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Abstract

A tricirculant is a graph admitting a non-identity automorphism having three
cycles of equal length in its cycle decomposition. A graph is said to be symmetric
if its automorphism group acts transitively on the set of its arcs. In this paper it
is shown that the complete bipartite graph K3,3, the Pappus graph, Tutte’s 8-cage
and the unique cubic symmetric graph of order 54 are the only connected cubic
symmetric tricirculants.
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1 Introductory remarks

A graph is said to be arc-transitive, or symmetric, the term that will be used in this
paper, if its automorphism group acts transitively on the set of arcs of the graph. A
Cayley graph on a cyclic group, that is, a graph admitting an automorphism with a single
cycle in its cycle decomposition, is said to be a circulant. A graph admitting a non-
identity automorphism with two (respectively, three) cycles of equal length in its cycle
decomposition is said to be a bicirculant (respectively, tricirculant).

It is known that the complete graph K4, the complete bipartite graph K3,3 and the
cube Q3 are the only connected cubic symmetric graphs with girth (the length of shortest
cycle) less than 5 (see [8, Proposition 3.4.]). Since any cubic circulant, being a Cayley
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graph on an abelian group, has girth less than or equal to 4, one can easily see that K4

and K3,3 are the only examples of connected cubic symmetric circulants.
We may think of the classical result of Frucht, Graver and Watkins [7] in which

they have classified all symmetric generalized Petersen graphs as the main step in the
classification of all cubic connected symmetric bicirculants. The remaining cases were
then completed in [19] and [21]. In particular, a connected cubic symmetric graph is a
bicirculant if and only if it is isomorphic to one of the following graphs: the complete graph
K4, the complete bipartite graph K3,3, the seven symmetric generalized Petersen graphs
GP(4, 1), GP(5, 2), GP(8, 3), GP(10, 2), GP(10, 3), GP(12, 5), and GP(24, 5) (see [7, 20]),
the Heawood graph F014A, and a Cayley graph Cay(D2n, {b, ba, bar+1}) on a dihedral
group D2n = 〈a, b | an = b2 = baba = 1〉 of order 2n with respect to the generating set
{b, ba, bar+1}, where n > 11 is odd and r ∈ Z∗n such that r2 + r + 1 ≡ 0 (mod n).
(Hereafter the notation FnA, FnB, etc. will refer to the corresponding graphs in the
Foster census [3, 4].)

The aim of this paper is to move from bicirculants to tricirculants. A complete clas-
sification of connected cubic symmetric tricirculants is given. In particular, it is shown
that the complete bipartite graph K3,3 (which is also a circulant and a bicirculant), the
Pappus graph F018A, Tutte’s 8-cage F030A (sometimes also called the Tutte-Coxeter
graph), and the graph F054A are the only connected cubic symmetric tricirculants, see
Theorem 1.1. (For brevity in this paper, we will refer to these graphs as K3,3, F018A,
F030A and F054A, respectively.)

Theorem 1.1 A connected cubic symmetric graph X is a tricirculant if and only if it is
isomorphic to one of the following four graphs: K3,3, F018A, F030A, and F054A.

The classification is obtained by first considering the so-called core-free tricirculants,
that is, tricirculants admitting a non-identity automorphism ρ, having three cycles of equal
length in its cycle decomposition, such that the subgroup generated by ρ is core-free in
the full automorphism group of the graph. A remarkable group-theoretic result of Herzog
and Kaplan [11], which says that ‘sufficiently large’ cyclic subgroups are never corefree
(see Lemma 3.2), combined together with the well-known fact that the automorphism
group of a connected cubic symmetric graph of order n is of order 3 · 2s−1n, where s 6 5,
enable us to prove that K3,3, F018A, and F030A are the only connected cubic symmetric
core-free tricirculants (see Theorem 3.3). Whereas, for non-core-free cubic symmetric
tricirculants Lorimer’s result about cubic symmetric graphs admitting a normal subgroup
in its automorphism group implies that any such graph is a regular cyclic cover of a cubic
symmetric core-free tricirculant (see Lemma 3.4). This then enables us to use graph
covering techniques, which we recall in Subsection 2.2, to prove that the graph F054A
is the only connected cubic symmetric non-core-free tricirculant, and the classification
follows.

2 Preliminaries

Throughout this paper graphs are simple, finite, undirected and connected. Given a
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graph X we let V (X), E(X), A(X) and AutX be the vertex set, the edge set, the arc set
and the automorphism group of X, respectively. A sequence of k + 1 vertices in X, not
necessarily all distinct, such that any two consecutive vertices are adjacent and any three
consecutive vertices are distinct is called a k-arc.

A subgroup G 6 AutX is said to be vertex-transitive, edge-transitive and arc-transitive
provided it acts transitively on the sets of vertices, edges and arcs of X, respectively. The
graph X is said to be vertex-transitive, edge-transitive, and arc-transitive if its auto-
morphism group is vertex-transitive, edge-transitive and arc-transitive, respectively. An
arc-transitive graph is also called symmetric. A subgroup G 6 AutX is said to be s-
arc-transitive if it acts transitively on the set of s-arcs, and it is said to be s-regular if
it is s-arc-transitive and the stabilizer of an s-arc in G is trivial. A graph is said to be
s-regular if its automorphism group is s-regular. By Tutte’s result [22] every connected
cubic symmetric graph is s-regular for some s 6 5.

