. In addition,

for pairwise disjoint sets X1, . . . , Xl ⊆ V , we use
(

X1

i1

)

× · · · ×
(

Xl

il

)

to denote {S ⊆
V |∀j|S ∩Xj| = ij}. For Z ⊆

(

V (H)
3

)

and v ∈ V (H), deg(v, Z) := |L(v)∩Z|. In the case G
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H1 H1

_

Figure 1: The extremal case.

is a graph we use degG(v) to denote the degree of a vertex v in G and if D is a digraph,
then deg−(v), deg+(v) are used to denote the in-degree and out-degree of v in D. For two
4-graphs H and G with V (H) = V (G) we use H⊕G to denote the 4-graph on V (H) with
E(H ⊕G) equal to the symmetric difference of E(H) and E(G).

The rest of the paper is structured as follows. In Section 2 we prove Theorem 1.3. In
Section 3 we show that if H is close to H1 or H2 and satisfies (3), then it has a perfect
matching. In Section 4, we prove an absorbing lemma which in connection with Section
5, which shows the existence of a large matching, establishes Theorem 1.2.

2 Lower bound

We will consider two families of 4-graphs H1 and H2. Let n, k ∈ N be such that 4|n and
k ≪ n. The familyH1 contains all 4-graphsH such that V (H) can be partitioned into two
sets A,B so that |A| = n

2
−2k+1, |B| = n

2
+2k−1 and E(H) =

(

A
4

)

∪
(

B
4

)

∪
(

A
2

)

×
(

B
2

)

. Note
that since |A| is odd, H does not contain a perfect matching. The family H2 contains 4-
graphs H such that V (H) can be partitioned into two sets A,B so that |A| = n

2
−k, |B| =

n
2
+k and E(H) =

((

A
3

)

×B
)

∪
((

B
3

)

× A
)

. Note that some 4-graphs in H2 contain perfect
matching. For X, Y ∈ {A,B}, we use δXY to denote minx∈X,y∈Y,x 6=y |L(x, y)|. We have the
following fact.

Fact 2.1 There exists n0 ∈ N such that if H ∈ H1 ∪H2 is a 4-graph on n > n0 vertices,
then δ2(H) 6 n2−5n

4
− ⌈

√
n−3−3
2

⌉.

Proof. Let H ∈ H1. If k >
3+

√
n−3
4

, then δAB = (|A| − 1)(|B| − 1) 6 n2−5n
4

−
√
n−3−3
2

and since the left hand side is an integer, δAB 6 n2−5n
4

− ⌈
√
n−3−3
2

⌉. If k 6
3+

√
n−3
4

,

then δBB =
(|B|−2

2

)

+
(|A|

2

)

6 n2−5n
4

−
√
n−3−3
2

. Now let H ∈ H2. If k >
−1+

√
n−3

2
, then

δAA = (|A| − 2)|B| 6 n2−5n
4

−
√
n−3−3
2

and if k 6
−1+

√
n−3

2
, then δAB =

(|A|−1
2

)

+
(|B|−1

2

)

6

n2−5n
4

−
√
n−3−3
2

.
Proof of Theorem 1.3. For a positive integer k, let m = 4k2 − 6k + 3, n = 4m
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and take H ∈ H1 with parameters k and n. Then k = 3+
√
n−3
4

,
√
n−3−3
2

= 2k − 3 and

δ2(H) = n2−5n
4

− 2k + 3. As mentioned before H does not have a perfect matching.
Note that a different example can be constructed by considering an appropriate 4-

graph from H2.

3 The Extremal Case

We say that H = (V,E) is β-extremal of Type 1 if it is possible to partition V into two
sets A,B so that min{|A|, |B|} > (1/2− β)n and

∣

∣

∣

∣

E ∩
((

A

3

)

×B ∪ A×
(

B

3

))∣

∣

∣

∣

6 βn4.

We say that H is β-extremal of Type 2 if it is possible to partition V into two sets A,B
so that min{|A|, |B|} > (1/2− β)n and

∣

∣

∣

∣

E ∩
((

A

2

)

×
(

B

2

)

∪
(

A

4

)

∪
(

B

4

))∣

∣

∣

∣

6 βn4.

In H is β-extremal of Type 1 then |H ⊕H1| 6 βn4 and if H is β-extremal of Type 2 then
|H ⊕H2| 6 βn4. We say that H is β-extremal if it is β-extremal of Type 1 or Type 2. In
this section we prove that if H is β-extremal for β sufficiently small, then H contains a
perfect matching.

Lemma 3.1 There is n0 ∈ N and 0 < β < 1 such that if H is a 4-graph on n > n0

vertices with 4|n such that H is β-extremal and

δ2(H) >
n2 − 5n

4
− ⌈

√
n− 3− 3

2
⌉+ 1,

then H has a perfect matching.

First, we will establish the following lemma.

Lemma 3.2 For every 0 < ξ 6 1/(100)2 there is k0 such that for a 4-graph H on X ∪ Y
with |X| = |Y | = 4k > k0 the following holds. If H satisfies the following two conditions

• for every x ∈ X at least (1 − ξ)|Y | vertices y ∈ Y are such that |L(x, y) ∩
(

Y
2

)

| >
(1− ξ)|Y |2/2,

• for every y ∈ Y at least (1 − ξ)|X| vertices x ∈ X are such that |L(x, y) ∩
(

X
2

)

| >
(1− ξ)|X|2/2,

then H has a perfect matching.
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Proof. Consider the following bipartite digraph D. For x ∈ X, y ∈ Y , put −→xy if |L(x, y)∩
(

Y
2

)

| > (1− ξ)|Y |2/2 and −→yx if |L(x, y)∩
(

X
2

)

| > (1− ξ)|X|2/2. Note that for every x ∈ X,
deg+(x) > (1 − ξ)|Y | and for every y ∈ Y , deg+(y) > (1 − ξ)|X|. As a result, for at
least (1 − 2ξ)|X||Y | pairs (x, y) ∈ X × Y we have −→xy ∈ D and −→yx ∈ D. Let G be the
bipartite graph on X ∪ Y with xy ∈ G if −→xy ∈ D and −→yx ∈ D. For Z ∈ {X, Y }, let
Z∗ = {z ∈ Z|degG(z) 6 (1 −√

