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Abstract

Let r > 1 be an integer. An h-hypergraph H is said to be r-quasi-linear (linear
for r = 1) if any two edges of H intersect in 0 or r vertices. In this paper it is shown

that r-quasi-linear paths P h,r
m of length m > 1 and cycles Ch,r

m of length m > 3 are
chromatically unique in the set of h-uniform r-quasi-linear hypergraphs provided
r > 2 and h > 3r − 1.
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1 Notation and preliminary results

A simple hypergraph H = (V, E), with order n = |V | and size m = |E|, consists of a
vertex-set V (H) = V and an edge-set E(H) = E , where E ⊆ V and |E| > 2 for each edge
E in E . H is h-uniform, or is an h-hypergraph, if |E| = h for each E in E and H is linear
if no two edges intersect in more than one vertex [1]. H is said to be antilinear if for every
two edges E,F of H we have |E ∩ F | 6= 1. Let r > 1 and h > 2r + 1. H is said to be
r-quasi-linear (or shortly quasi-linear) [13] if any two edges intersect in 0 or r vertices.
Examples of quasi-linear hypergraphs are t-stars [5, 8], also called sunflower hypergraphs
[7, 11, 12]. We say that a hypergraph S is a t-star with kernel K where K ⊆ V (S) and
t > 1 if S has exactly t edges and e ∩ e′ = K for all distinct edges e and e′ of S. A
system of t pairwise disjoint edges (matching) is a t-star with empty kernel. In [12] a
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sunflower hypergraph was denoted by SH(n, p, h); it is an h-hypergraph having a kernel
of cardinality h− p, n vertices and k edges, where n = h+ (k − 1)p and 1 6 p 6 h− 1.
A hypergraph for which no edge is a subset of any other is called Sperner. Two vertices
u, v ∈ V (H) belong to the same component if there are vertices x0 = u, x1, . . . , xk = v
and edges E1, . . . , Ek of H such that xi−1, xi ∈ Ei for each i (1 6 i 6 k) [1]. H is said
to be connected if it has only one component. An h-uniform hypertree is a connected
linear h-hypergraph without cycles. We shall define two classes of quasi-linear uniform
hypergraphs called quasi-linear elementary paths and quasi-linear elementary cycles and
denoted by P h,r

m and Ch,r
m , respectively, as follows: P h,r

m consists of m edges E1, . . . , Em

such that |E1| = . . . = |Em| = h, |Ek ∩El| = r if {k, l} = {i, i+ 1} for any 1 6 i 6 m− 1
and 0 otherwise. Cycles Ch,r

m are defined analogously, by also imposing |Em ∩ E1| = r.
If λ ∈ N, a λ-coloring of a hypergraph H is a function f : V (H) → {1, . . . , λ} such

that for each edge E of H there exist x, y in E for which f(x) 6= f(y). The number of λ-
colorings of H is given by a polynomial P (H, λ) of degree |V (H)| in λ, called the chromatic
polynomial of H. P (H,λ) can be obtained applying inclusion-exclusion principle, in the
same way as for graphs, getting the following formula:

P (H,λ) =
∑

W⊆E(H)

(−1)|W |λc(W ), (1)

where c(W ) denotes the number of components of the spanning subhypergraph induced
by the edges from W . By rearranging terms in (1) we obtain that if H has order n then
P (H,λ) = λn + an−1λ

n−1 + . . .+ a1λ, where

ai =
∑
j>0

(−1)jN(i, j) (2)

and N(i, j) denotes the number of spanning subhypergraphs of H with n vertices, i
components and j edges [10].
All h-uniform hypertrees have the same chromatic polynomial.

Lemma 1. [6]. If T h
k is any h-uniform hypertree with k edges, then

P (T h
k , λ) = λ(λh−1 − 1)k. (3)

Two hypergraphs H and G are said to be chromatically equivalent or χ-equivalent,
written H ∼ G, if P (H,λ) = P (G, λ). Let us restrict ourselves to the class of Sperner
hypergraphs. A simple hypergraph H is said to be chromatically unique if H is isomorphic
to H ′ for every simple hypergraph H ′ such that H ′ ∼ H; that is, the structure of H is
uniquely determined up to isomorphism by its chromatic polynomial. The notion of χ-
unique graphs was first introduced and studied by Chao and Whitehead [4] (see also [9]).
It is clear that all h-hypergraphs are Sperner. The notion of χ-uniqueness in the class of h-
hypergraphs may be defined as follows: An h-hypergraph H is said to be h-chromatically
unique if H is isomorphic to H ′ for every h-hypergraph H ′ such that H ′ ∼ H.

