The Coin Exchange Problem and the Structure of Cube Tilings

Andrzej P. Kisielewicz and Krzysztof Przesławski

Wydział Matematyki, Informatyki i Ekonometrii, Uniwersytet Zielonogórski ul. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

A.Kisielewicz@wmie.uz.zgora.pl, K.Przeslawski@wmie.uz.zgora.pl

Submitted: Jul 25, 2011; Accepted: Apr 13, 2012; Published: Jun 6, 2012

Abstract

It is shown that if $[0,1)^d+t$, $t\in T$, is a unit cube tiling of \mathbb{R}^d , then for every $x\in T,\,y\in\mathbb{R}^d$, and every positive integer m the number $|T\cap(x+\mathbb{Z}^d)\cap([0,m)^d+y)|$ is divisible by m. Furthermore, by a result of Coppersmith and Steinberger on cyclotomic arrays it is proven that for every finite discrete box $D=D_1\times\cdots\times D_d\subseteq x+\mathbb{Z}^d$ of size $m_1\times\cdots\times m_d$ the number $|D\cap T|$ is a linear combination of m_1,\ldots,m_d with non-negative integer coefficients. Several consequences are collected. A generalization is presented.

An interest in cube tilings of \mathbb{R}^d originated from the following question raised by Hermann Minkowski [23]: Characterize lattices $\Lambda \subset \mathbb{R}^d$ such that $[0,1)^d + \lambda$, $\lambda \in \Lambda$, is a cube tiling. Minkowski conjectured that such a lattice Λ is of the form $A\mathbb{Z}^d$, where A is a lower triangular matrix with ones on the main diagonal. By a simple inductive argument, it is equivalent to showing that Λ contains an element of the standard basis. Geometrically, it means that the tiling $[0,1)^d + \lambda$, $\lambda \in \Lambda$, contains a column. This inspired Ott-Heinrich Keller [11] to consider the problem of the existence of columns in arbitrary cube tilings. In [12] he conjectured that starting from dimension 7 there are cube tilings without columns. This has been confirmed in dimension 10 by Jeffrey Lagarias and Peter Shor [18] and in dimension 8 by John Mackey [22]. There are quite a few other papers stemming from Keller's problem [2, 3, 5, 6, 8, 13, 14, 19, 21, 24, 28].

A new stimulus came from Fuglede's conjecture [7]. Several papers appeared at almost the same time where the set determining a cube tiling is characterized as follows: $[0,1)^d+t$, $t \in T$, is a cube tiling of \mathbb{R}^d if and only if the system of functions $\exp(2\pi i \langle t, x \rangle)$, $t \in T$, is an orthonormal basis of $L^2([0,1]^d)$ ([9, 10, 15, 17]).

A reader who seeks an exposition concerning cube tilings is advised to consult [16, 26, 29].

Let us suppose that $[0,1)^d + t$, $t \in T$, is a cube tiling and that $x \in T$. The simplest unit cube tiling to which the cube $[0,1)^d + x$ belongs is $[0,1)^d + u$, $u \in x + \mathbb{Z}^d$. We discuss

here in what way these two tilings are intertwined. To be more specific, we show that there are certain number-theoretic characteristics of the intersection $(x + \mathbb{Z}^d) \cap T$.

A standard block in \mathbb{R}^d is a set of the form $X = X_1 \times \cdots \times X_d$, where $X_i \in \{[0,1), \mathbb{R}\}$. The translate X + x of a standard block $X \subseteq \mathbb{R}^d$ on $x \in \mathbb{R}^d$ is called a block in \mathbb{R}^d . A block which is a translate of $[0,1)^d$ is said to be a unit cube. If $F = F_1 \times \cdots \times F_d$ is a block in \mathbb{R}^d , then the set $N_F = \{i : F_i = \mathbb{R}\}$ is called the cosupport of F. For future reference, we define the set $\mathbb{Z}^d_{N_F}$ by the equation

$$\mathbb{Z}_{N_F}^d = \{(k_1, \dots, k_d) \in \mathbb{Z}^d \colon k_i = 0, \text{ whenever } i \notin N_F\}.$$

If F is a block, then its position vector $v = v(F) \in \mathbb{R}^d$ is defined as follows

$$v_i = \begin{cases} x_i, & \text{if } F_i = [0, 1) + x_i, \\ 0, & \text{if } F_i = \mathbb{R}. \end{cases}$$

Clearly, F - v is a standard block.