2ξ)4k}. Simple computations show that for Z ∈ {X, Y },
|Z∗| 6 √

2ξ|Z|. First, we will find a matching that uses all vertices from X∗ ∪ Y ∗ and
so we can assume that |X∗| = |Y ∗| and |X∗| is even. Say X∗ = {x1, . . . , x2l} and Y ∗ =
{y1, . . . , y2l}. Find a matching M∗ that uses all vertices from X∗ ∪ Y ∗ using the step
by step procedure: In the ith step, let x, x′ ∈ X \ X∗, y, y′ ∈ Y \ Y ∗ be four vertices
not previously used and such that {x, x′} ∈ L(x2i−1, y2i−1), {y, y′} ∈ L(x2i, y2i). Add
{x, x′, x2i−1, y2i−1}, {y, y′, x2i, y2i} to M∗. Let Z ′ = Z \ V (M∗) and note that |Z ′| =
4(k − l) > 4k(1 − 2

√
2ξ) and δ(G[X ′, Y ′]) > 4k(1 − 3

√
2ξ) > 2k. Let MG be a perfect

matching in G[X ′, Y ′], say MG = {{xi, yi}|i = 1, . . . , 4(k − l)}. Then

min {|L(xi, yi) ∩
(

X ′

2

)

|, |L(xi, yi) ∩
(

Y ′

2

)

|} > (1− 6
√

ξ)|X ′|2/2.

Consider hypergraph F on [4(k − l)] with {p, q, r, s} ∈ E(F ) if H[{xp, xq, xr, xs, yp, yq,

yr, ys}] contains a matching of size two. For {p, q} ⊂ V [H ′], min{|L(xp, yp) ∩
(

X′

2

)

|,
|L(xq, yq)∩

(

Y ′

2

)

|} > (1− 6
√
ξ)|X ′|2/2, and so for at least (1− 12

√
ξ)|X ′|2/2 pairs {i, j} ∈

(

[4(k−l)]
2

)

, {xi, xj} ∈ L(xp, yp), {yi, yj} ∈ L(xq, yq). Thus δ2(F ) > (1− 12
√
ξ)
(|V (F )|

2

)

and F
has a perfect matching which gives a perfect matching in H[X ′, Y ′].
Proof of Lemma 3.1. Let β > 0 be a small constant and let n be sufficiently large.
Suppose that H is a β-extremal 4-graph on n vertices which satisfies (3). Recall that for
X ∈ {A,B} we have (1/2− β)n 6 |X| 6 (1/2 + β)n and define

γ = 3

√

800β. (4)

Case 1: H is β-extremal of Type 1.
A vertex v ∈ A ∪ B is called ρ-good for A if the following two conditions are satisfied:

• For at least (1− ρ)|A| vertices a ∈ A, |L(v, a) ∩
(

A
2

)

| > (1− ρ)
(|A|

2

)

.

• For at least (1− ρ)|B| vertices b ∈ B, |L(v, b) ∩ A×B| > (1− ρ)|A||B|.
Simple computations show that if v is ρ-good for A, ρ 6 0.5 and {A′, B′} is a partition of
V such that |A⊕A′| 6 αn, |B⊕B′| 6 αn, then v is (ρ+10α)-good for A′. Indeed, to check
the first condition, the number of vertices in A′ that do not satisfy the condition for A is at
most ρ|A|+αn 6 ρ|A′|+ραn+αn < (ρ+10α)|A′| and for each vertex a in A′ that satisfies
the original condition, we have |L(v, a) ∩

(

A′

2

)

| > (1 − ρ)
(|A|

2

)

− αn|A| > (1 − ρ)
(|A|

2

)

−
2.1α|A|(|A|−1) > (1−ρ−4.2α)

(|A|
2

)

> (1−ρ−4.1α)(1−2.1α)2
(|A′|

2

)

> (1−ρ−10α)
(|A′|

2

)

.
The second condition can be verified in the same way.

A vertex v is called ρ-acceptable for A if |L(v) ∩
(

A
3

)

| > ρn3 and is called ρ-bad for A
if it is not ρ-good. In the analogous way we define good, acceptable, and bad vertices for
B. Let BadX be the set of vertices in X that are γ-bad for X.
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Claim 3.3 |BadA ∪ BadB| < γn.

Proof. Assume that |BadA| > γn/2 and suppose that for at least γn/4 vertices a ∈ BadA,
there are at least γ|A| vertices a′ ∈ A such that |L(a, a′)∩

(

A
2

)

| < (1−γ)
(|A|

2

)

6 (1−γ)(1+

2β)2n2/8. Since |L(a, a′) ∩
(

B
2

)

| < (1 + 2β)2n2/8, we have |L(a, a′) ∩ A × B| > γn2/16.
Consequently

∣

∣

∣

∣

E(H) ∩
(

A

3

)

×B

∣

∣

∣

∣

> γ3|A|n3/(6 · 64) > γ3n4/800

contradicting the definition of γ in (4). Similarly, if for at least γn/4 vertices a ∈ BadA,
there are at least γ|B| vertices b ∈ B such that |L(a, b) ∩ A× B| < (1− γ)|A||B|, then

∣

∣

∣

∣

E(H) ∩
((

A

3

)

× B ∪
(

B

3

)

× A

)∣

∣

∣

∣

> γ3n4/800.

Now we will show how to find a perfect matching in H. The argument is split into two
cases.

First suppose that there is a vertex v ∈ V such that either

• min{deg(v,
(

A
3

)

), deg(v,
(

B
3

)

)} > 5γn3 or

• min{deg(v,
(

A
2

)

× B), deg(v,
(

B
2

)

× A)} > 5γn3.