Non-trivial chromatically unique hypergraphs are extremely rare. One example of a
non-trivial chromatically unique hypergraph was proposed by Borowiecki and Lazuka; it
is SH(n, 1, h).
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Theorem 2. [3] SH(n, 1, h) is chromatically unique.

The proof of this result was completed in [11]. Note that for p = h−1, SH(n, h−1, h)
is an h-uniform hypertree. The chromaticity of SH(n, p, h) may be stated as follows.

Theorem 3. [12] Let n = h + (k − 1)p, where h > 3, k > 1 and 1 6 p 6 h − 1. Then
SH(n,p,h) is h-chromatically unique for every 1 6 p 6 h−2; for p = h−1 SH(n, h−1, h)
is h-chromatically unique for k = 1 or k = 2 but it has not this property for k > 3.
Moreover, SH(n, p, h) is not chromatically unique for every p, k > 2.

SH(n, p, h) is quasi-linear with r = h− p and it is a path for k = 2.
Since P h,r

2 is a sunflower hypergraph SH(n, p, h) with p = h− r having k = 2 edges, from
Theorem 1.3 it follows that P h,r

2 is h-chromatically unique for every 1 6 r 6 h− 1. Also
P h,1
m is an h-uniform hypertree, hence for m > 3 it is not h-chromatically unique. We

shall prove that P h,r
m for every m > 1 and Ch,r

m for every m > 3 are h-chromatically unique
hypergraphs in the set of quasi-linear hypergraphs provided r > 2 and h > 3r− 1. In [10]
it was shown that Ch,r

m is h-chromatically unique for r = 1 and every m,h > 3, but it is
not chromatically unique for r = 1 and m,h > 3 [2]. The chromaticity of non-uniform
hypertrees was studied by Walter [15].

2 Main results

We need the following result about the first coefficients of the chromatic polynomial
of a quasi-linear h-hypergraph with a particular structure relatively to subhypergraphs
induced by 3 edges.

Lemma 4. Let r > 2, h > 2r + 1 and H be a quasi-linear h-hypergraph of order n and
size m having the property that all subhypergraphs induced by 3 edges have one of the
following patterns:
a)P h,r

3 ; b)P h,r
2 and an isolated edge, or c) 3 isolated edges. Then

P (H,λ) = λn −mλn−h+1 + β1λ
n−2h+r+1 + β2λ

n−2h+2 − β3λn−3h+2r+1 +R(λ), (4)

where R(λ) is a polynomial in λ of degree at most equal to n− 3h+ 2r, β2 is the number
of pairwise disjoint edges of H and β1 and β3 are the numbers of induced subhypergraphs
of H isomorphic to P h,r

2 and P h,r
3 , respectively.

Proof. By the hypothesis we have n−h+1 > n−2h+r+1 > n−2h+2 > n−3h+2r+1.
If W ⊂ E(H) in (1) consists of one edge we get N(n − h + 1, j) = m if j = 1 and
N(n− h+ 1, j) = 0 otherwise.
If |W | = 2 then N(n− 2h+ r+ 1, 2) and N(n− 2h+ 2, 2) count the number of unordered
pairs {E,F} of edges such that |E ∩ F | = r and E ∩ F = ∅, respectively. In these two
cases suppose that there exists an edge G ∈ E , G 6= E,F , such that G ⊂ E ∪ F . Denote
i = |G ∩ E ∩ F |. It follows that 0 6 i 6 r, |G ∩ (E\F )| = r − i, |G ∩ (F\E)| = r − i,
thus yielding h = |G| = 2r − i 6 2r, which contradicts the hypothesis. It follows that
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N(n − 2h + r + 1, j) = N(n − 2h + 2, j) = 0 for every j 6= 2 and β1, β2 represent the
numbers of induced subhypergraphs of H consisting of P h,r

2 and of an unordered pair of
disjoint edges, respectively.
Similarly, if |W | = 3, by the hypoyhesis 3 edges can induce only subhypergraphs of types
a), b) or c). We obtain that N(n− 3h+ 2r+ 1), N(n− 3h+ r+ 2, 3) and N(n− 3h+ 3, 3)
count the subhypergraphs of H induced by an unordered triple of edges {D,E, F} such
that these subhypergraphs are isomorphic to P h,r

