
The Existence of Near Generalized
Balanced Tournament Designs

Chengmin Wang, Jie Yan∗

School of Science, Jiangnan University,
Wuxi 214122, China

Submitted: May 15, 2011; Accepted: Apr 29, 2012; Published: Jun 6, 2012

Mathematics Subject Classifications: 05B05, 94B25

Abstract

In this paper, we complete the existence of near generalized balanced tournament
designs (NGBTDs) with block size 3 and 5. As an application, we obtain new classes
of optimal constant composition codes.
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1 Introduction

Let X be a set of v points, and A a collection of subsets (called blocks) of X. A (v, k, λ)
balanced incomplete block design (BIBD), or a (v, k, λ)-BIBD, is a pair (X,A) such that
any pair of distinct points of X occurs in precisely λ blocks. A (km + 1, k, k − 1)-
BIBD (X,A) is called a near generalized balanced tournament design (NGBTD), or an
NGBTD(k,m) in short, if its blocks can be arranged into an m× (km+ 1) array in such
a way that

(1) the blocks in each column form a partial parallel class which partition X\{x} for
some point x ∈ X;

(2) each point of X is contained in precisely k cells of each row.
By the definition, any NGBTD can be identified with its corresponding block array defined
above.

NGBTDs are a generalization of odd balanced tournament designs (OBTDs). Particu-
larly, an NGBTD(2,m) is an OBTD(m) whose existence was completed in [5]. Lamken [4]
almost finished the existence of NGBTD(3,m) with four possible exceptions. Recently,
Shan [8] presented a nearly complete solution for the existence of NGBTD(k,m)’s for
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k = 4 and 5 with four possible exceptions. We collect the existence of NGBTD(k,m)’s
for 2 6 k 6 5 as follows.

Theorem 1. ([4, 5, 8])
(1) There exists an NGBTD(2,m) for any positive integer m;
(2) There exists an NGBTD(3,m) for any positive integer m and m 6∈ {3, 38, 39, 118};
(3) There exists an NGBTD(4,m) for any positive integer m;
(4) There exists an NGBTD(5,m) for any positive integer m and m 6∈ {15, 32, 40, 45}.

A group divisible design of block size k and index λ, or a (k, λ)-GDD, is a triple
(X,G,B) where X is a finite set of (points), G is a partition of X into subsets (called
groups), and B is a set of subsets of size k (called blocks) of X, such that every pair
of points from distinct groups occurs in exactly λ blocks, and any pair of points from
the same group occur in no block. The type of the GDD is defined to be the multiset
T = {|G| : G ∈ G}, which is usually denoted by an “exponential” notation: a type
gu1
1 g

u2
2 · · · gus

s means ui occurrences of gi for 1 6 i 6 s.
A set of blocks of a GDD (X,G,B) is called a partial α-parallel class over X\S if each

point of X\S occurs in exactly α blocks, while any point of S occurs in no block. If S = ∅,
it is called an α-parallel class over X. Whenever α = 1, we simply say a (partial) parallel
class, instead of a (partial) α-parallel class. A GDD is called resolvable if its blocks can
be partitioned into parallel classes.

We need a special type of GDDs, called frame generalized doubly resolvable packings
(FGDRPs), which was first introduced in [11] to construct optimal constant composition
codes.

Let (X,G,B) be a (k, k − 1)-GDD of type gu where g = kh. Suppose that the group
set G = {G1, G2, · · · , Gu}. Define

Ri = {(i− 1)h + j : j = 1, · · · , h}
Ci = {(i− 1)kh + j : j = 1, · · · , kh}

for 1 6 i 6 u. The blocks of the GDD can be arranged into an hu × gu array F which
satisfies the following properties:
(1) Each cell of F is either empty or contains a block of B;
(2) Let Ft be the subarray indexed by the elements of Rt and Ct. Then Ft is empty for
t = 1, 2, · · · , u, i.e., the main diagonal of F consists of u empty subarrays of size h× kh;
(3) For any x ∈ Ri (1 6 i 6 u), the blocks in row x form a partial k-parallel class over
X\Gi;
(4) For any y ∈ Cj (1 6 j 6 u), the blocks in column y form a partial parallel class over
X\Gj.