For a partition W of V (X), we let XW be the associated quotient graph of X relative
to W , that is, the graph with vertex set W and edge set induced naturally by the edge
set E(X). In the case whenW corresponds to the set of orbits of a subgroup N of AutX,
the symbol XW will be replaced by XN .

2.1 Semiregular automorphisms

A non-identity automorphism of a graph is semiregular, in particular, (k, n)-semiregular if
it has k cycles of equal length n in its cycle decomposition. An n-tricirculant (tricirculant
for short) is a graph with a (3, n)-semiregular automorphism.

Let X be a connected graph admitting a (k, n)-semiregular automorphism

ρ = (u00u
1
0 · · ·un−10 )(u01u

1
1 · · ·un−11 ) · · · (u0k−1u1k−1 · · ·un−1k−1),

and let W = {Wi | i ∈ Zk} be the set of orbits Wi = {usi | s ∈ Zn} of ρ. Using
Frucht’s notation [6] X may be represented in the following way. Each orbit of ρ is
represented by a circle. Inside a circle corresponding to the orbit Wi the symbol n/T ,
where T = T−1 ⊆ Zn \ {0}, indicates that for each s ∈ Zn, the vertex usi is adjacent to all
the vertices us+ti where t ∈ T . When |T | 6 2 we use a simplified notation n/t, n/(n/2)
and n, when, respectively, T = {t,−t}, T = {n/2} and T = ∅. Finally, an arrow pointing
from the circle representing the orbit Wi to the circle representing the orbit Wj, j 6= i,
labeled by y ∈ Zn means that for each s ∈ Zn, the vertex usi ∈ Wi is adjacent to the vertex
us+yj . When the label is 0, the arrow on the line may be omitted. Examples illustrating
this notation are given in Figure 1.

2.2 Graph Covers

A covering projection of a graph X̃ is a surjective mapping p : X̃ → X such that for
each ũ ∈ V (X̃) the set of arcs emanating from ũ is mapped bijectively onto the set

of arcs emanating from u = p(ũ). The graph X̃ is called a covering graph of the base
graph X. The set fibu = p−1(u) is a fibre of a vertex u ∈ V (X). The subgroup K of
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Figure 1: The graphs K3,3, F018A, F030A and F054A shown in Frucht’s notation with respect to a
(3, 2)-, (3, 6)-, (3, 10)- and (3, 18)-semiregular automorphism, respectively.

all those automorphisms of X̃ which fix each of the fibres setwise is called the group of
covering transformations. The graph X̃ is also called a K-cover of X. It is a simple
observation that the group of covering transformations of a connected covering graph acts
semiregularly on each of the fibres. In particular, if the group of covering transformations
is regular on the fibres of X̃, we say that X̃ is a regular K-cover. We say that α ∈ AutX
lifts to an automorphism of X̃ if there exists an automorphism α̃ ∈ AutX̃, called a lift
of α, such that α̃p = pα. If the covering graph X̃ is connected then K is the lift of the
trivial subgroup of AutX. Note that a subgroup G 6 AutX̃ projects if and only if the
partition of V (X̃) into the orbits of K is G-invariant.

A combinatorial description of a K-cover was introduced through a voltage graph by
Gross and Tucker [10] as follows. Let X be a graph and K be a finite group. A voltage
assignment of X is a mapping ζ : A(X) → K with the property that ζ(u, v) = ζ(v, u)−1

for any arc (u, v) ∈ A(X) (here, and in the rest of the paper, ζ(u, v) is written instead
of ζ((u, v)) for the sake of brevity). The voltage assignment ζ extends to walks in X in
a natural way. In particular, for any walk D = u1u2 · · ·ut of X we let ζ(D) denote the
product voltage ζ(u1, u2)ζ(u2, u3) · · · ζ(ut−1, ut) of D, that is, the ζ-voltage of D.
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The values of ζ are called voltages, and K is the voltage group. The voltage graph
X ×ζ K derived from a voltage assignment ζ : A(X) → K has vertex set V (X) × K,
and edges of the form {(u, g), (v, ζ(x)g)}, where x = (u, v) ∈ A(X). Clearly, X ×ζ K is
a covering of X with the first coordinate projection. By letting K act on V (X ×ζ K)
as (u, g)g

′
= (u, gg′), (u, g) ∈ V (X ×ζ K), g′ ∈ K, one obtains a semiregular group of

automorphisms of X×ζK, showing that X×ζK can in fact be viewed as a K-cover of X.
Given a spanning tree T of X, the voltage assignment ζ : A(X) → K is said to be

T -reduced if the voltages on the tree arcs equal the identity element in K. In [9] it is
shown that every regular covering graph X̃ of a graph X can be derived from a T -reduced
voltage assignment ζ with respect to an arbitrary fixed spanning tree T of X.

