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Abstract

It is shown that if [0, 1)d + t, t ∈ T , is a unit cube tiling of Rd, then for every
x ∈ T , y ∈ Rd, and every positive integer m the number |T ∩ (x+Zd)∩ ([0,m)d+y)|
is divisible by m. Furthermore, by a result of Coppersmith and Steinberger on cyclo-
tomic arrays it is proven that for every finite discrete box D = D1×· · ·×Dd ⊆ x+Zd
of size m1×· · ·×md the number |D∩T | is a linear combination of m1, . . . ,md with
non-negative integer coefficients. Several consequences are collected. A generaliza-
tion is presented.

An interest in cube tilings of Rd originated from the following question raised by
Hermann Minkowski [23]: Characterize lattices Λ ⊂ Rd such that [0, 1)d + λ, λ ∈ Λ, is
a cube tiling. Minkowski conjectured that such a lattice Λ is of the form AZd, where
A is a lower triangular matrix with ones on the main diagonal. By a simple inductive
argument, it is equivalent to showing that Λ contains an element of the standard basis.
Geometrically, it means that the tiling [0, 1)d+λ, λ ∈ Λ, contains a column. This inspired
Ott-Heinrich Keller [11] to consider the problem of the existence of columns in arbitrary
cube tilings. In [12] he conjectured that starting from dimension 7 there are cube tilings
without columns. This has been confirmed in dimension 10 by Jeffrey Lagarias and Peter
Shor [18] and in dimension 8 by John Mackey [22]. There are quite a few other papers
stemming from Keller’s problem [2, 3, 5, 6, 8, 13, 14, 19, 21, 24, 28].

A new stimulus came from Fuglede’s conjecture [7]. Several papers appeared at almost
the same time where the set determining a cube tiling is characterized as follows: [0, 1)d+t,
t ∈ T , is a cube tiling of Rd if and only if the system of functions exp(2π i〈t, x〉), t ∈ T ,
is an orthonormal basis of L2([0, 1]d) ([9, 10, 15, 17]).

A reader who seeks an exposition concerning cube tilings is advised to consult [16, 26,
29].

Let us suppose that [0, 1)d + t, t ∈ T , is a cube tiling and that x ∈ T . The simplest
unit cube tiling to which the cube [0, 1)d +x belongs is [0, 1)d +u, u ∈ x+Zd. We discuss
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here in what way these two tilings are intertwined. To be more specific, we show that
there are certain number-theoretic characteristics of the intersection (x+ Zd) ∩ T .

A standard block in Rd is a set of the form X = X1× · · ·×Xd, where Xi ∈ {[0, 1),R}.
The translate X + x of a standard block X ⊆ Rd on x ∈ Rd is called a block in Rd. A
block which is a translate of [0, 1)d is said to be a unit cube. If F = F1×· · ·×Fd is a block
in Rd, then the set NF = {i : Fi = R} is called the cosupport of F . For future reference,
we define the set ZdNF

by the equation

ZdNF
= {(k1, . . . , kd) ∈ Zd : ki = 0,whenever i 6∈ NF}.

If F is a block, then its position vector v = v(F ) ∈ Rd is defined as follows

vi =

{
xi, if Fi = [0, 1) + xi,
0, if Fi = R.

Clearly, F − v is a standard block.
A family F of disjoint blocks contained in Rd is a block tiling of Rd if

⋃
F = Rd. If

F consists of unit cubes only, then we refer to F as a cube tiling.
Suppose that there is a unit cube J which belongs to a block tiling F . Then the

family of cubes {(J + k) : k ∈ Zd}∩F is called a simple component of F (containing J).

Theorem 1 Suppose that a unit cube J belongs to a block tiling F . Let C be a simple
component of F containing J . Then there is a block tiling G such that

(1) v(G)i ∈ v(J)i + Z, for G ∈ G and i 6∈ NG;

(2) J ∈ G and the simple component of G containing J equals C .

In particular, C consists of all unit cubes belonging to G .

Proof. We may assume that J = [0, 1)d. Let us fix i ∈ {1, . . . , d} and α ∈ (0, 1). Let
Fα = {F ∈ F : v(F )i ∈ α+Z}. If Fα is non-empty, then since F is a tiling, the family
S := {F ∈ Fα : v(F )i = α} is non-empty. For F ∈ S , let F̄ be a block defined so
that F̄i = R and F̄j = Fj whenever j 6= i. Let Gα = {F̄ : F ∈ S }. Again by the fact
that F is a tiling, we deduce that

⋃
Fα =

⋃
Gα. If Fα is empty, then we let Gα to be

empty. Observe now that the family F (i) := (F \
⋃
α∈(0,1) F

α) ∪
⋃
α∈(0,1) Gα is a block

tiling which has the following properties:

� the simple components of F and F (i) containing J coincide;

� if F ∈ F (i), then v(F )i ∈ Z.