Then we refer to this GDD as an FGDRP(k, gu). Actually, FGDRPs can be defined in
a more general way in which all the groups are not necessarily the same size. Nevertheless,
we use the definition here for our purpose. The interest reader may refer to [10, 11] for
more details on FGDRPs.

In this note, we completely establish the existence of NGBTD(k,m)’s for k = 3 and
5 by removing all the remaining cases in Theorem 1. We also present an application of
NGBTDs to optimal constant composition codes.
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2 The Existence of NGBTDs with Block Size 3

In this section, we give a complete solution to the existence of NGBTDs with block size
3.

Theorem 2. [8, 9] Suppose that there exists an FGDRP(k, gu) where g = kh. Let w be any
nonnegative integer. If there exists an NGBTD(k, h+w) which contains an NGBTD(k, w)
as a subarray, then an NGBTD(k, hu+ w) exists.

Theorem 3. [9, 10] Let g and u be positive integers with g ≡ 0 (mod 3)
and u > 5. Then an FGDRP(3, gu) exists except possibly for (g, u) ∈
{(6, 15), (9, 18), (9, 28), (9, 34), (30, 15)}.

Theorem 4. For any integer m > 1 and m 6= 3, there exists an NGBTD(3,m). There
does not exist an NGBTD(3, 3).

Proof : By Theorem 3, there exists an FGDRP(3, 3m) for any m > 5. An
NGBTD(3, 1) exists trivially with all the subsets containing any three points as blocks.
Then we apply Theorem 2 with k = 3, h = 1, u = m,w = 0 to obtain an NGBTD(3,m)
for any m > 5.

We know that there does not exist an NGBTD(3, 3) definitely by an exhaustive search
with the aid of a computer.

Combining with Theorem 1, we complete the proof.
Remark: Here we have fixed the four possible exceptions in [4] and complete the existence
of NGBTD(3,m)’s. Moreover, Theorem 4 actually provides an alternative proof for the
existence of NGBTD(3,m)’s.

3 The Existence of NGBTDs with Block Size 5

This section serves to complete the existence of NGBTDs with block size 5, by removing
the four outstanding cases in Theorem 1.

Lemma 5. There exists an NGBTD(5, 15).

Proof : We construct the desired NGBTD on the Abelian group X = Z19 × Z2 × Z2.
Here we write the element (a, b, c) of X as abc for brevity. The following blocks form a
partial parallel class which partitions X\{1811}.

{001, 000, 010, 011, 100} {1601, 301, 1210, 910, 1401} {1411, 1311, 701, 1701, 200}
{1501, 1200, 1801, 311, 1101} {1400, 911, 1300, 1211, 810} {1301, 1500, 400, 1111, 210}
{101, 300, 1011, 1100, 1711} {111, 401, 611, 901, 1410} {310, 1611, 711, 1000, 501}
{500, 610, 1201, 211, 1700} {411, 700, 110, 1610, 811} {510, 1010, 600, 710, 1110}
{601, 410, 1510, 800, 1710} {1800, 1600, 900, 801, 201} {1810, 1511, 1310, 1001, 511}

It is easy to check that the desired design is produced by the action of the group X on
above partial parallel class.
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Before we move to the next construction, we need the well-known starter-adder
method, which is widely used to produce some designs with orthogonal properties (see,
for example, [1, 2, 5, 7, 8, 13]).

Let G be an additively Abelian group of order u. Let g = kt. A starter S for an
FGDRP(k, gu) over Zg × G with groups Gx = Zg × {x} (x ∈ G) consists of t sets of
k-tuples (base blocks), S1, S2, · · · , St, which satisfies the following properties:

(1) For any i (1 6 i 6 t), Si contains exactly u−1 base blocks Bij, j = 1, 2, · · · , u−1;
(2) S =

⋃t
i=1 Si forms a partition of Zg × (G\{0}) and every element of Zg × (G\{0})

occurs exactly k − 1 times in the difference list of S.
A corresponding adder A(S) for the starter S consists t permutations (not necessarily

distinct) of G\{0}
A(Si) = (ai1, ai2, · · · , ai(u−1)), 1 6 i 6 t

such that for any i (1 6 i 6 t),
⋃u−1

j=1 (Bij + (0, aij)) contains exactly k elements (not
necessarily distinct) from each group Gx for x ∈ G\{0} and no element of G0.