The problem of whether an automorphism α of X lifts or not is expressed in terms
of voltages as follows (see Proposition 2.1). Given α ∈ AutX and the set of fundamental
closed walks C based at a fixed vertex v ∈ V (X), we define ᾱ = {(ζ(C), ζ(Cα)) | C ∈
C} ⊆ K × K. Note that if K is abelian, ᾱ does not depend on the choice of the base
vertex, and the fundamental closed walks at v can be substituted by the fundamental
cycles generated by the cotree arcs of X. Also, from the definition, it is clear that for a
T -reduced voltage assignment ζ the derived graph X ×ζ K is connected if and only if the
voltages of the cotree arcs generate the voltage group K.

We wrap up this section with four propositions dealing with lifting of automorphisms
in graph covers. The first one may be deduced from [17, Theorem 4.2], the second one
from [12] whereas the third one is taken from [5, Proposition 2.2], but it may also be
deduced from [18, Corollaries 9.4, 9.7, 9.8].

Proposition 2.1 [17] Let K be a finite group, and let X×ζK be a connected regular cover
of a graph X derived from a voltage assignment ζ with the voltage group K. Then an
automorphism α of X lifts if and only if ᾱ is a function which extends to an automorphism
α∗ of K.

For a connected regular cover X ×ζ K of a graph X derived from a T -reduced voltage
assignment ζ with an abelian voltage group K and an automorphism α ∈ AutX that lifts,
ᾱ will always denote the mapping from the set of voltages of the fundamental cycles on
X to the voltage group K and α∗ will denote the automorphism of K arising from ᾱ.

Two coverings pi : X̃i → X, i ∈ {1, 2}, are said to be isomorphic if there exists a graph

isomorphism φ : X̃1 → X̃2 such that φp2 = p1.

Proposition 2.2 [12] Let K be a finite group. Two connected regular covers X ×ζ K
and X ×ϕ K, where ζ and ϕ are T -reduced, are isomorphic if and only if there exists an
automorphism σ ∈ AutK such that ζ(u, v)σ = ϕ(u, v) for any cotree arc (u, v) of X.

Proposition 2.3 [5] Let K be a finite group, and let X ×ζ K be a connected regular
cover of a graph X derived from a voltage assignment ζ with the voltage group K, and let
the lifts of α ∈ AutX centralize K, considered as the group of covering transformations.
Then for any closed walk W in X, there exists k ∈ K such that ζ(Wα) = kζ(W )k−1. In
particular, if K is abelian, ζ(Wα) = ζ(W ) for any closed walk W of X.
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Given a voltage assignment ζ of X and β ∈ AutX, we set ζβ for the voltage assignment
of X such that ζβ(u, v) = ζ(uβ

−1
, vβ

−1
), (u, v) ∈ A(X); and set β̃ for the permutation of

V (X)×K acting as (u, k)β̃ = (uβ, k). Our last proposition is straightforward.

Proposition 2.4 Let K be a finite group, and let X̃ = X ×ζ K be a connected regular
cover of a graph X derived from a voltage assignment ζ with the voltage group K, and let
β ∈ AutX. Then the following hold.

(i) β̃ is an isomorphism from X̃ to X ×ζβ K.

(ii) If α̃ is in Aut X̃ which projects to α, then β̃−1α̃β̃ is in Aut(X×ζβK), and it projects
to β−1αβ.

(iii) If α̃ ∈ Aut X̃ centralizes the group K of covering transformations, then also β̃−1α̃β̃
centralizes K.

3 Cubic symmetric tricirculants

Let T C be the family of connected cubic symmetric tricirculants. We are going to
show that K3,3, F018A, F030A and F054A, the four graphs shown in Figure 1, are the
only connected cubic symmetric tricirculants. The graph F018A is the unique connected
cubic symmetric graph of order 18. It is 3-regular, has girth 6 and is the Levi graph of
the Pappus configuration. The graph F030A is the unique connected cubic symmetric
graph of order 30. It is 5-regular, has girth 8 and diameter 4. As the unique smallest
cubic graph of girth 8 it is a cage and a Moore graph (see also [13]). It is bipartite, and
can be constructed as the Levi graph of the generalized quadrangle GQ(2, 2). The graph
F054A is the unique cubic symmetric graph of order 54. It is 2-regular and has girth 6.
For more information on these graphs we refer the reader to [3, 4, 14, 16].

Using the table of cubic symmetric graphs of order up to 768 in [3, 4] and a program
package MAGMA [2] one can see that the following lemma holds.

Lemma 3.1 There is no cubic 1-regular tricirculant of order less than 27. The graphs
F024A, F048A, F090A, F096B, F102A, F204A, and F234B are not tricirculants.

Recall that the core of a subgroup K in a group G (denoted by coreG(K)) is the
largest normal subgroup of G contained in K. A graph X ∈ T C with a (3, n)-semiregular
automorphism is said to be core-free if there exists a (3, n)-semiregular automorphism
ρ ∈ AutX such that the cyclic subgroup 〈ρ〉 has trivial core in AutX. To obtain the
classification of cubic symmetric core-free tricirculants (see Theorem 3.3) the following
group-theoretical result will be used.