Add v to A and keep it aside. Find a matching M ′ of size at most γn that contains
all vertices from (BadA ∪ BadB) \ {v}. Let A′ = A \ V (M ′), B′ = B \ V (M ′) and let
|A′| = 4p+rA, |B′| = 4q+rB where 0 6 rA, rB 6 3, and either rA+rB = 0 or rA+rB = 4.
Note that by definition of γ-good vertices, for every a ∈ A′ \ {v}, degA(a) > (1− γ)2

(|A|
3

)

and |A \ A′| 6 4γn. Since γ is sufficiently small and m1(4, n) ∼ 37
64

(

n
3

)

by the already
mentioned result from [4] (or [1]), H[A′] (H[B′]) has a perfect matching provided the
divisibility condition is satisfied and v is taken care of. We will guarantee that this is the
case by selecting a matching of size at most three in H[A′ ∪ B′].

• Case: rA = rB. If rA = rB = 2, then we take a hyperedge from E(H)∩
(

(

A′

2

)

×
(

B′

2

)

)

which contains v in the case min{deg(v,
(

A
2

)

×B), deg(v,
(

B
2

)

×A)} > 5γn3. If rA =

rB = 2 and min{deg(v,
(

A
3

)

), deg(v,
(

B
3

)

)} > 5γn3, then we take an edge from
(

A′

4

)

that contains v, one edge from
(

B′

4

)

, and an edge from
(

A′

2

)

×
(

B′

2

)

to obtain sets of size

divisible by four. If rA = rB = 0 and min{deg(v,
(

A
2

)

×B), deg(v,
(

B
2

)

×A)} > 5γn3,

then we take two independent edges f1, f2 from E(H) ∩
(

(

A′

2

)

×
(

B′

2

)

)

such that

v ∈ f1 and if min{deg(v,
(

A
3

)

), deg(v,
(

B
3

)

)} > 5γn3, then we take f1 from E(H)∩
(

A
4

)

that contains v.

• Case: rA 6= rB. In this case rA ∈ {1, 3}. We move v to B and apply the argument
from the previous case.
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Now suppose that no such v exists.
We claim that every vertex in V is either (10γ)-acceptable for A or (10γ)-acceptable for

B. Indeed, if v ∈ V and max{|L(v) ∩
(

B
3

)

|, |L(v) ∩
(

A
3

)

|} < 10γn3, then min{deg(v,
(

A
2

)

×
B), deg(v,

(

B
2

)

× A)} > 5γn3 as degH(v) =
1
3

∑

w∈V (H)\{v} |L(v, w)| > (n−1)
3

δ2(H).

In addition, note that if v ∈ X is not (10γ)-acceptable for X, then v ∈ BadX and
so there are at most γn vertices in X that are not (10γ)-acceptable for X. Distribute
vertices from BadA ∪BadB as follows. If v ∈ BadA is (10γ)-acceptable for B, then move
v to B. Note that at most γn vertices will be moved from A and so if a is in A after the
distribution, then degA(a) > 10γn3 − γn

(|A|
2

)

> 9γn3, that is, a is (9γ)-acceptable for A.
In addition, if a ∈ A is (10γ)-good for A before the distribution, then it is (20γ)-good after
the distribution. Consequently, after the distribution, there are at most γn, (20γ)-bad
vertices in A and each is (9γ)-acceptable for A. The same applies to B. Suppose that
|A| 6 |B|.

If |A| mod 2 = 0, then proceed as follows. If |A| mod 4 = 2, then let f be an edge from
(

A
2

)

×
(

B
2

)

and if |A| mod 4 = 0, then let f = ∅. Find greedily a matching M ′ in H[A \ f ]
of size at most γn that contains all (20γ)-bad vertices. As a result |A \ (V (M ′) ∪ f)| has
size divisible by four and all vertices are (60γ)-good.

If |A| mod 2 = 1 and there is an edge f ∈ E(H) ∩
(

A×
(

B
3

)

∪ B ×
(

A
3

))

, then add f
to the matching and note that |A \ f | mod 2 = 0. Consequently, we can proceed as in the
previous case.

If E(H) ∩
(

A×
(

B
3

)

∪ B ×
(

A
3

))

is empty, then H is a sub-hypergraph of a 4-graph

from H1 and, by Fact 2.1, δ2(H) 6 n2−5n
4

− ⌈
√
n−3−3
2

⌉ which contradicts (3).
Case 2: H is β-extremal of Type 2.
A vertex v ∈ A∪B is called ρ-good for A if at least (1−ρ)|B| vertices b ∈ B are such that
|L(v, b)∩

(

A
2

)

| > (1−ρ)
(|A|

2

)

. A vertex v is called ρ-acceptable for A if |L(v)∩
(

A
2

)

×B| > ρn3.
If a vertex is not ρ-good, then it is called ρ-bad. Let BadA be the set of vertices in A that
are γ-bad for A and let BadB be defined analogously.

Claim 3.4 |BadA ∪ BadB| < γn.

Proof. Let a ∈ BadA and let b be such that for at least γ
(|A|

2

)

> γn2/10 pairs {a1, a2} ∈
(

A
2

)

, {a1, a2, a, b} /∈ E(H). Then

|L(a, b) \ A×B| <
(|A| − 1

2

)

+

(|B| − 1

2

)

− γn2/10 <

(

1

4
− γ/20

)

n2

and so in view of (3), for sufficiently large n, |L(a, b)∩A×B| > γn2/30. If |BadA| > γn/2,
then

∣

∣E(H) ∩
(

A
2

)

×
(

B
2

)∣

∣ > γ3n3|B|/240 > γ3n4/500 contradicting the definition of γ.
Observe that every vertex v ∈ A ∪ B is either (20γ)-acceptable for A or (20γ)-

acceptable for B. Indeed, suppose that v is neither. Then
∣

∣L(v) ∩
((

A
2

)

× B ∪
(

B
2

)

× A
)
∣

∣ 6

40γn3 and so

degH(v) 6

(|A|
3

)

+

(|B|
3

)

+ 40γn3 <
n− 1

3
δ2(H)
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which is not possible. Note that if v is not (20γ)-acceptable for A then v ∈ BadA.
Distribute vertices from BadA ∪ BadB so that every vertex in X ∈ {A,B} is (18γ)-
acceptable for X.