A family \mathscr{F} of disjoint blocks contained in \mathbb{R}^d is a *block tiling* of \mathbb{R}^d if $\bigcup \mathscr{F} = \mathbb{R}^d$. If \mathscr{F} consists of unit cubes only, then we refer to \mathscr{F} as a *cube tiling*.

Suppose that there is a unit cube J which belongs to a block tiling \mathscr{F} . Then the family of cubes $\{(J+k): k \in \mathbb{Z}^d\} \cap \mathscr{F}$ is called a *simple component* of \mathscr{F} (containing J).

Theorem 1 Suppose that a unit cube J belongs to a block tiling \mathscr{F} . Let \mathscr{C} be a simple component of \mathscr{F} containing J. Then there is a block tiling \mathscr{G} such that

- (1) $v(G)_i \in v(J)_i + \mathbb{Z}$, for $G \in \mathscr{G}$ and $i \notin N_G$;
- (2) $J \in \mathcal{G}$ and the simple component of \mathcal{G} containing J equals \mathcal{C} .

In particular, & consists of all unit cubes belonging to G.

Proof. We may assume that $J = [0,1)^d$. Let us fix $i \in \{1,\ldots,d\}$ and $\alpha \in (0,1)$. Let $\mathscr{F}^{\alpha} = \{F \in \mathscr{F} : v(F)_i \in \alpha + \mathbb{Z}\}$. If \mathscr{F}^{α} is non-empty, then since \mathscr{F} is a tiling, the family $\mathscr{S} := \{F \in \mathscr{F}^{\alpha} : v(F)_i = \alpha\}$ is non-empty. For $F \in \mathscr{S}$, let \overline{F} be a block defined so that $\overline{F}_i = \mathbb{R}$ and $\overline{F}_j = F_j$ whenever $j \neq i$. Let $\mathscr{G}_{\alpha} = \{\overline{F} : F \in \mathscr{S}\}$. Again by the fact that \mathscr{F} is a tiling, we deduce that $\bigcup \mathscr{F}^{\alpha} = \bigcup \mathscr{G}_{\alpha}$. If \mathscr{F}^{α} is empty, then we let \mathscr{G}_{α} to be empty. Observe now that the family $\mathscr{F}^{(i)} := (\mathscr{F} \setminus \bigcup_{\alpha \in (0,1)} \mathscr{F}^{\alpha}) \cup \bigcup_{\alpha \in (0,1)} \mathscr{G}_{\alpha}$ is a block tiling which has the following properties:

- \diamond the simple components of \mathscr{F} and $\mathscr{F}^{(i)}$ containing J coincide;
- \diamond if $F \in \mathscr{F}^{(i)}$, then $v(F)_i \in \mathbb{Z}$.

Let us define inductively a sequence of block tilings $(\mathscr{F}^{[i]}: i = 1, \ldots, d)$:

$$\mathscr{F}^{[1]} = \mathscr{F}^{(1)}, \ \mathscr{F}^{[2]} = (\mathscr{F}^{[1]})^{(2)}, \ \dots, \ \mathscr{F}^{[d]} = (\mathscr{F}^{[d-1]})^{(d)}.$$

It is clear that the simple components of \mathscr{F} and $\mathscr{F}^{[d]}$ containing J coincide and $v(F) \in \mathbb{Z}^d$ whenever $F \in \mathscr{F}^{[d]}$. Therefore, it suffices to declare $\mathscr{G} = \mathscr{F}^{[d]}$.