Lemma 3.2 [11, Theorem B] If H is a cyclic subgroup of a finite group G with |H| >√
|G|, then H contains a non-trivial normal subgroup of G.
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Theorem 3.3 A graph X ∈ T C is core-free if and only if it is isomorphic to one of the
following three graphs: K3,3, F018A, and F030A.

Proof. Let X be cubic s-arc-transitive tricirculant of order o = 3n, and let G = AutX.
Then, by [1, Proposition 18.1]), G is regular on the set of s-arcs of X. By Tutte’s theorem
(see [1, Theorem 18.6]) we have that s 6 5, and therefore |G| = 9 · 2s−1 · n 6 144n. Since
X is core-free, Lemma 3.2 implies that n2 < |G|, and consequently n < 144.

In particular, if s = 1 then n2 < |G| = 9n, implying that n < 9 and o = 3n < 27,
which in view of Lemma 3.1 is impossible.

If s = 2 then n2 < |G| = 18n, implying that n < 18 and o = 3n < 54. By the table
of cubic symmetric graphs [4] the only cubic 2-regular graphs of order less than 54 (and
divisible by 3) are F024A and F048A. However, by Lemma 3.1, F024A and F048A are
not tricirculants.

If s = 3 then n2 < |G| = 36n, and so n < 36 and o = 3n < 108. The only cubic
3-regular graphs satisfying this condition are the graphs K3,3, F018A and F096B. The
first two graphs are clearly tricirculants whereas the latter graph is not a tricirculant by
Lemma 3.1.

If s = 4 then n2 < |G| = 72n, and so n < 72 and o = 3n < 216. The only cubic
4-regular graphs satisfying this condition are the graphs F102A and F204A, which, by
Lemma 3.1, are not tricirculants.

If s = 5 then n2 < |G| = 144n, and so n < 144 and o = 3n < 432. The only
cubic 5-regular graphs satisfying this condition are the graphs F030A, F090A and F234B.
However, the last two graphs, by Lemma 3.1, are not tricirculants.

That K3,3, F018A, and F030A are indeed core-free can be easily checked with the use
of MAGMA [2].

The following lemma follows from [15, Theorem 9].

Lemma 3.4 Let X ∈ T C with a (3, n)-semiregular automorphism ρ ∈ AutX, and let N
be the core of 〈ρ〉 in AutX. Then N is the kernel of AutX acting on the set of orbits
of N , AutX/N acts arc-transitively on XN , XN ∈ T C with a (3, n/|N |)-semiregular
automorphism and XN is core-free.

We are now ready to prove the main theorem of this paper.
Proof of Theorem 1.1. Let X be a cubic symmetric tricirculant with a (3, n)-
semiregular automorphism ρ ∈ AutX. If X is core-free then, by Theorem 3.3, X is
isomorphic to K3,3, or F018A, or F030A.

Suppose now that X is not core-free. Then there exists a nontrivial subgroup N of 〈ρ〉
which is normal in AutX. By Lemma 3.4, the quotient graph XN is a connected cubic
symmetric core-free tricirculant, and hence, by Theorem 3.3, it is isomorphic to K3,3,
F018A or F030A. In fact, X is isomorphic to a regular Zr-cover of one of these three
graphs, where |N | = r. Note also that ρ projects to a (3, n/r)-semiregular automorphism
of XN . (Below, all arithmetic operations are to be taken modulo r if at least one argument
is from Zr and the symbol mod r is always omitted.)
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Figure 2: The voltage assignment ζ on K3,3. The spanning tree consists of undirected bold edges, all
carrying trivial voltage.

Case 1. XN
∼= K3,3.

The graph K3,3 is illustrated in Figure 2. It is known that K3,3 is the unique connected
cubic symmetric graph of order 6 and that this graph is in fact 3-regular (see [4]). Let us
choose the following automorphisms of K3,3

α = (1)(2, 4, 3)(5)(6) and β = (1, 2)(3, 5)(4, 6),

and let H = 〈α, β〉. It can be checked directly, using Magma [2], that every (3, 2)-
semiregular automorphism of K3,3 is conjugate to β, and that every arc-transitive sub-
group of AutK3,3, which contains β, must contain also the subgroup H. Because of
Proposition 2.4 we may assume without loss of generality that ρ projects to β (therefore,
the lifts of β centralize the group N of covering transformations) and that H lifts to a
subgroup of AutX.