3 , P h,r
2 and an isolated edge and 3 isolated

edges, respectively. We also have n − 3h + 2r + 1 > n − 3h + r + 2 > n − 3h + 3 since
r > 2 and N(n− 3h+ 2r + 1, j) = 0 for every 0 6 j 6 2.
If the edges D,E, F of H induce a P h,r

3 , where D ∩ F = ∅, suppose that there exists an
edge G 6= D,E, F such that G ⊂ D ∪ E ∪ F . We have proved that G 6⊂ E ∪ F , thus
implying G ∩ D 6= ∅; similarly G 6⊂ D ∪ F implies G ∩ E 6= ∅. We have found 3 edges
D,E,G such that D∩E 6= ∅, D∩G 6= ∅ and E∩G 6= ∅, which contradicts the hypothesis.
This implies that N(n− 3h + 2r + 1, j) = 0 for every j > 4. Since by adding new edges
to W the number of components c(W ) decreases, it follows that P (H,λ) is given by (4),
where β3 is the number of induced subhypergraphs of H isomorphic to P h,r

3 .

Theorem 5. Let H be an antilinear h-hypergraph such that P (H,λ) = P (G, λ), where G
is P h,r

m (m > 1) or Ch,r
m (m > 3). If r > 2 and h > 3r − 1 then H is isomorphic to G.

Proof. It is trivial to see that P h,r
m for 1 6 m 6 3 and Ch,r

3 are h-chromatically unique.
Let m > 4. We shall consider two subcases:
I. G = P h,r

m and II. G = Ch,r
m .

I. Let H be an antilinear h-hypergraph such that P (H,λ) = P (P h,r
m , λ).

The order of an hypergraph is being determined by the leading term of the chromatic
polynomial, it follows that H has order n = h + (m − 1)(h − r). From (2) one deduces
that

P (P h,r
m , λ) = λn −mλn−h+1 + α1λ

n−2h+r+1 + α2λ
n−2h+2 − α3λ

n−3h+2r+1 +Q(λ), (5)

where Q(λ) is a polynomial of degree at most equal to n − 3h + r + 2, α1 = m − 1 is
the number of subpaths P h,r

2 of length two, α2 =
(
m
2

)
−m + 1 is the number of pairs of

pairwise disjoint edges and α3 = m− 2 is the number of subpaths P h,r
3 of length three in

P h,r
m . Also since any spanning subhypergraph of P h,r

m induced by less than m edges is not
connected, it follows that in (5) the coefficient of λ is (−1)m, which implies that H is also
connected [15].
Since H has all edges of cardinality h, it follows that the number of components of a
spanning subhypergraph of H may be n, n − h + 1 or a smaller number. Any spanning
subhypergraph of H with n vertices and n−h+1 components must contain only one edge.
From (2) we deduce that an−h+1 = −N(n− h+ 1, 1) = −|E(H)|, hence H has exactly m
edges. Every spanning subhypergraph of H with n vertices has two kinds of components:
isolated vertices and components including at least h vertices. The components including
at least h vertices will be called major components [10].
If such a spanning subhypergraph has at least two major components then it contains
at most n − 2h + 2 components and this bound is reached when the major components
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are two disjoint edges and minor components are n − 2h isolated vertices. It follows
that all coefficients an−h+1, . . . , an−2h+r+1 given by (2) correspond to the case when all
spanning subhypergraphs of H of order n contain only one major component. In this way
N(n−h, j) counts the spanning subhypergraphs of H consisting of a subset Y of vertices
(the major component) and n− h− 1 isolated vertices, where Y ⊂ V (H), |Y | = h+ 1.
Denote by ϕ(Y ) the number of edges included in Y . Because Y induces a component
having h+ 1 vertices, it follows that ϕ(Y ) > 2 and for each i > 2 the union of any i edges
included in Y equals Y . Since N(n− h, 0) = N(n− h, 1) = 0, by (2) we get

an−h =
∑
j>2

(−1)jN(n− h, j) =
∑
j>2

(−1)j
∑

|Y |=h+1, ϕ(Y )>2

(
ϕ(Y )

j

)

=
∑

|Y |=h+1, ϕ(Y )>2

∑
j>2

(−1)j
(
ϕ(Y )

j

)
=

∑
|Y |=h+1, ϕ(Y )>2

(ϕ(Y )− 1).