We say that a set $T \subset \mathbb{R}^d$ determines a cube tiling \mathscr{F} of \mathbb{R}^d if

$$T = v(\mathscr{F}) = \{v(F) \colon F \in \mathscr{F}\}.$$

Let T determine a cube tiling \mathscr{F} and $t \in T$. Then the set $(t + \mathbb{Z}^d) \cap T$ consists of all position vectors of a certain simple component of \mathscr{F} . As an immediate consequence we have

THEOREM 2 Given a set T determining a cube tiling of \mathbb{R}^d . Let $x \in T$ and let $D \subset x + \mathbb{Z}^d$ be a finite discrete box with sidelengths equal to m; that is, $D = D_1 \times \cdots \times D_d$ and $m = |D_1| = \cdots = |D_d|$. Then $|T \cap D|$ is divisible by m.

Proof. Let \mathscr{F} be the cube tiling determined by T. Let \mathscr{C} be the simple component of \mathscr{F} which contains $J = [0,1)^d + x$. Let \mathscr{G} be the block tiling of \mathbb{R}^d as described in Theorem 1. Since for each $G \in \mathscr{G}$ we have $G = [0,1)^d + v(G) + \mathbb{Z}_{N_G}^d$, it follows that the set

$$\mathscr{P} = \{ (v(G) + \mathbb{Z}_{N_G}^d) \cap D \colon G \in \mathscr{G} \} \setminus \{\emptyset\}$$

is a partition of D. Observe that N_G is non-empty if $G \in \mathcal{G} \setminus \mathcal{C}$. Thus, $H_G := (v(G) + \mathbb{Z}_{N_G}^d) \cap D$ is empty or it is a discrete box such that $H_i = D_i$, for $i \in N_G$. Now, it follows that $|H_G|$ is divisible by m. Therefore, the number

$$|T \cap D| = m^d - \sum_{G \in \mathscr{G} \setminus \mathscr{C}} |H_G|.$$

is divisible by m.

Let us underline that the sets $D_1 - x_1, \ldots, D_d - x_d$ are not necessarily intervals of consecutive integers.

Theorem 2 can be generalized to finite discrete boxes of arbitrary size. To this end we shall need a deep result of Coppersmith and Steinberger [4, Theorem 1] concerning the sum of the entries of a cyclotomic array.

Let \mathbb{N} be the set of all positive integers. If $m \in \mathbb{N}$, then [m] denotes, as usual, the initial segment $\{1,\ldots,m\}$. If $\mathbf{m}=(m_1,\ldots,m_d)\in\mathbb{N}^d$, then $[\mathbf{m}]:=[m_1]\times\cdots\times[m_d]$. A non-negative integer n is representable by \mathbf{m} if there are non-negative integers n_1,\ldots,n_d such that

$$n = n_1 m_1 + \dots + n_d m_d.$$

In other words, the amount n can be changed using coins of denominations m_1, \ldots, m_d . As a consequence of this interpretation, the problem of representability is often called the coin exchange problem (see e.g. [1, 25]). A line in [m] is any set of the form

$$\{x_1\} \times \cdots \times \{x_{s-1}\} \times [m_s] \times \{x_{s+1}\} \times \cdots \times \{x_d\},$$

where $s \in [d]$, and $x_i \in [m_i]$. A subset Q of [m] is said to be *complementable by lines* if its complement $[m] \setminus Q$ can be represented as a union of disjoint lines. A characteristic

function $f: [m] \to \{0,1\}$ is called a *fiber* if its support is a line. Following Steinberger [27], a mapping $A: [m] \to \mathbb{Z}$ is said to be a *cyclotomic array* if it is a linear combination of fibers with integer coefficients. The result of Coppersmith and Steinberger reads that the sum $\sum_{x \in [m]} A(x)$ is representable by m if A is a nonnegative cyclotomic array. As an immediate consequence we have

PROPOSITION 3 For each $\mathbf{m} \in \mathbb{N}^d$, if $Q \subseteq [\mathbf{m}]$ is complementable by lines, then |Q| is representable by \mathbf{m} .