Any such cover X can be derived from K3,3 through a suitable voltage assignment
ζ : A(K3,3) → Zr. To find this voltage assignment ζ fix the spanning tree T of K3,3 as
the one consisting of the edges

{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}

(see also Figure 2). There are four fundamental cycles in K3,3, which are generated,
respectively, by four cotree arcs (4, 6), (4, 5), (3, 5), and (3, 6). By Proposition 2.3, β∗ is
the identity automorphism of Zr, and thus we get from Table 1, where all these cycles
and their voltages are listed, that 2x1 = 2x3 = 0 and x2 = −x4. Moreover, since α lifts,
Proposition 2.1 implies that ᾱ is a function which extends to an automorphism α∗ of Zr.
Therefore, since ζ(Cα

3 ) = −x2 and ζ(Cα
4 ) = −x1, it follows that all non-trivial voltages

are of order at most 2. Since X is assumed to be connected at least one non-trivial voltage
exists and the set of all non-trivial voltages generates the voltage group. Since the voltage
group is cyclic, it follows that r = 2. But, however, there is no connected cubic symmetric
graph of order 12, and so this case is impossible.
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C ζ(C) Cα ζ(Cα) Cβ ζ(Cβ)

C1 1, 4, 6, 2, 1 x1 1, 3, 6, 4, 1 x4 − x1 2, 6, 4, 1, 2 −x1
C2 1, 4, 5, 2, 1 x2 1, 3, 5, 4, 1 x3 − x2 2, 6, 3, 1, 2 −x4
C3 1, 3, 5, 2, 1 x3 1, 2, 5, 4, 1 −x2 2, 5, 3, 1, 2 −x3
C4 1, 3, 6, 2, 1 x4 1, 2, 6, 4, 1 −x1 2, 5, 4, 1, 2 −x2

Table 1: Fundamental cycles and their images with corresponding voltages in K3,3.

Figure 3: The voltage assignment ζ on F018A. The spanning tree consists of undirected bold edges, all
carrying trivial voltage.

Case 2. XN
∼= F018A.

The graph F018A is illustrated in Figure 3. It is known that F018A is the unique connected
cubic symmetric graph of order 18 and that this graph is in fact 3-regular (see [4]). Let
us choose the following automorphisms of F018A

α = (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17),

β = (1, 7, 14, 9, 3, 2)(4, 8, 6, 18, 17, 16)(5, 15, 12, 11, 10, 13),

γ1 = (3, 8)(4, 15)(5, 18)(6, 7)(9, 13)(12, 14),

γ2 = (2, 6)(3, 5)(8, 12)(9, 11)(14, 18)(15, 17),

γ3 = (1, 2)(3, 6, 8, 7)(4, 12, 15, 14)(5, 13, 18, 9)(10, 17)(11, 16),

δ = (4, 9)(5, 14)(6, 7)(10, 16)(11, 17)(12, 18)(13, 15).

Then AutF018A = 〈α, β, γ3, δ〉 = 〈γ1, γ2, γ3, δ〉. Each subgroup of AutF018A generated by
a (3, 6)-semiregular automorphism is conjugate to 〈β〉, and each proper arc-transitive sub-
group of AutF018A is conjugate in AutF018A to one of the three subgroups H1 = 〈α, β〉,
H2 = 〈α, β, γ1〉 andH3 = 〈γ1, γ2, γ3〉. In addition, H1 is 1-regular, H2 andH3 are 2-regular,
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〈β〉 6 H1 6 H2, and H3 does not contain a (3, 6)-semiregular automorphism. These can
be checked directly using Magma [2]. Thus it suffices to find those arc-transitive regular
Zr-covers of F018A for which the subgroup H1 lifts and the lifts of the automorphism β
centralizing the group of covering transformations and having precisely 3 orbits of size n.

Row C ζ(C) Cα ζ(Cα)

A.1 C0 1, 2, 3, 4, 5, 6, 1 x 2, 1, 6, 5, 4, 3, 2 −x
A.2 C1 1, 7, 14, 9, 3, 4, 5, 6, 1 y1 2, 8, 13, 12, 6, 5, 4, 3, 2 −y6
A.3 C2 2, 8, 15, 10, 4, 3, 2 y2 1, 7, 18, 11, 5, 6, 1 −y5
A.4 C3 3, 9, 16, 11, 5, 4, 3 y3 6, 12, 17, 10, 4, 5, 6 −y4
A.5 C4 4, 10, 17, 12, 6, 5, 4 y4 5, 11, 16, 9, 3, 4, 5 −y3
A.6 C5 5, 11, 18, 7, 1, 6, 5 y5 4, 10, 15, 8, 2, 3, 4 −y2
A.7 C6 6, 12, 13, 8, 2, 3, 4, 5, 6 y6 3, 9, 14, 7, 1, 6, 5, 4, 3 −y1
A.8 C7 1, 7, 18, 15, 10, 4, 5, 6, 1 z1 2, 8, 15, 18, 11, 5, 4, 3, 2 y2 − z1 − y5
A.9 C8 2, 8, 13, 16, 11, 5, 4, 3, 2 z2 1, 7, 14, 17, 10, 4, 5, 6, 1 y1 + z3 − y4
A.10 C9 3, 9, 14, 17, 12, 6, 5, 4, 3 z3 6, 12, 13, 16, 9, 3, 4, 5, 6 y6 + z2 − y3

C ζ(C) Cβ ζ(Cβ)