Suppose that there is an edge f ∈
((

A
2

)

×
(

B
2

))

∪
(

A
4

)

∪
(

B
4

)

. Find greedily matching
M ′ of size at most γn that contains all vertices from (BadA ∪ BadB) \ f . Let A′ =
A \ V (M ′), B′ = B \ V (M ′). Since at most γn vertices were moved when distributing
BadA ∪ BadB and |M ′| 6 γn, (1/2− 6γ)n 6 |A′|, |B′| 6 (1/2 + 2γ)n.

Now find matching M ′′ using the following procedure. Assume that |A′| > |B′| + 2.
Take a ∈ A′\f , b ∈ B′\f , a1, a2 ∈ A′\f so that {a, b, a1, a2} ∈ E(H) and add {a, b, a1, a2}
to M ′′. Update sets A′ := A′ \ {a, a1, a2}, B′ := B′ \ {b}. As a result, after at most 4γn
steps we have 0 6 |A′| − |B′| 6 1. Since |M ′ ∪M ′′| is divisible by four, |A′| = |B′| and
|A′| mod 4 ∈ {0, 2}.

If |A′| mod 4 = 0 and f ∈
(

A
2

)

×
(

B
2

)

, then take two edges from A′×
(

B′

3

)

and two edges

from B′ ×
(

A′

3

)

that contain vertices from f and add them to M ′′. This is possible as
a ∈ f ∩A is (18γ)-acceptable for A and |A′| > |A|−16γn. Consequently a is γ-acceptable
for A′.

If |A′| mod 4 = 0 and f ∈
(

A
4

)

∪
(

B
4

)

, then take four edges in A′ ×
(

B′

3

)

and four in

B′ ×
(

A′

3

)

that contain vertices from f .

If |A′| mod 4 = 2, then add f to M ′′. If f ∈
(

A
4

)

, then in addition, add two edges from

A′ ×
(

B′

3

)

to M ′′. Apply Lemma 3.2 to the rest of the 4-graph.
Finally suppose that no such f exists and |A| 6 |B|. Then |B| − |A| is even and H is

a sub-hypergraph of a 4-graph from H2.

4 Absorbing Lemma

In this section we will show that one can find an absorbing structure in H provided H
is not β-extremal (β-non-extremal). Let β0 be such that Lemma 3.1 holds for sufficiently
large n. For the rest of this section we will assume that H is a β0-non-extremal 4-graph
on 4n > n0 vertices that satisfies δ2(G) > n2−5n

4
− ⌈

√
n−3−3
2

⌉+ 1 = (1− o(1))n2/4.

Lemma 4.1 (Absorbing Lemma) For every γ > 0 and β0 > 0, there is α > 0 and
n0 such that a β0-non-extremal 4-graph H on 4n > n0 vertices that satisfies δ2(G) >
n2−5n

4
− ⌈

√
n−3−3
2

⌉ + 1 contains a matching M such that |M | 6 γn with the following
property. For every set W with |W | = 4l 6 αn for some integer l, there is a matching
M ′ in H with V (M ′) = V (M) ∪W .

Definition 4.2 An 8-tuple (w1, . . . , w8) absorbs {v1, . . . , v4} if {w1, . . . , w4} ∈ E(H),
{w5, . . . , w8} ∈ E(H), and H[{w1, . . . , w8} ∪ {v1, . . . , v4}] contains a matching of size
three.

First, we show that for every set U of four vertices there are Ω(n8) 8-tuples that absorb
U . Then Lemma 4.1 can be established using a simple probabilistic argument (similar to
the one in [2]).
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Lemma 4.3 For every β0 > 0 there is α > 0 and n0 such that if H is a β0-non-extremal
4-graph on 4n > n0 vertices that satisfies δ2(G) > n2−5n

4
− ⌈

√
n−3−3
2

⌉ + 1, then for every
U ⊆ V (H) of size four there are at least αn8 8-tuples that absorb U .

To prove Lemma 4.3 we will use the stability theorem from [9].

Lemma 4.4 (Stability Theorem) For every α > 0 there is η > 0 such that if G =
(V,E) is a triangle-free graph with |E| > (1/4−η)|V |2, then |G⊕K⌊|V |/2⌋,⌈|V |/2⌉| 6 α|V |2.

In addition, we will use the regularity lemma of Szeméredi [10]. For a bipartite graph

G = (U,W ) we define the density of (U,W ) as d(U,W ) = e(U,W )
|U ||W | where e(U,W ) is the

number of edges in G.
The pair (U,W ) is called ǫ-regular if for every U ′ ⊆ U such that |U ′| > ǫ|U | and every

W ′ ⊆ W such that |W ′| > ǫ|W |, |d(U ′,W ′)− d(U,W )| 6 ǫ.
For a graph G = (V,E) a partition V0∪V1∪· · ·∪Vt of V is called ǫ-regular if |V0| 6 ǫ|V |,

|Vi| = |Vj| for i, j > 1, and all but at most ǫt2 pairs (Vi, Vj) are ǫ-regular.
The celebrated lemma of Szeméredi [10] states that every graph admits an ǫ-regular

partition into a bounded number of classes.

Lemma 4.5 (Regularity Lemma of Szeméredi) For every 0 < ǫ < 1 and every t
there exist integers n0 and T such that every graph on at least n0 vertices admits an
ǫ-regular partition with the number of partition classes l satisfying t 6 l 6 T .

The regularity lemma is often applied to obtain the so-called reduced graph. Specifically,
given ǫ > 0 and δ > 0 let V0, . . . , Vl be an ǫ-regular partition of G. The reduced graph of
G, R(G), is the graph with V (R(G)) = {1, . . . , l} and with {i, j} in E(R(G)) if and only
if (Vi, Vj) is ǫ-regular and d(Vi, Vj) > δ. Straightforward computations show that when

ǫ ≪ δ, then |E(R(G))| > (1−2δ) |E(G)|l2
n2 . In addition note that if V0, . . . , Vl is an ǫ-regular

partition of G, then V0, . . . , Vl is an ǫ-regular partition of the complement of G.

