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Abstract

We study the number of vertices which must be removed from a graph in order
to make it planar or series-parallel. We give improved upper bounds on the number
of vertices required to planarize graphs of bounded average degree d, and for small
d also an improved bound for series-parallelization.

The coefficient of fragmentability of a class of graphs measures the proportion of
vertices that need to be removed from the graphs in the class in order to leave behind
bounded sized components. The above bounds on planarization yield improved
bounds for the coefficient of fragmentability of the class of connected graphs of
average degree at most d.

As an application we give an improved bound on the size of regular expressions
representing deterministic finite automata.

Keywords: fragmentability, planarization, series-parallel, tree width, regular ex-
pression.

1 Introduction and Definitions

In this paper we study three related parameters which measure the number of vertices
which must be removed from a graph in order to make it planar, series-parallel, or frag-
mented (i.e. having only bounded sized components). We concentrate on bounded-degree
classes of graphs.

For a graph G, we define p(G) and s(G) respectively to be the minimum size of a
subset of the vertex set of G whose removal leaves a graph which is, respectively, planar
or series-parallel.
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The concept of fragmentability of a class of graphs was introduced by the authors in [2]
and surveyed in [5]. It measures how small a proportion of vertices need to be removed
from graphs in a class in order to break them into components of bounded size. We begin
by recalling the definition.

Let ε ∈ [0, 1] and C ∈ N. A graph G is (C, ε)-fragmentable if there exists X ⊆ V (G)
such that |X| 6 ε |V (G)| and every component of G − X has at most C vertices. X is
here called the fragmenting set. A class Γ of graphs is ε-fragmentable if there exists C ∈ N
such that every G ∈ Γ is (C, ε)-fragmentable. The coefficient of fragmentability of Γ is

cf (Γ) = inf{ε | Γ is ε-fragmentable}.

In [4] we showed that, if G is a connected graph of average degree at most d, where
d > 2, then

p(G) 6 s(G) 6
d− 2

d+ 1
|V (G)|.

It is shown in [2] that if Γ is a class of graphs, and p(G) 6 c|V (G)| + A for all G ∈ Γ,
where c, A are constants, then cf (Γ) 6 c.

Let Γd be the class of graphs with maximum degree at most d, and Γ
c

d be the class of
connected graphs with average degree at most d. From the remarks above, and the lower
bound given in [2], it follows that for d > 2,

d− 2

2d− 2
6 cf (Γ

c

d) 6
d− 2

d+ 1
. (1)

These results improved earlier results of Halldórsson and Lau [8] and the authors [2, 3].
Haxell, Pikhurko and Thomason [9] improved (for d > 5) the lower bound of (1) above

by showing that, for any d > 4,

cf (Γd) >


1− 4

d+ 2
, if d is even;

1− 4(d+ 2)

(d+ 1)(d+ 3)
, if d is odd.

They also prove results on the behaviour of cf (Γd) as d→∞.
In Section 2 we improve, for any d > 3, the upper bounds for planarization and

fragmentability quoted above. We show that for a function g(d), which is approximately
(d− 9/4)/(d+ 1), we have p(G) 6 g(d)|V (G)| for G ∈ Γ

c

d. In the case of planarization we
also obtain a “vertex-wise” bound, showing that p(G) 6

∑
v∈V (G) g(d(v)) for any graph

with minimum degree at least 3; thus, in effect, a vertex of degree i contributes g(i)
towards the total number of vertices to be removed.

In Section 3 we investigate the extent to which these improved upper bounds for
planarization can be extended to series-parallelization. Although the fraction (d−2)/(d+
1) is, in general, best possible in this case, as shown by the complete graph on d+1 vertices,
we show that for d 6 6 this upper bound is tight for only a few small graphs, and give an
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improved upper bound s(G) 6 j(d)|V (G)|+ Cd for G ∈ Γ
c

d, where d 6 6, j(d) < d−2
d+1

and
Cd is a constant. It seems natural to expect that we will be able to extend j(d) to all d to
obtain a corresponding vertex-wise upper bound of the form s(G) 6

∑
v∈V (G) j(d(v))+o(n)

for graphs of minimum degree at least 3 (so that a vertex of degree i contributes j(i) to
the number of vertices to be removed). However, we show that this is not possible while
keeping j(d) 6 d−2

d+1
.

The results of this paper equivalently give lower bounds on the size of the maximum
induced planar (resp. series-parallel) subgraph (see for example [10] for the Maximum
Induced Planar Subgraph (MIPS) problem).

We use the following notation. Let G be a graph. Throughout the paper, n = |V (G)|
and m = |E(G)|. If v ∈ V (G) then d(v) = dG(v) denotes the degree of v in G.

1.1 Reduction

Our proofs below use the concept of series-parallel reductions. Let G be a graph, and
consider the following four operations on G:

1. Delete an isolated vertex of G.

2. Delete a vertex of degree 1 (and its incident edge).

3. Let v be a vertex of degree 2 with non-adjacent neighbours x and y, delete v (and
edges vx, vy) and join x and y.

4. Let v be a vertex of degree 2 with adjacent neighbours, delete v (and incident edges).

Let r(G) be a graph obtained from G by applying operations 1, 2, 3, 4 above repeatedly
until none is possible (because the graph has minimum degree at least 3). It follows from
the definition of the series-parallel property that G is series-parallel if and only if r(G) is
empty. The construction has also been used, for example, in [1]. (The resulting graph r(G)
is in fact unique, but we will not need that here.) It is shown in [4] that p(G) 6 p(r(G))
and s(G) 6 s(r(G)) (in fact equality holds in each case).