B.1 C0 1, 2, 3, 4, 5, 6, 1 x 7, 1, 2, 8, 15, 18, 7 x+ y2 − z1
B.2 C1 1, 7, 14, 9, 3, 4, 5, 6, 1 y1 7, 14, 9, 3, 2, 8, 15, 18, 7 y1 + y2 − z1
B.3 C2 2, 8, 15, 10, 4, 3, 2 y2 1, 6, 12, 13, 8, 2, 1 y6 − x
B.4 C3 3, 9, 16, 11, 5, 4, 3 y3 2, 3, 4, 10, 15, 8, 2 −y2
B.5 C4 4, 10, 17, 12, 6, 5, 4 y4 8, 13, 16, 11, 18, 15, 8 z2 + y5 + z1 − y2
B.6 C5 5, 11, 18, 7, 1, 6, 5 y5 15, 10, 17, 14, 7, 18, 15 y4 − z3 − y1 + z1
B.7 C6 6, 12, 13, 8, 2, 3, 4, 5, 6 y6 18, 11, 5, 6, 1, 2, 8, 15, 18 −y5 + x+ y2 − z1
B.8 C7 1, 7, 18, 15, 10, 4, 5, 6, 1 z1 7, 14, 17, 12, 13, 8, 15, 18, 7 y1 + z3 + y6 + y2 − z1
B.9 C8 2, 8, 13, 16, 11, 5, 4, 3, 2 z2 1, 6, 5, 4, 10, 15, 8, 2, 1 −y2 − x
B.10 C9 3, 9, 14, 17, 12, 6, 5, 4, 3 z3 2, 3, 9, 16, 11, 18, 15, 8, 2 y3 + y5 + z1 − y2

Table 2: Fundamental cycles and their images with corresponding voltages in F018A.

The graph X can be derived from F018A through a suitable voltage assignment
ζ : A(F018A) → Zr. To find this voltage assignment ζ fix the spanning tree T of F018A
as the one consisting of the edges

{1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}, {6, 12}, {7, 18}, {8, 13},
{9, 14}, {10, 15}, {11, 16}, {12, 17}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}

(see also Figure 3). There are ten fundamental cycles in F018A, which are generated,
respectively, by ten cotree arcs (1, 2), (7, 14), (8, 15), (9, 16), (10, 17), (11, 18), (12, 13),
(18, 15), (13, 16) and (14, 17) (see Table 2 where all these cycles and their voltages are
listed).

Now let us consider the mappings ᾱ and β̄ from the set S = {x, yi, zj | i ∈ {1, 2, . . . , 6},
j ∈ {1, 2, 3}} of voltages of the ten fundamental cycles of F018A to the voltage group
Zr. Since X is connected we have Zr = 〈S〉. Proposition 2.1 implies that the mappings
ᾱ and β̄ are extended to automorphisms α∗ and β∗ of Zr, respectively. Also, since the
lifts of β centralize the group of covering transformations, Proposition 2.3 implies that
β∗ is the identity automorphism of Zr. Therefore, it follows from Rows B.1 and B.4 of
Table 2 that y2 = z1 = −y3. By Rows A.3 and A.4 of Table 2, we get that yα

∗
2 = −y5

and yα
∗

3 = −y4, and so y5 = −y4. In other words, y2, y3, y4, y5 and z1 are of the same
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order and so y2, y3, y4, z1 ∈ 〈y5〉. Further, by Rows B.5 and B.7 of Table 2 we get that
z2 = 2y4 = −2y5 ∈ 〈y5〉 and x = y5 + y6, respectively, implying that in fact Zr = 〈yi, z3 |
i ∈ {1, 5, 6}〉. In addition, by Row B.10 of Table 2, we have z3 = y3 +y5 ∈ 〈y5〉, and Rows
B.3 and B.9 of Table 2 combined together imply that z2 = −y2 − x = −y6 ∈ 〈y5〉. Thus,
since, by Row A.2 of Table 2, we have yα

∗
1 = −y6, we can conclude that Zr = 〈y5〉.

By Proposition 2.2 we can, without loss of generality, assume that y5 = 1. Since, by
Row B.9 of Table 2, z2 = −y2 − x, the automorphism α∗ gives that y1 + z3 − y4 = y5 + x
(see Rows A.1, A.3 and A.9 of Table 2) and so, since y5 = −y4, we have that x = y1+z3 =
y5 + y6. Since −x = xα

∗
= (y5 + y6)

α∗ = −y1 − y2, it follows that y1 + z3 = x = y1 + y2,
and thus z3 = y2 = z1. Row B.10 of Table 2 now implies that 0 = y3 + y5 − y2. Since
y3 = −y2 it follows that 2y2 = y5 = −y4. Applying Rows A.3 and A.5 of Table 2 to this
equality gives that −2y5 = y3 = −y2. Therefore y2 = 2, and consequently, by Row A.6 of
Table 2, it follows that 1α

∗
= −2. Now we get from Row A.1 of Table 2 that −2x = −x,

and so x = 0. This implies that y6 = −y5 = −1 (since x = y5 + y6). However, by Row
B.3 of Table 2, y6 = y2 +x = y2 = 2 and so 2 = −1. This shows that r = 3, and therefore
X is isomorphic to F054A, the unique cubic symmetric graph of order 54.