Although the proof of Lemma 4.3 requires some computations the underlying idea is
extremely simple. Fix a set U = {u1, u2, u3, u4} such that |U | = 4. The set U can be
easily absorbed if it is possible to find augmenting paths from {u1, u2} to {u3, u4} with an
odd number of edges in which two consecutive edges intersect in two vertices. It turns out
that paths exist unless sets L(u1, u2) and L(u3, u4) are either almost disjoint or almost
identical. This leads to an auxiliary 2-coloring of the edges of a complete graph on n
vertices. We show that for every hyperedge h in H no matter how we partition h into
two pairs e1, e2 the colors of e1, e2 must have a specific pattern (in one case both have the
same color, in the other they have distinct colors). Finally we show that this is possible
only if one of the colors induces a graph which is approximately bipartite.

Proof of Lemma 4.3. The constant α depends on β0 and is obtained by applying
Lemma 4.4 and Lemma 4.5 with appropriate parameters (in addition we assume that α is
sufficiently small). Specifically, the following constants will determine α. Let γ > 0 be the
constant from Lemma 4.4 with the property that if R = (W,F ) is a triangle-free graph
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with |F | > (1/4−γ)|W |2, then |R⊕K⌊|W |/2⌋,⌈|W |/2⌉| 6 β0|W |2/4. Let 0 < δ 6 γ/10 and let
ǫ ≪ δ. Let T = T (ǫ) be the constant from Lemma 4.5. Then the constant α = Ω(δ8/T 16)
and we have

0 < α ≪ ǫ ≪ δ ≪ γ ≪ β0.

Assume that H is a β0-non-extremal 4-graph with δ2(H) > (1 − o(1))n2/4 > (1 −
α)n2/4. Let U = {v1, v2, v3, v4} ⊂ V (H), e1 = {v1, v2}, e2 = {v3, v4}, and let L1 =
L(e1), L2 = L(e2). For e ∈ L1 such that e ∩ U = ∅, if e′ ∈ L(e) ∩ L2 and e′ ∩ U = ∅, then
e1 ∪ e, e∪ e′, e′ ∪ e2 are in E(H) and U can be absorbed by e∪ e′. Therefore, if more than√
αn2, e ∈ L(e1) are such that |L(e) ∩ L(e2)| >

√
αn2, then the number of 8-tuples that

absorb U is more than αn8/3. Consequently, we can assume that all but at most
√
αn2

pairs e ∈ L(e1) are such that

|L(e) ∩ L(e2)| 6
√
αn2 (5)

and the same is true for L(e2).
Case 1: Assume that |L(e1) ∩ L(e2)| >

√
αn2.

If |L(e1)∪L(e2)| > (1/4+
√
α)n2, then for any e ∈ L(e1)∩L(e2), |L(e)∩(L(e1)∪L(e2))| >√

αn2/2 and we have αn8/6 absorbing 8-tuples. Thus assume otherwise.
Then |L(e1)∩L(e2)| > (1/4−2

√
α)n2 and all but at most

√
αn2 pairs e ∈ L(e1)∩L(e2)

are such that |L(e)∩(L(e1)∪L(e2))| <
√
αn2. Consider the following coloring c :

(

V (H)
2

)

→
{1, 2}. For e ∈

(

V (H)
2

)

, c(e) = 1 if e ∈ L(e1) ∩ L(e2) and c(e) = 2 otherwise. Let
Gi = (V (H), c−1(i)) and note that for i ∈ {1, 2},

(1/4− 2
√
α)n2

6 |E(Gi)| 6 (1/4 + 2
√
α)n2. (6)

Claim 4.6 Let S be a subset of {{u1, u2, u3, u4}|{u1, u2} ∈ E(G1), {u3, u4} ∈ E(G2)}. If
|S| > 4α1/4n4, then |S ∩ E(H)| > 9

√
αn4.

Proof. Let S1 ⊆ E(G1) be the set of pairs {u, u′} such that {u, u′, v, v′} ∈ S for at least
4α1/4n2 pairs {v, v′} in E(G2). If |S1| < 4α1/4n2, then |S| < 2α1/4n4 + 2α1/4n4 = 4α1/4n4

and so |S1| > 4α1/4n2. Consequently, by (5), for at least (4α1/4 −√
α)n2 > 3α1/4n2 pairs

e ∈ S1, we have |L(e) ∩ E(G1)| <
√
αn2. For each such e ∈ E(G1), |L(e) ∩ E(G2)| >

(1/4− 2
√
α)n2 and, since |E(G2)| 6 (1/4+2

√
α)n2, at least 3α1/4n2 pairs e′ ∈ E(G2) are

such that e ∪ e′ ∈ S and e′ ∈ L(e). Thus |S ∩ E(H)| > 9
√
αn4. �

Claim 4.7 If there are at least 9
√
αn4 edges f ∈ E(H) such that f = e′1 ∪ e′2 where

c(e′1) = c(e′2), then the number of 8-tuples that absorb U is at least αn8.

Proof. First note that if there are at least
√
αn4 edges f ∈ E(H) such that f = e′1 ∪ e′2

where e′1, e
′
2 ∈ L(e1)∩L(e2), then we have

√
αn8/3 absorbing 8-tuples. Consequently, the

number of edges f = e′1 ∪ e′2 such that c(e′1) = c(e′2) = 1 is less than
√
αn4.

Suppose that for at least 8
√
αn4 edges f ∈ E(H) we have f = e′1 ∪ e′2 where e′1, e

′
2 ∈

E(G2). Call a pair e ∈ E(G2) useful if |L(e)∩E(G1)| > 10α1/4n2 and let m be the number
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of pairs that are not useful. We will count the number of hyperedges h = e′1∪e′2 such that
e′1 ∈ E(G1), e

′
2 ∈ E(G2). On one hand, in view of (5) and (6), this number is at least

|E(G1)|(δ2(H)−√
αn2) >

(

1

4
− 2

√
α

)2

n4.