Since an−h = 0 it follows that no such Y can exist, or equivalently, for any two distinct
edges E,F we have |E ∪ F | > h+ 2. If Y ⊂ V (H), |Y | = h+ 2 and E,F ∈ E(H), E 6= F
and E,F ⊂ Y we get E ∪ F = Y since |E ∪ F | > h + 2. Since an−h−1 = 0 we deduce in
the same way that |E ∪ F | > h+ 3 and by induction we obtain that for any two distinct
edges E,F ∈ E(H) we have |E ∪ F | > 2h− r, or |E ∩ F | 6 r.
Let now Y ⊂ V (H), |Y | = 2h − r be a major component of a spanning subhypergraph
of H such that Y contains exactly j > 2 edges. We shall prove that j = 2. For this let
E,F ⊂ Y be two distinct edges such that E ∪ F = Y . Suppose that there exists an edge
G,G 6= E,F such that G ⊂ Y . By denoting a = |(E\F ) ∩ G| and b = |(F\E) ∩ G| we
get a + b 6 h. Since |G ∪ E| = h + b > 2h − r, |G ∪ F | = h + a > 2h − r, it follows
a, b > h− r, hence a+ b > 2h− 2r, which implies h > 2h− 2r. But this contradicts the
hypotheses h > 3r − 1 and r > 2. For hypergraph H we can write∑

|Y |=2h−r, ϕ(Y )=2

1 = an−2h+r+1 = m− 1,

which implies that H contains exactly m− 1 pairs of edges {E,F} such that |E ∩F | = r,
or |E ∪ F | = 2h− r.
Let p be such that n − 2h + 2 < p < n − 2h + r + 1. If Y ⊂ V (H), |Y | = n + 1 − p is a
vertex subset inducing a major component of a spanning subhypergraph of H it follows
that 2h− r < |Y | < 2h− 1. For every three distinct edges E,F,G of H we have

|E ∪ F ∪G| > |E|+ |F |+ |G| − |E ∩ F | − |E ∩G| − |F ∩G| > 3h− 3r,

since every two edges have at most r elements in common. But 3h − 3r > 2h − 1 since
h > 3r − 1, which contradicts the property |Y | < 2h− 1. Hence one has ϕ(Y ) = 2. This
yields ∑

|Y |=n+1−p, ϕ(Y )=2

1 = ap = 0.
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It follows that no such Y can exist, or for any two distinct edges E,F we cannot have
2h− r < |E∪F | < 2h−1, or 1 < |E∩F | < r. But H is antilinear, hence |E∩F | 6= 1 and
we have seen that |E∩F | 6 r. It follows that |E∩F | = 0 or r, i.e., H is also quasi-linear.
Since H has m edges, is quasi-linear and connected, it may be obtained from P h,r

2 by
succesively adding m−2 distinct edges such that every new edge has r vertices in common
with at least one existing edge.
We will define two potential functions, α and β, for any h-uniform hypergraph K of size
m: α(K) = α1(K)−m and β(K) = α3(K)−m, where α1(K) and α3(K) are the numbers
of induced subhypergraphs of K isomorphic to P h,r

2 and to P h,r
3 , respectively. We have

deduced that for every m > 1 α(P h,r
m ) = α(H) = −1. If K is an h-uniform quasi-linear

hypergraph, then by adding a new edge E ⊂ V (K), E /∈ E(K) which intersects at least
an edge from E(K), we get a new hypergraph K1 and α(K1) > α(K). Equality holds
if and only if E intersects exactly one edge from E(K). Since α(H) = α(P h,r

2 ) = −1,
it follows that H is obtained from P h,r

2 by adding m − 2 distinct edges such that every
new edge has r vertices in common with exactly one existing edge. This implies that
every subhypergraph of H induced by three edges has one of types a), b) or c). Since
P (H, λ) = P (P h,r

m , λ), by Lemma 2.1 we obtain that α3(H) = m − 2 = α3(P
h,r
m ), hence

β(H) = β(P h,r
m ) = −2. With the same notation as above we deduce β(K1) > β(K) and

equality holds if and only if E intersects exactly one edge which belongs to exactly one
path P h,r

2 , which is an induced subhypergraph of K, unless K1 is a sunflower hypergraph.
Now the proof follows by induction: if we add a new edge to P h,r

2 (having α(P h,r
2 ) = −1)

such that potential function α remains unchanged, we get P h,r
3 . Let i > 3; if we add a

new edge to P h,r
i such that both potential functions α and β remain unchanged, this new

edge must have r vertices in common only with a terminal edge of P h,r
i and one obtains

in this way the hypergraph P h,r
i+1.