2 Planarization

We first consider the planarization parameter p(G). In order to state our upper bound,
we require to define a function g and list some of its properties.

For any n > 2, define the function g(n) by setting g(2) = 0, g(3) = 1/4, and for any
n > 4,

ng(n) = (n− 2)g(n− 1) + g(n− 2) + 1.

Also, for any n > 3, define g′(n) = g(n)− g(n− 1). Then it is easily established that

1. g(n) < 1 for all n. This follows immediately by induction on n.
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2. g is an increasing function of n. To see this we show by induction that for all n > 3,

g(n− 1) 6 g(n) 6 (1 + g(n− 1))/2

This is true for n = 3, so suppose it is true for some n. Then firstly,

(n+ 1)g(n+ 1) = (n− 1)g(n) + g(n− 1) + 1 > (n− 1)g(n) + 2g(n) = (n+ 1)g(n),

and secondly

(n+ 1)g(n+ 1) = (n− 1)g(n) + g(n− 1) + 1 6 ng(n) + 1

so that

g(n+ 1) 6
n

n+ 1
g(n) +

1

n+ 1
6

1

2
g(n) +

1

2

since n > 1 and g(n) < 1.

3. g′ is a decreasing function of n. We have

ng(n) = (n− 2)g(n− 1) + g(n− 2) + 1

(n− 1)g(n− 1) = (n− 3)g(n− 2) + g(n− 3) + 1

from which we obtain

ng′(n) = (n− 3)g′(n− 1) + g′(n− 2).

Then it is easily shown by induction that

g′(n− 1) > g′(n) > g′(n− 1)/3.

It is easy to see from the definition of g that n(g(n) − 1) + (g(n − 1) − 1) is a constant.
From this it is not hard to show that

g(n) =
13

4

A(n)

n!
+

5

4

(−1)n

n!
− 9

4

where A(n) is the alternating factorial function given by A(n) = n!−(n−1)!+. . .−(−1)n.1.
We can now give an improved upper bound for p(G). In fact we will prove something

stronger. Let W5 be the wheel on 5 vertices, and let w5(G) be the smallest size of a set
X ⊆ V (G) such that G \X has no W5-minor. It is easy to see that for any graph G, we
have w5(G) = w5(r(G)) where r(G) is the reduced graph defined above.

Lemma 1. Let G = (V,E) be a connected graph with n vertices, regular of degree 3. Then

w5(G) 6 (n− 1)/4.

the electronic journal of combinatorics 19(2) (2012), #P25 4



Proof. We use induction on n. If n 6 5, the result is clear, so suppose that n > 5.
For any vertex v, let G′ = G− v, and G∗ = r(G′). Then clearly

w5(G) 6 1 + w5(G′) = w5(G∗).

However, since deleting v creates three vertices of degree 2 in G′ which are removed by
reduction, we have |V (G∗)| 6 n− 4. Hence by induction, we have

w5(G) 6 1 + (n− 5)/4 = (n− 1)/4,

as required. �

Lemma 2. Let G = (V,E) be a connected graph with n vertices, minimum degree δ > 3.
Then

p(G) 6 w5(G) 6
∑

v∈V (G)

g(d(v)) − g′(δ).

Proof. For any graph H, let f(H) =
∑

v∈V (H) g(d(v)), thus we need to show that

w5(G) 6 f(G)− g′(δ).
Let ∆ be the maximum degree of G. First, if ∆ = 3, then G is regular of degree 3, so

that w5(G) 6 (n − 1)/4 from Lemma 1 above, as required. So suppose that ∆ > 4. We
use induction on n. If n < 5, there is nothing to prove, so suppose that n > 5.

First note that from the definition of g, we have, for n > 4,

1− g(n) = (n− 1)g′(n) + g′(n− 1).

Let w be a vertex of maximum degree in G, chosen so that the degree of its lowest degree
neighbour v0 is as small as possible. Since G is connected, d(v0) < ∆ unless G is ∆-regular.

Delete the vertex w to form the graph G′ = G − w, and let G∗ be the reduced
graph r(G′). Let the components of G′ be G1, . . . , Gk, with reduced graphs G∗1, . . . , G

∗
k

respectively. Note that any of these reduced graphs (including G∗) could be empty.
By the inductive hypothesis, we have

w5(G) 6 1 +
∑
i

w5(G∗i )

6 1 +
∑
i

f(G∗i )−
∑
i

g′(δ(G∗i ))

= 1 +
∑
i

f(Gi)−
∑
i

(f(Gi)− f(G∗i )− g′(δ(G∗i )))

= 1 + f(G′)−
∑
i

(f(Gi)− f(G∗i )− g′(δ(G∗i ))),

where we take g′(δ(G∗i )) to be zero if G∗i is empty.
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Now

1 + f(G′) = 1 + f(G)− g(∆)−
∑
v∼w

g′(d(v))

= f(G) + (∆− 1)g′(∆) + g′(∆− 1)−
∑
v∼w

g′(d(v))

= f(G)−
∑

v∼w,v 6=v0

(g′(d(v))− g′(∆))− (g′(d(v0))− g′(∆− 1))

Thus we have

w5(G) 6 f(G)−
∑

v∼w,v 6=v0

(g′(d(v))− g′(∆))− (g′(d(v0))− g′(∆− 1))

−
∑
i

(f(Gi)− f(G∗i )− g′(δ(G∗i ))).