On the other hand, the number is less than

10α1/4n2m+ (|E(G2)| −m)|E(G1)| 6
(

1

4
+ 2

√
α

)2

n4 −
(

1

4
− 12α1/4

)

mn2.

Therefore,
(

1

4
− 12α1/4

)

m < 2
√
αn2

and so there are at most 9
√
αn2 pairs in E(G2) that are not useful. Therefore the number

of edges f = e′2 ∪ e′′2 in E(H) such that e′2, e
′′
2 ∈ G2 and at least one of e′2, e

′′
2 is not useful,

is at most 9
√
αn2|E(G2)| < 7

√
αn4. As a result, there are at least 9α1/4 ·9α1/4n4 ·√αn4 >

αn8 tuples (w1, w2, . . . , w8) such that {w1, · · · , w8}∩(e1∪e2) = ∅, all wi’s are distinct, and
{w1, w2} ∈ L(e1), {w7, w8} ∈ L(e2), {w1, w2, w3, w4}, {w3, w4, w5, w6}, {w5, w6, w7, w8} ∈
E(H). Each such 8-tuple absorbs U . �

Claim 4.8 Let 0 < ξ < 1 and let 0 < ǫ < 2δ 6 1. Let G be a 4-partite graph with
partition classes Y1, Y2, Y3, Y4 such that: |Yi| > ξn, |Yi| = |Yj|, (Y1, Y2), (Y3, Y4) are ǫ-
regular pairs with density at least δ, and d(Y2, Y3), d(Y1, Y4) > 1/2. Then G has at least
δ2ξ4n4/1024 4-cycles C such that V (C) ∩ Yi 6= ∅ for every i = 1, . . . , 4.

Proof. Note that at least |Y1|/4 vertices y ∈ Y1 have deg(y, Y4) > |Y4|/4 and at least
|Y2|/4 vertices y ∈ Y2 have deg(y, Y3) > |Y3|/4. Since (Y1, Y2) is ǫ-regular with d(Y1, Y2) >
δ, there are at least (δ − ǫ)|Y1||Y2|/16 edges {y1, y2} ∈ G[Y1, Y2] such that deg(y1, Y4) >
|Y4|/4 and deg(y2, Y3) > |Y3|/4. Since (Y3, Y4) is ǫ-regular with d(Y3, Y4) > δ, each {y1, y2}
is in (δ − ǫ)|Y3||Y4|/16 cycles C that intersect every Yi. Consequently, there are at least
(δ − ǫ)2ξ4n4/256 cycles {y1, . . . , y4} in G with yi ∈ Yi. �

We will now analyze the structure of G1 and G2. Let γ be such that if R = (W,F ) is a
triangle-free graph with |F | > (1/4− γ)|W |2, then |R⊕K⌊|W |/2⌋,⌈|W |/2⌉| 6 β0|W |2/4. Let
ǫ ≪ δ ≪ γ be such that there is an ǫ-regular partition of G that satisfies: |E(R(Gi))| >
(1/4− γ)|V (R(Gi))|2 for i = 1, 2, and |V0| 6 β0n/5.

Recall that V (R(G1)) = V (R(G2)) and assume that the reduced graph R(G1) has a
triangle T1 = (X11, X21, X31). If every triangle in R(G2) contains one of X11, X21, X31,
then we can make R(G2) triangle-free by moving these three sets to V0. Therefore, we
may assume that |V0| 6 β0n/4 and T1 = (X11, X21, X31), T2 = (X12, X22, X32) are vertex-
disjoint triangles in R(G1) and R(G2).These two independent triangles will let us find
cycles of length four that have exactly three edges monochromatic. Some of these cycles
will span edges of H (Claim 4.6) and at the same time will satisfy the property of Claim
4.7.

the electronic journal of combinatorics 19(2) (2012), #P20 11



We have |X1i| = |X2i| = |X3i| = ξn > n/(2T ), where T = T (γ) follows from Lemma
4.5. Without loss of generality, assume d1(X11, X12), d1(X21, X22) > 1/2. Then, by Claim
4.8, there are at least δ2ξ4n4/1024 cycles {x1, x2, x3, x4} with c({x1, x2}) = c({x2, x3}) =
c({x1, x4}) = 1 and c({x3, x4}) = 2. If α1/4 6 δ2ξ4/4096, then from Claim 4.6 at least
9
√
αn4 of such cycles are edges in H. Consequently, by Claim 4.7, there are at least

αn8 absorbing 8-tuples. If on the other hand, R(G1) is triangle-free, then by Lemma 4.4,
|R(G1)⊕ E(Kl/2,l/2)| 6 β0l

2/4 and |G1 ⊕Kn/2,n/2| 6 β0n
2/2.

Let A, B be partition classes of G1 such that |G1[A,B] ⊕ E(Kn/2,n/2)| 6 β0n
2/2.

Then, in view of Claim 4.7, there are at least β4
0n

8 absorbing 8-tuples or |E(H) ∩
((

A
4

)

∪
(

B
4

)

∪
(

A
2

)

×
(

B
2

))

| 6 β0n
4 and H is β0-extremal of Type 2.

Case 2: Assume that |L(e1) ∩ L(e2)| <
√
αn2.

Recall that for every e ∈
(

V (H)
2

)

, |L(e)| > (1/4− α)n2 and so

|L(ei)| 6
(

1

4
+ 2

√
α

)

n2.

If there are at least 3
√
αn2 pairs e ∈ L(ei) such that e∪e′ ∈ E(H) for at least

√
αn2 pairs

e′ ∈ L(e3−i), then there are at least αn8 absorbing 8-tuples. Otherwise, all but at most
3
√
αn2 pairs e ∈ L(ei) have |L(e) ∩ L(e3−i)| <

√
αn2. Consequently, for all but at most

3
√
αn2 pairs e ∈ L(ei),

|L(e) ∩ L(ei)| >
(

1

4
− 2

√
α

)

n2. (7)

Consider the following coloring c :
(

V (H)
2

)

→ {1, 2}. For e ∈
(

V (H)
2

)

, c(e) = 1 if e ∈ L(e1)
and c(e) = 2 otherwise. Let Gi = (V, c−1(i)).