II. In the case of cycles Ch,r
m with m > 4 we deduce as above that polynomial P (Ch,r

m , λ)
has α1 = m,α2 =

(
m
2

)
− m,α3 = m. If H is antilinear and chromatically equivalent

to Ch,r
m then H has order m(h − r) and size m and it is connected. As in the case of

paths P h,r
m we deduce that H has exactly m unordered pairs of edges {E,F} such that

|E ∩ F | = r and H is quasi-linear too. Also H may be built from P h,r
2 in m − 2 steps,

each step consisting in addition of a new edge E, having r vertices in common with t > 1
existing edges F1, . . . , Ft, i.e., |E ∩ F1| = . . . = |E ∩ Ft| = r.
We have α(Ch,r

m ) = α(H) = 0, but α(P h,r
2 ) = −1. Since at each step potential function α

increases or remains constant, it follows that in one step α increases by 1 and in m − 3
steps it remains constant (equal to 0 or −1). It increases by 1 when the new edge E
intersects exactly two existing edges and remains constant when E intersects exactly one
existing edge. Suppose that E intersects exactly two existing edges, F1 and F2, i.e.,
|E ∩ F1| = |E ∩ F2| = r and |F1 ∩ F2| = r. We shall prove that this case is not possible,
i.e., we must have F1 ∩ F2 = ∅. Suppose that |F1 ∩ F2| = r and denote i = |E ∩ F1 ∩ F2|.
It follows that 0 6 i 6 r, |E∩ (F1\F2)| = |E∩ (F2\F1)| = r− i. In this case E contributes
h − 2r + i = |E\(F1 ∪ F2)| new vertices. Since P h,r

2 and H have 2h − r and m(h − r)
vertices respectively, and whenever α remains unchanged the new edge contributes h− r
new vertices (m − 3 times), we obtain that i = 0, which means that E,F1, F2 induce a
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subhypergraph isomorphic to Ch,r
3 .

In this case H has the property that all subhypergraphs induced by 3 edges have the types
a), b), c) and exactly one subhypergraph is isomorphic to Ch,r

3 . A result similar to Lemma
2.1 also holds and the contribution of the spanning subhypergraph of H consisting of Ch,r

3

and n− 3h+ 3r isolated vertices is −λn−3h+3r+1, which must be added to the polynomial
given by (4). We have n− 3h+ 3r+ 1 > n− 3h+ 2r+ 1 and n− 3h+ 3r+ 1 < n− 2h+ 2,
unless h = 3r − 1. If n − 3h + 3r + 1 < n − 2h + 2 the monomial −λn−3h+3r+1 does not
appear in P (Ch,r

m , λ); if h = 3r− 1 the coefficient of λn−2h+2 equals α2− 1 =
(
m
2

)
−m− 1,

a contradiction.
Consequently, E intersects two existing edges F1, F2 such that F1 ∩F2 = ∅, which implies
that H contains an induced subhypergraph H1 which is isomorphic to a cycle Ch,r

s with
4 6 s 6 m. If s = m then H is isomorphic to Ch,r

m and we are done. Otherwise, H may be
obtained from Ch,r

s by succesively adding m− s distinct edges such that every new edge
has r vertices in common with exactly one existing edge. We have β(Ch,r

s ) = 0; at the
first step we get β(Ch,r

s + E) = 1 if E is such an edge. Since β is increasing, we deduce
β(H) > 1. But in this case every 3 edges of H induce a subhypergraph of type a), b) or
c), which implies that β(H) = β3 −m = α3 −m = 0, a contradiction.

Note that P h,r
m is not chromatically unique for any m > 3, r > 1 and h > 2r+ 1, since

any hypergraph containing a pendant path of length at least two is not chromatically
unique [14].

Since every quasi-linear hypergraph is antilinear for every r > 2 we get:

Corollary 6. Let r > 2, h > 3r − 1,m > 3 and H be a quasi-linear hypergraph such that
P (H, λ) = P (G, λ), where G is P h,r

m or Ch,r
m . Then H is isomorphic to G.
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Thomassen concerning subgraphs of large girth. J. Graph Theory, 67:316–331, 2011.

the electronic journal of combinatorics 19(2) (2012), #P23 7



[6] K. Dohmen. Chromatische Polynome von Graphen und Hypergraphen. Dissertation,
Düsseldorf, 1993.

[7] P. Erdös and R. Rado. Intersection theorems for systems of sets. J. London Math.
Soc., 35:85–90, 1960.
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