It follows that we need to establish that in all cases, f1(G) > g′(δ(G)), where

f1(G) =
∑

v∼w,v 6=v0

(g′(d(v))−g′(∆))+(g′(d(v0))−g′(∆−1))+
∑
i

(f(Gi)−f(G∗i )+g′(δ(G∗i ))).

To see this, we first note that if Gi contains a vertex v of degree d > 3, then

f(Gi)− f(G∗i ) + g′(δ(G∗i ) > g′(d).

For either the vertex v is still present in G∗i , so that δ(G∗i ) 6 d and so, since g′ is
decreasing, g′(δ(G∗i )) > g′(d), or v is removed by the reduction from Gi to G∗i . But then
f(Gi)− f(G∗i ) > g(dG′(v)) = g(d) > g′(d), as required.

If G is ∆-regular, then d(v0) = ∆, and G′ will contain a vertex of degree ∆ − 1, so
that f1(G) > (g′(d(v0))− g′(∆− 1)) + g′(∆− 1) = g′(∆), as required.

Otherwise, we have d(v0) 6 ∆− 1, so that g′(d(v0))− g′(∆− 1) > 0. If G′ contains a
vertex v with δ(G) > dG′(v) > 3, then we have f1(G) > g′(dG′(v)) > g′(δ(G)), as required.

The only other possibility is that all neighbours of w have degree 3, and all other
vertices are of degree ∆. But then we have another neighbour v1 of w with degree 3, so
if some Gi contains a vertex of degree ∆, we have

f1(G) > (g′(d(v1))− g′(∆)) + (g′(d(v0))− g′(∆− 1)) + g′(∆) > g′(3) = g′(δ(G)),

and the result holds. Otherwise, all vertices apart from w are of degree 3 and are adjacent
to w. But then w5(G) = 1, and since ∆ > 4, f(G) > g(4) + 4g(3) > 5/4, and so
f(G)− g′(δ) > 1 as required. �

Corollary 3. Let G be a graph, and r(G) the reduced graph of G. Then

p(G) 6 w5(G) 6
∑

v∈V (r(G))

g(dr(G)(v)).

�
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Corollary 4. Let d > 2 be an integer. If G is a graph with n vertices and maximum
degree at most d, then

p(G) 6 w5(G) 6 g(d)n.

�

2.1 Comparison with earlier bounds for planarization

For d = 2, 3 this gives no improvement on previous results in [4] (since these are best
possible), however for d > 4 we get an improved fraction compared with the previous
upper bound of d−2

d+1
n. To see this, recall that the function g is given by:

g(d) =
13

4

A(d)

d!
+

5

4

(−1)d

d!
− 9

4
.

Then since A(d) + A(d− 1) = d! we have

g(d) =
13

4d!
(d!− (d− 1)! + (d− 2)!− A(d− 3)) +

5

4

(−1)d

d!
− 9

4

Since A(d− 3) < (d− 3)!, we have

g(d) =
13

4

(
1− 1

d
+

1

d(d− 1)

)
− 9

4
+O(1/d3).

Then an easy calculation shows that

g(d) =
d− 9/4

d+ 1
+O(1/d3).

Also, setting h(d) = d−2
d+1
− g(d), an easy calculation shows that

dh(d) = (d− 2)h(d− 1) + h(d− 2) +
6

d(d2 − 1)
.

and that h(4) = h(5) = 1
40

. Also note that for K > 0, if h(d− 1) > 1/Kd and h(d− 2) >
1/K(d− 1), then

dh(d) >
d− 2

Kd
+

1

K(d− 1)
>

d

K(d+ 1)

so that h(d) > 1/K(d + 1). Thus observing that h(d) > 1/8(d + 1) for d = 4, 5, we get

that g(d) 6 d−17/8
d+1

for d > 4. Similarly g(d) 6 d−11/5
d+1

for d > 8 and g(d) 6 d−56/25
d+1

for
d > 18. The first few values of g(d) and h(d) are as follows:

d 2 3 4 5 6 7 8 9 10

d−2
d+1

0 1
4

2
5

1
2

4
7

5
8

2
3

7
10

8
11

g(d) 0 1
4

3
8

19
40

131
240

1009
1680

8651
13440

82069
120960

855371
1209600

h(d) 0 0 1
40

1
40

43
1680

41
1680

103
4480

2603
120960

267719
13305600
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2.2 Bounds for average degree

For any positive integer k > 2, define fk to be the straight line such that fk(k) = g(k)
and fk(k + 1) = g(k + 1). Then for any real number i,

fk(i) = g(k) + (i− k)g′(k + 1).

It follows easily from the convexity of g that for any non-negative integer i > 2,

fk(i) > g(i).

Also, for any i,

fk+1(i)− fk(i) = g(k + 1) + (i− k − 1)g′(k + 2)− g(k)− (i− k)g′(k + 1)

= (k + 1− i)(g′(k + 1)− g′(k + 2)) > 0

provided i 6 k + 1. Hence since f5(0) = 29
240

> 0 and f2(2) = 0 it follows that fk(0) > 0
for k > 5 and fk(2) > 0 for k > 2. Note that for any j, fk(j)− fk(j − 1) = g′(k + 1).