Claim 4.9 Let i ∈ [2], and let S ⊆ {{u1, u2, u3, u4}|{u1, u2} ∈ E(Gi), {u3, u4} ∈ E(Gi)}.
If |S| > 11α1/4n4, then |S ∩ E(H)| > 3

√
αn4/12.

Proof. Let q be the number of pairs e ∈ E(Gi) such that e∪e′ ∈ S for at least α1/4n2 pairs
e′ ∈ E(Gi). If q < 20α1/4n2, then |S| < α1/4n4/2+q·n2/2 < 11α1/4n2 and so q > 20α1/4n2.
Every pair e ∈ E(G1) is in L(e1) and all but at most 2

√
αn2 pairs e ∈ E(G2) are in L(e2).

Therefore, for at least q − 5
√
αn2 > 19α1/4n2 pairs in E(Gi) ∩ L(ei), (7) holds, and for

each such e,
|L(e) ∩ L(ei)| > |L(ei)| − 4

√
αn2.

Fix e with the above property. Since all but at most 2
√
αn2 pairs e′ ∈ E(Gi) are not

L(ei), at least (α1/4 − 2
√
α)n2 pairs e′ are such that e ∪ e′ ∈ S and e′ ∈ L(ei). As a

result, at least (α1/4 − 6
√
α)n2 > 18α1/4n2/19 of such pairs e′ are in L(e). Therefore, for

at least 19α1/4n2 pairs e ∈ E(Gi), there are at least 18α
1/4n2/19 pairs e′ ∈ L(e) such that

e ∪ e′ ∈ S. Thus |S ∩ E(H)| > 3
√
αn4. �

Claim 4.10 If there are at least 3
√
αn4 hyperedges f ∈ E(H) such that f = e′1∪e′2 where

c(e′1) 6= c(e′2), then there are at least αn8 absorbing 8-tuples.
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Proof. Note that there are at least 3
√
αn2 pairs e′1 with c(e′1) = 1 and such that |L(e′1)∩

E(G2)| > 3
√
αn2. Indeed, otherwise, the number of edges f = e′1 ∪ e′2 such that c(e′1) 6=

c(e′2) is less than
3
√
αn4/2 + 3

√
αn2 · n2/2 = 3

√
αn4.

For each such e′1 there are at least
√
αn2 pairs e′2 ∈ L(e′1) ∩ L(e2). Thus the number of

absorbing 8-tuples is at least 3
√
αn2 · √αn2 · n2/3 = αn8. �

Now we proceed in the same fashion as in Case 1. Let γ be such that if R = (W,F )
is a triangle-free graph with |F | > (1/4− γ)|W |2, then |R⊕K⌊|W |/2⌋,⌈|W |/2⌉| 6 β0|W |2/4.
Let ǫ ≪ δ ≪ γ and assume that T1 = (X11, X21, X31), T2 = (X12, X22, X32) are vertex-
disjoint triangles in the reduced graphs R(G1), R(G2). Then |X1i| = |X2i| = |X3i| = ξn >

n/(2T ), where T = T (γ) follows from Lemma 4.5. Without loss of generality, we have
d1(X11, X12), d1(X21, X22) > 1/2. Thus by Claim 4.8 there are at least δ2ξ4n4/1024 cycles
{x1, x2, x3, x4} with c({x1, x2}) = c({x2, x3}) = c({x1, x4}) = 1 and c({x3, x4}) = 2. As
long as 11α1/4 6 δ2ξ4/1024, by Claim 4.9, at least 3

√
αn4 of such C4’s span edges of H.

Then, by Claim 4.10, there are at least αn8 absorbing 8-tuples.
If l := |V (R(Gi))| and one of R(Gi)’s is such that |R(Gi)⊕E(Kl/2,l/2)| 6 β0l

2/4, then
|Gi ⊕Kn/2,n/2| 6 β0n

2/2. In view of Claim 4.10 we either have β4
0n

8 absorbing 8-tuples
or H is β0-extremal of Type 1.
Proof of Lemma 4.1. Proof is analogous to the proofs of corresponding statements
in [8] and [2]. For a set U ⊂ V (H) of size four let T (U) be the set of all S ∈

(

V (H)
8

)

such that at least one of the 8-tuples obtained from S absorbs U . Then, by Lemma 4.3,
there is α > 0 such that |T (U)| > α

(

n
8

)

. Take a family F of sets of size eight selecting

each independently from
(

V (H)
8

)

with probability p = αn/(300
(

n
8

)

). By Chernoff’s bound
with probability 1 − o(1), the following two conditions hold: |F| 6 2p

(

n
8

)

6 αn/150

and for every U of size four, |T (U) ∩ F| > αp
2

(

n
8

)

= α2n
600

. The expected number of pairs
{S1, S2} ⊂ F such that S1 ∩ S2 6= ∅ is at most

8

(

n

8

)(

n

7

)

p2 < α2n/1400

and so by Markov’s inequality, with probability at least 1/2, the number of intersecting
pairs is at most α2n/700. Thus with positive probability there is a family F such that
|F| 6 αn/150, for every U of size four, |T (U)∩F| > α2n

600
, and the number of intersecting

pairs of sets is at most α2n/700. Let F ′ be obtained from F by deleting intersecting sets
and sets that do not absorb any U ∈

(

V (H)
4

)

. Then for every U of size four, |T (U)∩F ′| >
α2n
4200

and so any set W of size at most α2n
1050

and such that 4||W | can be absorbed by F ′.

5 An almost perfect matching

In this section, we prove that H contains a matching that covers all but a constant number
of vertices even when δ2(H) is much smaller than the bound in (3). In what follows we
did not try to optimize the constant as any leftover set of size o(|V (H)|) is sufficiently
small for our purposes.
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Lemma 5.1 There is an ǫ > 0 and n0 such that if H is a 4-graph on n > n0 vertices for
which δ2(H) > (1− ǫ)n2/4, then H contains a matching M such that

|V (H) \ V (M)| < 2

ǫ
+ 1.