Figure 4: The voltage assignment ζ on F030A. The spanning tree consists of undirected bold edges, all
carrying trivial voltage.
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Case 3. XN
∼= F030A.

The graph F030A is illustrated in Figure 4. It is known that F030A is the unique connected
cubic symmetric graph of order 30 and that this graph is in fact 5-regular (see [4]). Each
subgroup of AutF030A generated by a (3, 10)-semiregular automorphism is conjugate to
〈β〉 where

β = (1, 3, 7, 15, 28, 13, 30, 20, 9, 4)(2, 8, 16, 24, 22, 6, 17, 23, 19, 10)

(5, 18, 27, 12, 25, 14, 26, 11, 29, 21),

and AutF030A has two proper arc-transitive subgroups, both of order 720 acting 4-
regularly. In addition, one of these two proper arc-transitive subgroups does not contain
a (3, 10)-semiregular automorphism whereas the other is generated by β and

α = (2)(5)(11)(12)(23)(25)(1, 6)(3, 13)(4, 14)(7, 30)(8, 28)

(9, 27)(10, 29)(15, 17)(16, 20)(18, 22)(19, 21)(24, 26).

These can be checked directly using Magma [2].
Let H = 〈α, β〉. Then, in order to show that this case is impossible, that is, that

X is not a Zr-cover of F030A, it suffices to show that there is no connected Zr-cover X
of F030A such that ρ projects to β (therefore, the lifts of β centralizes the group N of
covering transformations) and that H lifts to a subgroup of AutX.

For this purpose observe that any such cover can be derived from F030A through a
suitable voltage assignment ζ : A(F030A)→ Zr. To find this voltage assignment ζ fix the
spanning tree T of F030A as the one consisting of the edges

{1, 2}, {2, 5}, {3, 8}, {8, 18}, {7, 16}, {16, 27}, {15, 24}, {12, 24}, {22, 28}, {22, 25},
{6, 13}, {6, 14}, {17, 30}, {17, 26}, {20, 23}, {11, 23}, {9, 19}, {19, 29}, {4, 10}, {10, 21},

{3, 7}, {7, 15}, {15, 28}, {13, 28}, {13, 30}, {20, 30}, {9, 20}, {4, 9}, {1, 4}.

(see also Figure 4). There are sixteen fundamental cycles in F030A, which are generated,
respectively, by sixteen cotree arcs (1, 3), (2, 6), (8, 17), (16, 23), (24, 19), (22, 10), (5, 12),
(12, 26), (26, 21), (21, 27), (27, 14), (14, 29), (29, 18), (18, 25), (25, 11) and (11, 5) (see
Table 3 where all these cycles and their voltages are listed).

The set S = {x, yi, zj | i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, . . . , 10}} of voltages of the sixteen
fundamental cycles of F030A generates the voltage group Zr. By Proposition 2.3, the
mapping β̄ extends to the identity automorphism of Zr. Thus, Rows B.2 – B.6 of Table 3
imply that y2 = y3 = y4 = y5 = −y1 and x = 2y1, whereas Rows B.7 – B.16 of Table 3
imply that z1 = z4 = z7 and z2 = z3 = z5 = z6 = z8 = z9 = z10 = z1 − x. It follows
that Zr = 〈y1, z1〉. Moreover, applying the automorphism α∗ to z2 = z5 we get that
−z2 + y2 = x + y2 and so x = −z2 (see Rows A.8 and A.11 of Table 3). This shows that
z1 = 0 and therefore Zr = 〈y1〉. But, however, Row A.4 of Table 3 implies that yα

∗
3 = 0,

and so y1 = −y3 = 0, a contradiction.
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Row C ζ(C) Cα ζ(Cα)