THEOREM 4 Given a set T determining a cube tiling of \mathbb{R}^d . Let $x \in T$ and let $D \subset x + \mathbb{Z}^d$ be a finite discrete box of size $m_1 \times \cdots \times m_d$. Then $|T \cap D|$ is representable by $\mathbf{m} = (m_1, \dots, m_d)$.

Proof. Since the proof is a slight modification of the proof of Theorem 2, the notation used there is preserved. Let us pick a system of bijections $\varphi_i \colon D_i \to [m_i], i \in [d]$, and define a bijection $\varphi \colon D \to [m]$ by the formula $\varphi = \varphi_1 \times \cdots \times \varphi_d$. Let $Q = \varphi(T \cap D)$. The set $[m] \setminus Q$ is a disjoint union of the sets $\varphi(H_G), G \in \mathcal{G} \setminus \mathcal{C}$. By the definition of φ and the fact that each H_G is a box with side D_i , for some i, it follows that each $\varphi(H_G)$ is a disjoint union of lines. Now, as Q satisfies the assumption of Proposition 3, |Q| is representable by m.

COROLLARY 5 Given a set T determining a cube tiling of \mathbb{R}^d . Let $x \in T$ and let B be a half-open box of size $m_1 \times \cdots \times m_d$, that is, there is $y \in \mathbb{R}^d$ such that $B = [y_1, y_1 + m_1) \times \cdots \times [y_d, y_d + m_d)$. Then $|T \cap (x + \mathbb{Z}^d) \cap B|$ is representable by $\mathbf{m} = (m_1, \dots, m_d)$.

Proof. Define $D := (x + \mathbb{Z}^d) \cap B$. As D is a discrete box of size $m_1 \times \cdots \times m_d$, Theorem 4 applies to reach the conclusion.

COROLLARY 6 Given a set T determining a cube tiling of \mathbb{R}^d . Let $x \in T$ and let B be a closed box of size $m_1 \times \cdots \times m_d$, that is, there is $y \in \mathbb{R}^d$ such that $B = [y_1, y_1 + m_1] \times \cdots \times [y_d, y_d + m_d]$. Then the cardinality of the set $Q := \{t \in T \cap (x + \mathbb{Z}^d) : (t + [0, 1)^d) \cap B \neq \emptyset\}$ is representable by $(m_1 + 1, \dots, m_d + 1)$.

Proof. Define

$$D := (x + \mathbb{Z}^d) \cap ((y_1 - 1, y_1 + m_1] \times \cdots \times (y_d - 1, y_d + m_d])$$

D is a discrete box of size $(m_1 + 1) \times \cdots \times (m_d + 1)$. Moreover, $Q = T \cap D$. Again, Theorem 4 leads to the conclusion.

Let $\mathbf{m} = (m_1, \dots, m_d) \in \mathbb{N}^d$ and let T determine a cube tiling of \mathbb{R}^d . This tiling is said to be \mathbf{m} -periodic if for every vector of the standard basis $e_1 = (1, 0, \dots, 0), \dots, e_d = (0, \dots, 0, 1)$ one has

$$T + m_i e_i = T$$
.

We define the *(flat) torus* $\mathbb{T}_{\boldsymbol{m}}^d$ to be the set $[0, m_1) \times \cdots \times [0, m_d)$ with addition mod \boldsymbol{m} :

$$x \oplus y := ((x_1 + y_1) \operatorname{mod} m_1, \dots, (x_d + y_d) \operatorname{mod} m_d).$$