Let us define inductively a sequence of block tilings (F [i] : i = 1, . . . , d):

F [1] = F (1), F [2] = (F [1])(2), . . . , F [d] = (F [d−1])(d).
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It is clear that the simple components of F and F [d] containing J coincide and v(F ) ∈ Zd
whenever F ∈ F [d]. Therefore, it suffices to declare G = F [d]. �

We say that a set T ⊂ Rd determines a cube tiling F of Rd if

T = v(F ) = {v(F ) : F ∈ F}.

Let T determine a cube tiling F and t ∈ T . Then the set (t+ Zd) ∩ T consists of all
position vectors of a certain simple component of F . As an immediate consequence we
have

Theorem 2 Given a set T determining a cube tiling of Rd. Let x ∈ T and let D ⊂ x+Zd
be a finite discrete box with sidelengths equal to m; that is, D = D1 × · · · × Dd and
m = |D1| = · · · = |Dd|. Then |T ∩D| is divisible by m.

Proof. Let F be the cube tiling determined by T . Let C be the simple component of F
which contains J = [0, 1)d + x. Let G be the block tiling of Rd as described in Theorem
1. Since for each G ∈ G we have G = [0, 1)d + v(G) + ZdNG

, it follows that the set

P = {(v(G) + ZdNG
) ∩D : G ∈ G } \ {∅}

is a partition of D. Observe that NG is non-empty if G ∈ G \ C . Thus, HG := (v(G) +
ZdNG

) ∩D is empty or it is a discrete box such that Hi = Di, for i ∈ NG. Now, it follows
that |HG| is divisible by m. Therefore, the number

|T ∩D| = md −
∑

G∈G \C

|HG|.

is divisible by m. �

Let us underline that the sets D1 − x1, . . . , Dd − xd are not necessarily intervals of
consecutive integers.

Theorem 2 can be generalized to finite discrete boxes of arbitrary size. To this end we
shall need a deep result of Coppersmith and Steinberger [4, Theorem 1] concerning the
sum of the entries of a cyclotomic array.

Let N be the set of all positive integers. If m ∈ N, then [m] denotes, as usual, the
initial segment {1, . . . ,m}. If m = (m1, . . . ,md) ∈ Nd, then [m] := [m1]× · · · × [md]. A
non-negative integer n is representable by m if there are non-negative integers n1, . . . , nd
such that

n = n1m1 + · · ·+ ndmd.

In other words, the amount n can be changed using coins of denominations m1, . . . ,md.
As a consequence of this interpretation, the problem of representability is often called the
coin exchange problem (see e.g. [1, 25]). A line in [m] is any set of the form

{x1} × · · · × {xs−1} × [ms]× {xs+1} × · · · × {xd},

where s ∈ [d], and xi ∈ [mi]. A subset Q of [m] is said to be complementable by lines if
its complement [m] \ Q can be represented as a union of disjoint lines. A characteristic
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function f : [m] → {0, 1} is called a fiber if its support is a line. Following Steinberger
[27], a mapping A : [m]→ Z is said to be a cyclotomic array if it is a linear combination
of fibers with integer coefficients. The result of Coppersmith and Steinberger reads that
the sum

∑
x∈[m]A(x) is representable by m if A is a nonnegative cyclotomic array. As

an immediate consequence we have

Proposition 3 For each m ∈ Nd, if Q ⊆ [m] is complementable by lines, then |Q| is
representable by m.

Theorem 4 Given a set T determining a cube tiling of Rd. Let x ∈ T and let D ⊂
x + Zd be a finite discrete box of size m1 × · · · × md. Then |T ∩ D| is representable by
m = (m1, . . . ,md).

Proof. Since the proof is a slight modification of the proof of Theorem 2, the notation
used there is preserved. Let us pick a system of bijections ϕi : Di → [mi], i ∈ [d], and
define a bijection ϕ : D → [m] by the formula ϕ = ϕ1 × · · · × ϕd. Let Q = ϕ(T ∩ D).
The set [m] \Q is a disjoint union of the sets ϕ(HG), G ∈ G \ C . By the definition of ϕ
and the fact that each HG is a box with side Di, for some i, it follows that each ϕ(HG)
is a disjoint union of lines. Now, as Q satisfies the assumption of Proposition 3, |Q| is
representable by m. �

Corollary 5 Given a set T determining a cube tiling of Rd. Let x ∈ T and let B be a
half-open box of size m1× · · · ×md, that is, there is y ∈ Rd such that B = [y1, y1 +m1)×
· · · × [yd, yd +md). Then |T ∩ (x+ Zd) ∩B| is representable by m = (m1, . . . ,md).