Proposition 5. Let G = (V,E) be a graph and let G′ = (V ′, E ′) be a graph obtained by
applying one of the four operations above to G. For each i > 0, let ni, n

′
i be the number of

vertices of degree i in G, G′ respectively. Let k > 2 be a positive integer. Then if n0 = 0
or k > 5, we have ∑

i>0

fk(i)n′i 6
∑
i>0

fk(i)ni.

Proof. We consider the four operations. If n0 = 0 then operation 1 is impossible.
Otherwise, after operation 1 we have n′0 = n0 − 1, and n′i = ni for i 6= 0. Thus∑

i>0

fk(i)n′i =
∑
i>0

fk(i)ni − fk(0) 6
∑
i>0

fk(i)ni

since fk(0) > 0 for k > 5.
For operation 2, we delete a vertex of degree 1, adjacent to some other vertex v of

degree j say, where j > 1. The degree of v will change to j − 1, hence we have∑
i>0

fk(i)n′i =
∑
i>0

fk(i)ni − fk(1)− fk(j) + fk(j − 1)

=
∑
i>0

fk(i)ni − fk(1)− g′(k + 1)

=
∑
i>0

fk(i)ni − fk(2)

6
∑
i>0

fk(i)ni.

For operation 3, we have n′2 = n2 − 1, and n′i = ni for i 6= 2. Thus∑
i>0

fk(i)n′i =
∑
i>0

fk(i)ni − fk(2) 6
∑
i>0

fk(i)ni
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since fk(2) > 0 for k > 2.
For operation 4, we delete a vertex of degree 2, with two neighbours of degrees j, j′

say, which both lose one neighbour. Hence∑
i>0

fk(i)n′i =
∑
i>0

fk(i)ni −fk(2)− (fk(j)−fk(j−1))− (fk(j′)−fk(j′−1)) 6
∑
i>0

fk(i)ni

since fk(2) > 0 for k > 2 and fk(i)− fk(i− 1) = g′(k) > 0 for any i. �

Proposition 6. Let G = (V,E) be a graph. Let r(G) be a reduced graph of G, and suppose
that r(G) is non-empty. For each i > 0, let ni, n

′
i be the number of vertices of degree i in

G, r(G) respectively. Let k > 2 be a positive integer. Then if G is connected or k > 5,
we have ∑

i>0

fk(i)n′i 6
∑
i>0

fk(i)ni.

Proof. Let G0 = G,G1, . . . , Gk = r(G) be the sequence of graphs in the reduction
process. If G is connected, then since r(G) is non-empty, we use only operations 2, 3, 4 in
forming r(G), and no graph in the reduction sequence has an isolated vertex. The result
then follows from Proposition 5. �

Lemma 7. Let G be a graph, and for each i > 0, let ni be the number of vertices of degree
i in G. Let k > 2 be a positive integer. Then if G is connected, or k > 5,

p(G) 6 w5(G) 6 max{0,
∑
i>0

fk(i)ni}.

Proof. Let r(G) be a reduced graph of G. If w5(G) = 0, the result follows. Otherwise,
r(G) is non-empty. For each i > 0, let n′i be the number of vertices of degree i in r(G).
Note that n′0 = n′1 = n′2 = 0. Then by Corollary 3,

w5(G) 6
∑
i>3

g(i)n′i =
∑
i>0

g(i)n′i

But as noted above, g(i) 6 fk(i) for each non-negative integer i, so by Proposition 6, we
have ∑

i>0

g(i)n′i 6
∑
i>0

fk(i)n′i 6
∑
i>0

fk(i)ni

as required. �

Lemma 8. Let G be a graph with n vertices, of average degree at most d, where d > 2.
Let k > 2 be a positive integer. Then if G is connected, or k > 5,

p(G) 6 w5(G) 6 fk(d)n.

the electronic journal of combinatorics 19(2) (2012), #P25 9



Proof. If w5(G) = 0, then since fk(d) > 0 when d > 2, the result follows. Otherwise
write fk as fk(i) = aki+ bk where ak and bk are constants, and observe that by Lemma 7,

w5(G) 6
∑
i>0

fk(i)ni

= ak
∑
i>0

i ni + bk
∑
i>0

ni

6 akdn+ bkn

= fk(d)n.

�
Taking k = bdc gives the best upper bound. Let ḡ(d) be the piecewise linear interpolant

of the function g(d), then ḡ(d) = fbdc(d) and we have the following:

Theorem 9. Let G be a connected graph with n vertices, of average degree at most d,
where d > 2.

p(G) 6 w5(G) 6 ḡ(d)n;

if d > 4, then p(G) 6 w5(G) 6 d−17/8
d+1

n = d−2.125
d+1

n;

if d > 8, then p(G) 6 w5(G) 6 d−11/5
d+1

n = d−2.2
d+1

n;

if d > 18, then p(G) 6 w5(G) 6 d−56/25
d+1

n = d−2.24
d+1

n.

�

We note that since W5 is planar, the W5-minor-free subgraphs obtained above have
bounded tree-width (in fact tree-width at most 3). We give an example of the use of this
below.