We can extend the notion of a cube so that it will apply to flat tori: Cubes in $\mathbb{T}_{\boldsymbol{m}}^d$ are the sets of the form $[0,1)^d \oplus t$, where $t \in \mathbb{T}_{\boldsymbol{m}}^d$. It is clear that we can speak about cube tilings of $\mathbb{T}_{\boldsymbol{m}}^d$ and that there is a canonical 'one-to-one' correspondence between these tilings and the \boldsymbol{m} -periodic tilings of \mathbb{R}^d . We say that $T \subset \mathbb{T}_{\boldsymbol{m}}^d$ determines a cube tiling of $\mathbb{T}_{\boldsymbol{m}}^d$ if $[0,1)^d \oplus t$, $t \in T$ is a tiling. Let $\mathbb{Z}_{\boldsymbol{m}}^d = \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_d}$. By the analogy to cube tilings of \mathbb{R}^d , every set $T \cap (x \oplus \mathbb{Z}_{\boldsymbol{m}}^d)$, where $x \in T$, determines a simple component of the tiling $[0,1)^d \oplus t$, $t \in T$. As a consequence of Corollary 5 we have

THEOREM 7 If T determines a cube tiling of a torus \mathbb{T}_m^d and S determines a simple component of this tiling, then |S| is m representable.

Our main result (Theorem 4) holds in a more general setting. We need some additional terminology in order to formulate such a generalization (compare [21]).

Let V be a non-empty set. A family $\mathscr{V} \subseteq 2^V \setminus \{\emptyset, V\}$ is distinctive if for every $A \in \mathscr{V}$, there is a unique partition $\mathscr{C}_A \subseteq \mathscr{V}$ of V such that $A \in \mathscr{C}_A$.

The family of all unit segments [0,1)+x, $x \in \mathbb{R}$, is distinctive while the family of unit squares $[0,1)^2+x$, $x \in \mathbb{R}^2$, is not. On the other hand, the family of all translates of a regular hexagon in \mathbb{R}^2 with three consecutive sides removed is distinctive.

Let X be the Cartesian product of sets X_i , $i \in [d]$. A non-empty subset A of X is called a box (in X) if $A = A_1 \times \cdots \times A_d$ and $A_i \subseteq X_i$ for each $i \in [d]$.

Let $\mathscr{X}_i \subseteq 2^{X_i} \setminus \{\emptyset, X_i\}$, $i \in [d]$. We denote by $\mathscr{X} = \mathscr{X}_1 \otimes \cdots \otimes \mathscr{X}_d$ the family of all boxes $A \subseteq X = X_1 \times \cdots \times X_d$ such that $A_i \in \mathscr{X}_i$ for every $i \in [d]$. If each \mathscr{X}_i is distinctive, then \mathscr{X} is called a *free family of boxes* on X. Let us fix $A \in \mathscr{X}$. Then $\mathscr{C}_A = \mathscr{C}_{A_1} \otimes \cdots \otimes \mathscr{C}_{A_d} \subseteq \mathscr{X}$ is a partition of X. We refer to \mathscr{C}_A as a *simple partition* of X (determined by A).

The announced generalization can be proved along the same lines as Theorem 4.

THEOREM 8 Let \mathscr{X} be a free family of boxes on $X = X_1 \times \cdots \times X_d$. Let $\mathscr{K} \subseteq \mathscr{K}$ be a partition of X, and $A \in \mathscr{K}$. Let \mathscr{D} be a finite discrete box of size $\mathbf{m} \in \mathbb{N}^d$ contained in the simple partition \mathscr{C}_A , that is, $\mathscr{D} = \mathscr{D}_1 \otimes \cdots \otimes \mathscr{D}_d$, $\mathscr{D}_i \subseteq \mathscr{C}_{A_i}$ and $|\mathscr{D}_i| = m_i$, for $i \in [d]$. Then $|\mathscr{D} \cap \mathscr{K}|$ is representable by \mathbf{m} .

Acknowledgments. We thank Mihalis Kolountzakis who brought our attention to the connection between Proposition 3 that had been conjectured in a previous version of this note and a paper of Tsit Yuen Lam and Ka Hin Leung on vanishing sums of roots of unity [20] which eventually led us to the result of Coppersmith and Steinberger on cyclotomic arrays.

We also wish to express our thanks to an anonymous referee for valuable comments.