Proof. Define D := (x+ Zd) ∩B. As D is a discrete box of size m1 × · · · ×md, Theorem
4 applies to reach the conclusion. �

Corollary 6 Given a set T determining a cube tiling of Rd. Let x ∈ T and let B be a
closed box of size m1×· · ·×md, that is, there is y ∈ Rd such that B = [y1, y1 +m1]×· · ·×
[yd, yd +md]. Then the cardinality of the set Q := {t ∈ T ∩ (x+Zd) : (t+ [0, 1)d)∩B 6= ∅}
is representable by (m1 + 1, . . . ,md + 1).

Proof. Define

D := (x+ Zd) ∩ ((y1 − 1, y1 +m1]× · · · × (yd − 1, yd +md])

D is a discrete box of size (m1 + 1) × · · · × (md + 1). Moreover, Q = T ∩ D. Again,
Theorem 4 leads to the conclusion. �

Let m = (m1, . . . ,md) ∈ Nd and let T determine a cube tiling of Rd. This tiling is
said to be m-periodic if for every vector of the standard basis e1 = (1, 0, . . . , 0), . . . , ed =
(0, . . . , 0, 1) one has

T +miei = T.
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We define the (flat) torus Tdm to be the set [0,m1)× · · · × [0,md) with addition modm:

x⊕ y := ((x1 + y1) modm1, . . . , (xd + yd) modmd).

We can extend the notion of a cube so that it will apply to flat tori: Cubes in Tdm are the
sets of the form [0, 1)d⊕ t, where t ∈ Tdm. It is clear that we can speak about cube tilings
of Tdm and that there is a canonical ‘one-to-one’ correspondence between these tilings and
the m-periodic tilings of Rd. We say that T ⊂ Tdm determines a cube tiling of Tdm if
[0, 1)d ⊕ t, t ∈ T is a tiling. Let Zdm = Zm1 × · · · × Zmd

. By the analogy to cube tilings
of Rd, every set T ∩ (x⊕ Zdm), where x ∈ T , determines a simple component of the tiling
[0, 1)d ⊕ t, t ∈ T . As a consequence of Corollary 5 we have

Theorem 7 If T determines a cube tiling of a torus Tdm and S determines a simple
component of this tiling, then |S| is m representable.

Our main result (Theorem 4) holds in a more general setting. We need some additional
terminology in order to formulate such a generalization (compare [21]).

Let V be a non-empty set. A family V ⊆ 2V \ {∅, V } is distinctive if for every A ∈ V ,
there is a unique partition CA ⊆ V of V such that A ∈ CA.

The family of all unit segments [0, 1) +x, x ∈ R, is distinctive while the family of unit
squares [0, 1)2 + x, x ∈ R2, is not. On the other hand, the family of all translates of a
regular hexagon in R2 with three consecutive sides removed is distinctive.

Let X be the Cartesian product of sets Xi, i ∈ [d]. A non-empty subset A of X is
called a box (in X) if A = A1 × · · · × Ad and Ai ⊆ Xi for each i ∈ [d].

Let Xi ⊆ 2Xi \ {∅, Xi}, i ∈ [d]. We denote by X = X1 ⊗ · · · ⊗Xd the family of
all boxes A ⊆ X = X1 × · · · × Xd such that Ai ∈ Xi for every i ∈ [d]. If each Xi is
distinctive, then X is called a free family of boxes on X. Let us fix A ∈ X . Then
CA = CA1 ⊗ · · · ⊗ CAd

⊆ X is a partition of X. We refer to CA as a simple partition of
X (determined by A).

The announced generalization can be proved along the same lines as Theorem 4.

Theorem 8 Let X be a free family of boxes on X = X1 × · · · ×Xd. Let K ⊆ X be a
partition of X, and A ∈ K . Let D be a finite discrete box of size m ∈ Nd contained in
the simple partition CA, that is, D = D1 ⊗ · · · ⊗Dd, Di ⊆ CAi

and |Di| = mi, for i ∈ [d].
Then |D ∩K | is representable by m.
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