2.3 Regular expressions for finite automata

Following the work of Gruber and Holzer [7], we can use the above bounds to give an
improved bound on the size of regular expressions representing deterministic finite au-
tomata. Let A be a deterministic finite automaton over an alphabet Σ, and let L(A) be
the language accepted by A. Then it is well known that L(A) is a regular language which
can be represented by a regular expression. The size or alphabetic width of a regular
expression is the number of alphabetic symbols which it contains. Using the results of [4],
Gruber and Holzer show that if A has n states, then it can be represented by a regular
expression of size at most |Σ| · nO(1) · 4c·n, where c = (2|Σ| − 2)/(2|Σ| + 1). (Thus for a
binary input alphabet, 4c ≈ 1.741.) They show this by using a transition digraph H of A
with n vertices and average (undirected) degree d at most 2|Σ|. By [4] there is a set X of

at most 2|Σ|−2
2|Σ|+1

n vertices such that H −X has tree-width 2 (i.e. is a series-parallel graph).
Gruber and Holzer show that because H−X has bounded tree-width, it contributes only
a polynomial term to the size of the regular expression, while each vertex of X contributes
a factor of at most 4.
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The proof given by Gruber and Holzer does not depend on H −X having tree-width
2; they make clear that the same argument works provided H−X has tree-width at most
k, for any fixed k. Hence we can use our results above to obtain a better bound. By
Theorem 9, since H has average degree at most 2|Σ|, then there is a set X of at most
g(2|Σ|)n vertices such that H −X is W5-minor-free, and so has tree-width at most 3. It
follows that we can replace c = (2|Σ| − 2)/(2|Σ|+ 1) in the above by c = g(2|Σ|). Hence
we have

Theorem 10. Let A be a deterministic finite automaton with n states over an alphabet
Σ. Then the language L(A) can be represented by a regular expression of alphabetic width
at most |Σ| · nO(1) · 4g(2|Σ|)n. �

In particular, for a binary input alphabet, we obtain a regular expression of size at
most nO(1) · 4(3/8)n, where 43/8 < 1.682.

2.4 Fragmentability

From the above results we get the following corollary:

Corollary 11. Let d > 2. Let Γd be the class of graphs with maximum degree at most d,
and Γ

c

d the class of connected graphs with average degree at most d. Then the coefficients
of fragmentability of Γd and Γ

c

d, i.e. cf (Γd) and cf (Γ
c

d), are at most g(d).

Proof. As mention aobve, we showed in [2] that if Γ is a class of graphs, and p(G) 6
c|V (G)|+A for all G ∈ Γ, where c, A are constants, then cf (Γ) 6 c. Thus taking Γ to be
Γd or Γ

c

d, and setting c = g(d) and A = 0, gives the result. �
Haxell et al. [9] define the constant γ to be the limit of d(1− cf (Γd)), and show that

25
8
6 γ 6 4. We can improve the lower bound slightly; recall from Section 2.1 that

g(d) = d−9/4
d+1

+O(1/d3). Then we have

d(1− cf (Γd)) > d(1− g(d))

= d(1− d−9/4
d+1
−O(1/d3))

= d(13/4
d+1

)−O(1/d2)→ 13
4

as d→∞.

Hence γ > 13
4

.

3 Series-parallelization

Let s(G) be the minimum number of vertices whose removal from G leaves a series-parallel
graph, i.e. one with no K4-minor. It is shown in [4] that for any connected graph G with
average degree d, where d > 2, we have s(G) 6 d−2

d+1
|V (G)|. In general this bound is best

possible, sinceKd+1 is d-regular, and in order to makeKd+1 series-parallel, we must remove
d−2 vertices to leave K3, so s(Kd+1) = d−2

d+1
|V (Kd+1)|. Also, considering a d-regular graph

on t vertices (t arbitrarily large), with each vertex replaced by a copy of Kd, shows that
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there are arbitrarily large d-regular graphs with s(G) > d−3
d
|V (G)|. However this leaves

open the possibility that we can obtain an upper bound with a fraction strictly smaller
than d−2

d+1
, plus a smaller additive term. This is indeed true for graphs of maximum degree

at most 6, for which we can obtain an upper bound similar to that for planarization.
For any graph G, let ni = |{v|d(v) = i}|. First define the function t5 by

t5(G) = g(3)n3 + g(4)n4 + g(5)n5 = 1
4
n3 + 3

8
n4 + 19

40
n5.

Note that if G is any graph, then in the reduced graph r(G), no vertex has higher
degree than in G, so that t5(r(G)) 6 t5(G), and there are no extra components, that is,
the reduction process may remove components, but never splits a component into two or
more parts.

We will say that a graph is d/(d + 1)-bi-regular if it can be constructed from two
connected d-regular graphs G1 and G2 by adding an edge joining a vertex of G1 to a
vertex of G2.

We prove the following:

Lemma 12. Let G = (V,E) be a connected graph with maximum degree at most 5 and
minimum degree at least 3. Then

s(G) 6 t5(G) + a5(G),

where a5(G) is defined as follows:

a5(G) =


3
20

if G is 5-regular and non-empty
1
8

if G is 4-regular and non-empty
1
20

if G is 4/5-bi-regular

0 otherwise.