References

- [1] M. Beck and S. Robins, Computing the Continuous Discretely, Springer, New York, 2007.
- [2] K. Corrádi and S. Szabó, Cube tiling and covering a complete graph, *Discrete Math.* **85** (1990), 319–321.
- [3] K. Corrádi and S. Szabó, A combinatorial approach for Keller's conjecture, *Period. Math. Hungar.* **21** (1990), 95–100.
- [4] D. Coppersmith and J. Steinberger, On the Entry Sum of Cyclotomic Arrays, *IN-TEGERS* **6** (2006), # A26, pp 28.
- [5] M. Dutour Sikirić and Y. Itoh, Combinatorial cube packings in the cube and the torus, European J. Combin. **31** (2010), 517–534.
- [6] M. Dutour Sikirić, Y. Itoh and A. Poyarkov, Cube packings, second moment and holes, *European J. Combin.* **28** (2007), 715–725.
- [7] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121.
- [8] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1941), 427–467.
- [9] A. Iosevich and S. Pedersen, Spectral and tiling properties of the unit cube, *Inter. Math. Res. Notices* **16** (1998), 819–828.
- [10] P. Jorgensen and S. Pedersen, Spectral pairs in Cartesian coordinates, *J. Fourier Anal. Appl.* 5 (1999), 285–302.
- [11] O. H. Keller, Über die lückenlose Erfülung des Raumes Würfeln, J. Reine Angew. Math. **163** (1930), 231–248.
- [12] O. H. Keller, Ein Satz über die lückenlose Erfüllung des 5- und 6-dimensionalen Raumes mit Würfeln, J. Reine Angew. Math. 177 (1937), 61–64.
- [13] A. P. Kisielewicz, K. Przesławski, Polyboxes, cube tilings and rigidity, *Discrete Comput. Geom.* **40** (2008), 1–30.
- [14] M. N. Kolountzakis, Lattice tilings by cubes: whole, notched and extended, *Electron. J. Combin.* **5** (1998), #R14, pp 11.
- [15] M. N. Kolountzakis, Packing, tiling, orthogonality and completeness, Bull. London Math. Soc. 32 (2000), 589–599.
- [16] M. N. Kolountzakis, The study of translational tiling with Fourier Analysis, Fourier Analysis and Convexity, 131–187, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004.
- [17] J. C. Lagarias, J. A. Reeds and Y. Wang, Orthonormal bases of exponentials for the *n*-cube, *Duke. Math. J.* **103** (2000), 25–37.
- [18] J. C. Lagarias and P. W. Shor, Keller's cube-tiling conjecture is false in high dimensions, *Bull. Amer. Math. Soc.* **27** (1992), 279–287.

- [19] J. C. Lagarias and P. W. Shor, Cube tilings and nonlinear codes, *Discrete Comput. Geom.* 11 (1994), 359–391.
- [20] T.Y. Lam, K.H. Leung, On vanishing sums of roots of unity, *J. Algebra* **224** no. 1 (2000), 91–109.
- [21] M. Łysakowska and K. Przesławski, Keller's conjecture on the existence of columns in cube tilings of \mathbb{R}^n , Advances in Geometry 12 (2012), 329–352.
- [22] J. Mackey, A cube tiling of dimension eight with no facesharing, *Discrete Comput. Geom.* **28** (2002), 275–279.
- [23] H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907.
- [24] O. Perron, Uber lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel, $Math.\ Z.\ 46\ (1940),\ 1–26.$
- [25] J. L. Ramírez Alfonsín, *The Diophantine Frobenius Problem*, Oxford University Press, New York, 2005.
- [26] S. K. Stein and S. Szabó, Algebra and Tiling: Homomorphisms in the Service of Geometry, American Mathematical Association, Washington, 1994.
- [27] J. Steinberger, Minimal vanishing sums of roots of unity with large coefficients, *Proc. London Math. Soc.* **97** (2008), 689–717.
- [28] S. Szabó, Cube tilings as contributions of algebra to geometry, *Beiträge Algebra Geom.* **34** (1993), 63–75.
- [29] Ch. Zong, The Cube: A Window to Convex and Discrete Geometry, Cambridge Tracts in Mathematics (168), 2006.