A.1 C0 1, 3, 7, 15, 28, 13, 30, 20, 9, 4, 1 x 6, 13, 30, 17, 8, 3, 7, 16, 27, 14, 6 −y2 + z5
A.2 C1 1, 2, 6, 13, 30, 20, 9, 4, 1 y1 6, 2, 1, 3, 7, 16, 27, 14, 6 −y1 + x+ z5
A.3 C2 3, 8, 17, 30, 13, 28, 15, 7, 3 y2 13, 28, 15, 7, 3, 8, 17, 30, 13 y2
A.4 C3 7, 16, 23, 20, 30, 13, 28, 15, 7 y3 30, 20, 23, 16, 7, 3, 8, 17, 30 −y3 + y2
A.5 C4 15, 24, 19, 9, 20, 30, 13, 28, 15 y4 17, 26, 21, 27, 16, 7, 3, 8, 17 z3 + z4 + y2
A.6 C5 28, 22, 10, 4, 9, 20, 30, 13, 28 y5 8, 18, 29, 14, 27, 16, 7, 3, 8 −z7 − z6 − z5
A.7 C6 1, 2, 5, 12, 24, 15, 28, 13, 30, 20, 9, 4, 1 z1 6, 2, 5, 12, 26, 17, 8, 3, 7, 16, 27, 14, 6 −y1 + z1 + z2 − y2 + z5
A.8 C7 15, 24, 12, 26, 17, 30, 13, 28, 15 z2 17, 26, 12, 24, 15, 7, 3, 8, 17 −z2 + y2
A.9 C8 30, 17, 26, 21, 10, 4, 9, 20, 30 z3 7, 15, 24, 19, 29, 14, 27, 16, 7 y4 − z6 − z5
A.10 C9 4, 10, 21, 27, 16, 7, 15, 28, 13, 30, 20, 9, 4 z4 14, 29, 19, 9, 20, 30, 17, 8, 3, 7, 16, 27, 14 z6 − y2 + z5
A.11 C10 7, 16, 27, 14, 6, 13, 28, 15, 7 z5 30, 20, 9, 4, 1, 3, 8, 17, 30 x+ y2
A.12 C11 13, 6, 14, 29, 19, 9, 20, 30, 13 z6 3, 1, 4, 10, 21, 27, 16, 7, 3 −x+ z4
A.13 C12 9, 19, 29, 18, 8, 3, 7, 15, 28, 13, 30, 20, 9 z7 27, 21, 10, 22, 28, 13, 30, 17, 8, 3, 7, 16, 27 −z4 − y5 − y2
A.14 C13 3, 8, 18, 25, 22, 28, 15, 7, 3 z8 13, 28, 22, 25, 18, 8, 17, 30, 13 −z8 + y2
A.15 C14 28, 22, 25, 11, 23, 20, 30, 13, 28 z9 8, 18, 25, 11, 23, 16, 7, 3, 8 z8 + z9 − y3
A.16 C15 20, 23, 11, 5, 2, 1, 4, 9, 20 z10 16, 23, 11, 5, 2, 6, 14, 27, 16 y3 + z10 + y1 − z5

C ζ(C) Cβ ζ(Cβ)

B.1 C0 1, 3, 7, 15, 28, 13, 30, 20, 9, 4, 1 x 3, 7, 15, 28, 13, 30, 20, 9, 4, 1, 3 x
B.2 C1 1, 2, 6, 13, 30, 20, 9, 4, 1 y1 3, 8, 17, 30, 20, 9, 4, 1, 3 y2 + x
B.3 C2 3, 8, 17, 30, 13, 28, 15, 7, 3 y2 7, 16, 23, 20, 30, 13, 28, 15, 7 y3
B.4 C3 7, 16, 23, 20, 30, 13, 28, 15, 7 y3 15, 24, 19, 9, 20, 30, 13, 28, 15 y4
B.5 C4 15, 24, 19, 9, 20, 30, 13, 28, 15 y4 28, 22, 10, 4, 9, 20, 30, 13, 28 y5
B.6 C5 28, 22, 10, 4, 9, 20, 30, 13, 28 y5 13, 6, 2, 1, 4, 9, 20, 30, 13 −y1
B.7 C6 1, 2, 5, 12, 24, 15, 28, 13, 30, 20, 9, 4, 1 z1 3, 8, 18, 25, 22, 28, 13, 30, 20, 9, 4, 1, 3 z8 + x
B.8 C7 15, 24, 12, 26, 17, 30, 13, 28, 15 z2 28, 22, 25, 11, 23, 20, 30, 13, 28 z9
B.9 C8 30, 17, 26, 21, 10, 4, 9, 20, 30 z3 20, 23, 11, 5, 2, 1, 4, 9, 20 z10
B.10 C9 4, 10, 21, 27, 16, 7, 15, 28, 13, 30, 20, 9, 4 z4 1, 2, 5, 12, 24, 15, 28, 13, 30, 20, 9, 4, 1 z1
B.11 C10 7, 16, 27, 14, 6, 13, 28, 15, 7 z5 15, 24, 12, 26, 17, 30, 13, 28, 15 z2
B.12 C11 13, 6, 14, 29, 19, 9, 20, 30, 13 z6 30, 17, 26, 21, 10, 4, 9, 20, 30 z3
B.13 C12 9, 19, 29, 18, 8, 3, 7, 15, 28, 13, 30, 20, 9 z7 4, 10, 21, 27, 16, 7, 15, 28, 13, 30, 20, 9, 4 z4
B.14 C13 3, 8, 18, 25, 22, 28, 15, 7, 3 z8 7, 16, 27, 14, 6, 13, 28, 15, 7 z5
B.15 C14 28, 22, 25, 11, 23, 20, 30, 13, 28 z9 13, 6, 14, 29, 19, 9, 20, 30, 13 z6
B.16 C15 20, 23, 11, 5, 2, 1, 4, 9, 20 z10 9, 19, 29, 18, 8, 3, 1, 4, 9 z7 − x

Table 3: Fundamental cycles and their images with corresponding voltages in F030A.
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[20] D. Marušič and T. Pisanski, The remarkable generalized Petersen graph G(8, 3), Mathematica Slo-
vaca 50 (2000), 117–121.

[21] T. Pisanski, A classification of cubic bicirculants, Discrete Math. 307 (2007), 567–578.

[22] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474.

the electronic journal of combinatorics 19(2) (2012), #P24 14