Proof. The proof is by induction on the number of vertices of G. If G is empty,
i.e. with 0 vertices, then we have s(G) = t5(G) = a5(G) = 0 and the result follows. So
suppose that |V (G)| > 1. If G is 3-regular, then t5(G) = 1

4
|V (G)| and a5(G) = 0, so the

result follows from [4].
So first suppose that G is 2-connected and not 3-regular. We will delete a vertex w

of degree 4 or 5, such that all the neighbours of w have degree (in G) at most d(w), to
obtain a graph G′, and then form the reduced graph G∗ of G′. First suppose that w has
degree 5, and that w has bi neighbours of degree i, i = 3, 4, 5 (so that b5 = 5 − b3 − b4).
Write n′i and n∗i for the number of vertices of degree i in G′ and G∗ respectively. Then
n′3 = n3+b4−b3, n′4 = n4+b5−b4 = n4+5−b3−2b4, and n′5 = n5−b5−1 = n5+b3+b4−6.

Thus

t5(G′) = t5(G) + 1
4
(b4 − b3) + 3

8
(5− b3 − 2b4) + 19

40
(b3 + b4 − 6)

= t5(G)− 3
20
b3 − 1

40
b4 − 39

40
.
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Now G∗ will satisfy the conditions of the theorem, so by the inductive hypothesis, we
have

s(G) 6 1 + s(G′)

= 1 + s(G∗)

6 1 + t5(G∗) + a5(G∗)

6 1 + t5(G′) + a5(G∗)− (t5(G′)− t5(G∗))

= 1 + t5(G) + a5(G∗)− (t5(G′)− t5(G∗))− 3
20
b3 − 1

40
b4 − 39

40

= t5(G) + a5(G∗)− (t5(G′)− t5(G∗))− 3
20
b3 − 1

40
b4 + 1

40

If d(w) = 4, then similar calculations show that

t5(G′) = t5(G)− 1
8
b3 − 7

8

and
s(G) 6 t5(G) + a5(G∗)− (t5(G′)− t5(G∗))− 1

8
b3 + 1

8
.

Now if some vertex is removed by the reduction process, i.e. there is a vertex of degree
at least 3 in G′ which is not present in G∗, then t5(G∗) 6 t5(G′) − 1

4
. Then if d(w) = 5,

we have
s(G) 6 t5(G) + a5(G∗)− 1

4
+ 1

40
< t5(G)

since a5(G∗) 6 3
20

in all cases. Similarly if d(w) = 4, then we have

s(G) 6 t5(G) + a5(G∗)− 1
4

+ 1
8
< t5(G)

since G∗ has no vertex of degree 5 and so a5(G∗) 6 1
8
.

Hence we can assume that no vertex of G′ of degree at least 3 is removed by reduction
(though it is possible that reduction may reduce the degree of some vertices).

If G is K6, then a simple calculation shows that the theorem holds. If G is 5-regular,
but G 6= K6, then we have d(w) = 5 and b3 = b4 = 0; also, G∗ cannot be 4-regular,
5-regular, or 4/5-bi-regular, so a5(G∗) = 0. Hence

s(G) 6 t5(G) + 1
40

as required.
If G is 4-regular, then d(w) = 4, and G∗ has vertices of degree 3 so a5(G∗) = 0. Hence

s(G) 6 t5(G) + 1
8

as required.
Since we are assuming that G is 2-connected, G cannot be 4/5-bi-regular.
If G is not 5-regular, 4-regular, or 4/5-bi-regular, then since G is connected, we can

choose w so that w has a neighbour of degree strictly less than d(w). If d(w) = 5, then
b3 + b4 > 1. If b3 > 1, we have

s(G) 6 t5(G) + a5(G∗)− (t5(G′)− t5(G∗))− 3
20
b3 − 1

40
b4 + 1

40

6 t5(G) + a5(G∗)− 3
20
b3 − 1

40
b4 + 1

40

6 t5(G) + a5(G∗)− 1
40
b4 + 1

8
.
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If b3 < 5, then G′ has a vertex of degree at most 3 or 4, hence so does G∗ (since no vertices
of degrees 3 and 4 are removed by reduction) and so a5(G∗) 6 1

8
and the result follows.

If b3 = 5, then s(G) < t5(G) whatever value a5(G∗) has.
If b3 = 0, so b4 > 1, then no reduction takes place, so G∗ has a vertex of degree 3 and

so a5(G∗) = 0 and s(G) 6 t5(G) as required.
If d(w) = 4, then we have b3 > 1 and

s(G) 6 t5(G) + a5(G∗)− 1
8
b3 + 1

8
.

If b3 = 4, then s(G) < t5(G) whatever value a5(G∗) has. If b3 6 3, then G′ and therefore
G∗ has a vertex of degree 3, so a5(G∗) = 0, and so s(G) 6 t5(G).

Now we can assume that G is not 2-connected. Choose a cutvertex w of least degree.
We will split w into two vertices w1 and w2, so that each neighbour of w is adjacent to
exactly one of w1 and w2, and d(w1) 6 d(w2). We will always be able to do this so that
d(w1) 6 2 (and so will be removed by reduction). Let the two components formed by the
split be G1 and G2.

We observe that

s(G) 6 s(G1) + s(G2)

= s(G∗1) + s(G∗2)

6 t5(G∗1) + t5(G∗2) + a5(G∗1) + a5(G∗2)

6 t5(G1) + t5(G2) + a5(G∗1) + a5(G∗2)− (t5(G1)− t5(G∗1))− (t5(G2)− t5(G∗2))

6 t5(G) + a5(G∗1) + a5(G∗2)− (g(d(w))− g(d(w1))− g(d(w2)))

−(t5(G1)− t5(G∗1))− (t5(G2)− t5(G∗2)).