Proof. Since in the proof, in addition to H, we consider certain auxiliary graphs, we will
refer to edges of H as 4-edges. Set α := 0.4, ǫ := 0.002 and let M be a maximum matching
in H. Let L =: V (H) \ V (M), k := |L|, and m := |M | = n−k

4
. Note that if k < 2/ǫ + 1,

then we are done and so assume otherwise. It is not difficult to see that |L| 6 ǫn. Indeed,
let H ′ be obtained from H by adding a set V ′ of ǫn “new” vertices to V (H) and adding
all 4-sets from

(

V ′∪V (H)
4

)

that contain a vertex from V ′. Then |V (H ′)| = (1 + ǫ)n and
δ2(H

′) > (1 − ǫ)n2/4 + ǫn(n − 2) > (1 + ǫ/2)|V (H ′)|2/4 and so H ′ contains a perfect
matching M ′ by (2). Deleting edges in M ′ that contain a vertex from V ′ gives a matching
M in H with |L| 6 3|V ′|. Consequently we may assume that k 6 3ǫn. Since M is
maximum, we have E(H) ∩

(

L
4

)

= ∅. In addition
∣

∣

∣

∣

E(H) ∩
((

L

3

)

× (V \ L)
)∣

∣

∣

∣

6 n

(

k

3

)

6 ǫn2

(

k

2

)

. (8)

Also, the number of 4-edges e ∈ E(H) such that |e ∩ L| = 2 and such that for some
f ∈ M , |e ∩ f | = 2 is at most

(

k

2

)

n

4

(

4

2

)

< ǫ
n2

4

(

k

2

)

. (9)

Let h be the number of 4-edges e ∈ E(H) such that |e∩L| = 2 and such that there exist
two distinct 4-edges f1, f2 ∈ M with |e ∩ fi| = 1 for i = 1, 2. By (8) and (9),

h > (1− ǫ)
n2

4

(

k

2

)

− 5ǫn2

4

(

k

2

)

= (1− 6ǫ)
n2

4

(

k

2

)

. (10)

A pair of 4-edges {f1, f2} ⊂ M is called switchable if there exists a matching {e1, e2, e3} in
the complete bipartite graph K[V (f1), V (f2)] such that for i = 1, . . . , 3, |L(ei)∩

(

L
2

)

| > 4k.
Note that if {f1, f2} is switchable, then we can find three pairwise disjoint 4-edges in
H[V (f1) ∪ V (f2) ∪ L]. Thus, since M is maximum, there are no switchable pairs. In
particular for every {f1, f2} ⊂ M ,

∣

∣

∣

∣

E(H) ∩
(

V (f1)× V (f2)×
(

L

2

))∣

∣

∣

∣

< 8

(

k

2

)

+ 8 · 4k

as if there are nine edges e1, . . . , e9 in K[V (f1), V (f2)] with |L(ei) ∩
(

L
2

)

| > 4k for i =
1, . . . , 9, then at least three of them are independent. A pair of 4-edges {f1, f2} ⊂ M is
called bounded if |E(H) ∩

(

V (f1)× V (f2)×
(

L
2

))

| 6 7.5
(

k
2

)

. If at least α
(

m
2

)

pairs in
(

M
2

)

are bounded, then

h 6 α

(

m

2

)

7.5

(

k

2

)

+ (1− α)

(

m

2

)(

8

(

k

2

)

+ 32k

)

<

(

1− α

16
+

8

k − 1

)

n2

4

(

k

2

)

.
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e

f

Figure 2: Graph G. We put e → f .

Figure 3: Matching of size four in G[f1, f2] ∪G[f2, f3].

This contradicts (10) if k > 256
α

+ 1 and α > 192ǫ. Consequently, less than α
(

m
2

)

pairs in
(

M
2

)

are bounded.
Suppose that a pair {f1, f2} ⊂ M is neither bounded nor switchable. We consider

the bipartite graph G[f1, f2] on V (f1) ∪ V (f2) by adding e from E(K[V (f1), V (f2)]) to
E(G[f1, f2]) if |L(e)∩

(

L
2

)

| > k2/40. As {f1, f2} is not switchable, G[f1, f2] has a maximum
matching of size two and at most eight edges. Since {f1, f2} is unbounded, G[f1, f2] has
exactly eight edges. Indeed, if the number of edges is at most seven, then |E(H) ∩
(

V (f1)× V (f2)×
(

L
2

))

| 6 7
(

k
2

)

+ 9k2/40 < 7.5
(

k
2

)

. Therefore G[f1, f2] is the graph G

in Figure 2. Since at least (1 − α)
(

m
2

)

> m2/4 pairs in
(

M
2

)

are neither switchable nor
bounded we can find three 4-edges f1, f2, f3 ∈ M such that all three graphs G[fi, fj ]
are isomorphic to G from Figure 2.Using the convention from Figure 2 we can assume
that f1 → f2 and f2 → f3 and it is easy to see that there is a matching of size four
in G[f1, f2] ∪ G[f2, f3] (Figure 3). We can switch f1, f2, f3 for four 4-edges that contain
vertices from V (f1) ∪ V (f2) ∪ V (f3) ∪ L.

6 Proof of the main theorem

Now we prove Theorem 1.2.
Proof of Theorem 1.2. Let β0 > 0 be the constant in Lemma 3.1, let ǫ0 > 0 be
the constant from Lemma 5.1, and let n0 be sufficiently large. Let H be a 4-graph on
n > n0 vertices with n mod 4 = 0. If H is β0-extremal, then by Lemma 3.1, H has
a perfect matching. Otherwise by Lemma 4.1, there is a matching Ma and a constant
α > 0 such that |Ma| 6 ǫ0n/20 and Ma can absorb any set of size at most αn. Let
H ′ = H[V (H) \ V (M)]. Then δ2(H

′) > (1− ǫ0)n
2/4 and so H ′ contains a matching that

contains all but at most O(1/ǫ0) vertices which can be absorbed by Ma.
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in uniform hypergraphs and the conjectures of Erdős and Samuels, (manuscript).
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