If d(w) = 3, then we have d(w1) = 1 and d(w2) = 2. Reduction of w1 will reduce the
degree of its neighbour, so t5(G1)− t5(G∗1) > g(5)− g(4) = 1

10
. Hence

s(G) 6 t5(G) + a5(G∗1) + a5(G∗2)− 1
4
− 1

10

= t5(G) + a5(G∗1) + a5(G∗2)− 7
20

< t5(G)

since a5(G∗1) + a5(G∗2) 6 3
10
< 7

20
.

If d(w) = 4, suppose that d(w1) = 1 and d(w2) = 3. Then as above, we have

s(G) 6 t5(G) + a5(G∗1) + a5(G∗2)− (3
8
− 1

4
)− 1

10

= t5(G) + a5(G∗1) + a5(G∗2)− 9
40

< t5(G)

since a5(G∗1) 6 3
20
< 9

40
and a5(G∗2) = 0.

Now suppose that d(w1) = d(w2) = 2. Then

s(G) 6 t5(G) + a5(G∗1) + a5(G∗2)− 3
8

< t5(G)
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since a5(G∗1) + a5(G∗2) 6 3
10
< 3

8
.

If d(w) = 5, suppose that d(w1) = 2 and d(w2) = 3. Then

s(G) 6 t5(G) + a5(G∗1) + a5(G∗2)− (19
40
− 1

4
)

= t5(G) + a5(G∗1) + a5(G∗2)− 9
40

< t5(G)

since a5(G∗1) 6 3
20
< 9

40
and a5(G∗2) = 0.

Finally suppose that d(w1) = 1 and d(w2) = 4. Then t5(G1) − t5(G∗1) > 1
10

. So we
have

s(G) 6 t5(G) + a5(G∗1) + a5(G∗2)− (19
40
− 3

8
)− 1

10

= t5(G) + a5(G∗1) + a5(G∗2)− 1
5
.

Now G∗1 and G∗2 cannot be 5-regular. If at most one is 4-regular, then a5(G∗1) + a5(G∗2) 6
1
8

+ 1
20
< 1

5
, so s(G) 6 t5(G) as required. If both are 4-regular, then a5(G∗1) + a5(G∗2) = 1

4
,

and G is 4/5-bi-regular (note that the neighbour of w1 cannot be of degree 3 since w is
assumed to a cutvertex of minimum degree), so that

s(G) 6 t5(G) + 1
4
− 1

5
= t5(G) + 1

20

as required. �
It is not possible to extend Lemma 12 to graphs of maximum degree 6 using the

function g, because the example of a number of copies of K6 joined cyclically by extra
edges shows that s(G) −

∑6
d=3 g(d)nd can be arbitrarily large. However a similar result

can be proved with g(6) replaced by 11/20 (which is still smaller than (d− 2)/(d+ 1)).
Set j(d) = g(d) for d 6 5, and j(6) = 11/20.
Define the function t6 by

t6(G) =
6∑

d=3

j(d)nd = 1
4
n3 + 3

8
n4 + 19

40
n5 + 11

20
n6.

Lemma 13. Let G = (V,E) be a connected graph with maximum degree at most 6 and
minimum degree at least 3. Then

s(G) 6 t6(G) + a6(G),

where a6(G) is defined as follows:

a6(G) =

{ 3
20

if G has no vertex of degree 3

0 otherwise.

Proof. As above, the proof is by induction on the number of vertices of G. If G is
empty, i.e. with 0 vertices, then we have s(G) = t6(G) = a6(G) = 0 and the result follows.
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So suppose that |V (G)| > 1. If G has maximum degree at most 5, the result follows from
Lemma 12. So suppose that G has a vertex of degree 6.

If G has a vertex w of degree 6 which is not a cut-vertex, then delete w to obtain a
connected graph G′, and then form the reduced graph G∗ of G′.

Now G∗ will satisfy the conditions of the lemma, so by the inductive hypothesis,

s(G) 6 1 + s(G′)

= 1 + s(G∗)

6 1 + t6(G∗) + a6(G∗)

6 1 + t6(G′) + a6(G∗)− (t6(G′)− t6(G∗))

= 1 + t6(G) + a6(G∗)− (t6(G′)− t6(G∗))− j(6)−
∑
v∼w

(j(d(v))− j(d(v)− 1)).

But
j(6) +

∑
v∼w

(j(d(v))− j(d(v)− 1)) > 11
20

+ 6(11
20
− 19

40
) = 1.

Hence since a6(G∗) 6 3
20

, the result holds if G has no vertex of degree 3. If G has a vertex
of degree 3 adjacent to w, then

j(6) +
∑
v∼w

(j(d(v))− j(d(v)− 1)) > 11
20

+ 5(11
20
− 19

40
) + 1

4
= 47

40
> 1 + 3

20

and again the result follows. Finally if there is a vertex of degree 3 not adjacent to w,
then either G∗ has a vertex of degree 3 and so a6(G∗) = 0, or t6(G′)− t6(G∗) > j(3) = 1

4
,

and in either case we get s(G) 6 t6(G).
We can now assume that G has a cutvertex of degree 6. Suppose that w is a cutvertex

(of any degree). As in the proof of Lemma 12, this can be split into two vertices w1 and
w2 with d(w1) 6 d(w2). Let the two components formed by the split be G1 and G2.

As in the proof of Lemma 12, we observe that

s(G) 6 t6(G) + a6(G∗1) + a6(G∗2)− (g(d(w))− g(d(w1))− g(d(w2)))

−(t6(G1)− t6(G∗1))− (t6(G2)− t6(G∗2)).

First suppose that G has a cutvertex of degree 3, so that d(w1) = 1 and d(w2) = 2.
Then g(d(w))− g(d(w1))− g(d(w2)) = 1

4
, and t6(G1)− t6(G∗1) > 11

20
− 19

40
= 3

40
, hence

s(G) 6 t6(G) + a6(G∗1) + a6(G∗2)− 13
40

< t6(G).

Now suppose that there is no cutvertex of degree 3. We know there is a cutvertex of
degree 6, so suppose that d(w1) = d(w2) = 3. Then a6(G∗1) = a6(G∗2) = 0, so

s(G) 6 t6(G)− (11
20
− 2(1

4
))

< t6(G)

as required.
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Now suppose that d(w1) = 2 and d(w2) = 4. If G contains a vertex of degree 3,
then so does Gi say. Then either G∗i has a vertex of degree 3 and so a6(G∗i ) = 0, or
t6(Gi)− t6(G∗i ) >

1
4
, and in either case we have a6(G∗i )− (t6(Gi)− t6(G∗i )) 6 0. Therefore

s(G) 6 t6(G) + 3
20
− (11

20
− 3

8
)

< t6(G)

as required. If G has no vertex of degree 3, then

s(G) 6 t6(G) + 2( 3
20

)− (11
20
− 3

8
)

< t6(G) + 3
20
.

Finally, if d(w1) = 1 and d(w2) = 5, then w1 has a single neighbour in G1 which cannot
be of degree 3 (for then that vertex would be a cutvertex of degree 3 in G). Let G′1 be
the graph which results from deleting w1 from G1. Then we have

s(G) 6 t6(G) + a6(G∗1) + a6(G∗2)− (g(d(w))− g(d(w1))− g(d(w2)))

−(t6(G1)− t6(G′1))− (t6(G′1)− t6(G∗1))− (t6(G2)− t6(G∗2)).

Now t6(G1)− t6(G′1) > 3
40

, and g(d(w))− g(d(w1))− g(d(w2)) = 3
40

also.
Thus

s(G) 6 t6(G) + a6(G∗1) + a6(G∗2)− 3
20
− (t6(G′1)− t6(G∗1))− (t6(G2)− t6(G∗2)).

If either of G′1 or G2 has a vertex of degree 3, then, as above, we have either a6(G∗1) −
(t6(G′1)− t6(G∗1)) 6 0 or a6(G∗2)− (t6(G2)− t6(G∗2)) 6 0, and so s(G) 6 t6(G). Otherwise,
G has no vertex of degree 3, and we have s(G) 6 t6(G) + 3

20
as required. �

We summarise these results in the following:

Theorem 14. Let G = (V,E) be a connected graph with maximum degree at most 6. For
each i let ni be the number of vertices with degree i. Then

s(G) 6 1
4
n3 + 3

8
n4 + 19

40
n5 + 11

20
n6 + 3

20
.

�

It would seem natural to attempt to extend the function j to values of d > 7, and
hope to show that for any connected graph with maximum degree ∆ and minimum degree
at least 3, s(G) 6

∑∆
d=3 j(d)nd + C∆, where C∆ is a constant depending on ∆. However,

even for ∆ = 8, it is not possible to do this while keeping j(d) 6 d−2
d+1

for each d, which is

desirable since we know that s(G) 6
∑∆

d=3
d−2
d+1

nd. For consider a graph Gd(t) as follows:
take t copies of Kd−1, each with one vertex distinguished, and join these distinguished
vertices in a t-cycle, so Gd(t) has maximum degree d. Then for G = G8(t), we have
(provided j(8) 6 8−2

8+1
= 2

3
) s(G)−

∑8
d=3 j(d)nd > t/30 which is unbounded.

We might also hope, as in the planarization case, to show that there is a constant
ε > 0 such that for graphs of maximum degree at most d, s(G) 6 d−2−ε

d+1
|V (G)| + Cd,
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where Cd is a constant. But again the example of Gd(t) above shows that for large
enough d, s(G) − d−2−ε

d+1
|V (G)| will be unbounded. It is also easy to construct similar

d-regular examples.
Finally, it is worth pointing out that planarization is genuinely easier than series-

parallelization, at least for high enough degree. For any class Γ, we can define constants
cp(Γ), cs(Γ) as follow:

cp(Γ) = min{λ : p(G) 6 (λ+ o(1))|V (G)| for all G ∈ Γ}

and
cs(Γ) = min{λ : s(G) 6 (λ+ o(1))|V (G)| for all G ∈ Γ}.

(Note that it is easy to see that these really are minima rather than just infima.) Then
cp(Γ

c
d) and cs(Γ

c
d) are, respectively, the smallest proportions of the vertices which will

planarize or series-parallelize connected graphs of maximum degree d. We know, of course,
that cp(Γ

c
3) = cs(Γ

c
3) = 1/4. However, using the example above of a d-regular graph on t

vertices (t arbitrarily large), with each vertex replaced by a copy of Kd, it is easy to see
that cs(Γ

c
d) > (d− 3)/d. Then, for d > 13, we have

cp(Γ
c
d) 6 g(d) < (d− 3)/d 6 cs(Γ

c
d)

so planarization requires a strictly smaller proportion of the vertices to be removed.
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