Theorem 6. [10] If there exists a starter-adder pair (S,A(S)) for an FGDRP(k, gu) over
Zg ×G defined above, then there exists an FGDRP(k, gu).

Lemma 7. There exists an FGDRP(5, 259).

Proof : We take Z25 × GF (9) as the point set and {Z25 × {x} | x ∈ GF (9)} as the
groups. Let GF (9)∗ = GF (9)\{0}. Suppose that ω is a primitive element of GF (9)
satisfying ω2 = ω + 1 and C2

0 is the square residue of GF (9)∗. We display the starter S
and the corresponding adder A(S) in Table 1. Then we apply Theorem 6 to produce the
desired design.

Table 1: The starters and corresponding adders for an FGDRP (259)
S A(S)

S1 : {(0,ω1), (8,ω5), (8,ω2), (13,ω3), (14,ω7)}·(1, h) (0,1)·(1, h)
{(9,ω0), (10,ω7), (21,ω1), (23,ω2), (15,ω6)}·(1, h) (0,ω)·(1, h)

S2 : {(2,ω6), (11,ω5), (12,ω2), (14,ω0), (15,ω1)}·(1, h) (0,1)·(1, h)
{(5,ω4), (6,ω6), (17,ω3), (20,ω7), (24,ω1)}·(1, h) (0,ω)·(1, h)

S3 : {(10,ω0), (18,ω1), (18,ω6), (19,ω3), (23,ω7)}·(1, h) (0,1)·(1, h) h ∈ C2
0

{(2,ω1), (4,ω3), (4,ω6), (11,ω2), (13,ω4)}·(1, h) (0,ω)·(1, h)
S4 : {(3,ω6), (7,ω1), (19,ω0), (22,ω2), (22,ω7)}·(1, h) (0,1)·(1, h)

{(1,ω2), (6,ω1), (9,ω7), (16,ω0), (24,ω6)}·(1, h) (0,ω)·(1, h)
S5 : {(1,ω1), (12,ω5), (16,ω3), (17,ω6), (20,ω0)}·(1, h) (0,1)·(1, h)

{(0,ω0), (3,ω1), (5,ω3), (7,ω2), (21,ω4)}·(1, h) (0,ω)·(1, h)

The second type of starter-adder construction is called intransitive starter-adder
method, which involves infinite points. The reader may refer to [2, 5, 7, 8, 10, 13] for
more details.
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Let GF (u−1) be the Galois field with u−1 elements and X = Zg× (GF (u− 1)
⋃
{∞})

where g = kt. Let G = Zg ×GF (u− 1). An intransitive starter S for an FGDRP(k, gu)
over X with groups {Gx = Zg×{x} | x ∈ GF (u−1)

⋃
{∞}} is defined as a triple (S,R,C)

satisfying the following properties.
(1) S consists of t sets of k-tuples (base blocks), S1, S2, · · · , St. For any i (1 6 i 6 t),

Si contains precisely u− 2 base blocks, Bij (1 6 i 6 u− 2), in which there exist exactly
k base blocks containing one infinite point each from G∞;

(2) R consists of t base blocks over G, denoted by R1, R2 · · · , Rt, in which each contains
no infinite points;

(3) C consists of t base blocks over G, denoted by C1, C2 · · · , Ct, in which each contains
no infinite points;

(4) S
⋃
R forms a partition of X\G0;

(5) the difference list from the base blocks of S
⋃
R
⋃
C contains every element of

G\G0 precisely k − 1 times, and no element in G0.
A corresponding adder A(S) for S consists of t permutations on GF (u− 1)\{0},

A(Si) = (ai1, ai2, · · · , ai(u−2)) (1 6 i 6 t)

For any i (1 6 i 6 t), the multiset
⋃u−2

j=1 (Bij + (0, aij))
⋃
{Ci} contains exactly k elements

(not necessarily distinct) from each group Gx for x ∈ GF (u − 1)\{0} and no element of
G0.

Theorem 8. [10] If there exists an intransitive starter (S,R,C) over X defined above
and a corresponding adder A(S), then there exists an FGDRP(k, gu).

Lemma 9. There exists an FGDRP(5, 208).

Proof : Let X = Z20 × (Z7 ∪ {∞}) be the point set and {Z20 × {x} | x ∈ Z7

⋃
{∞}}

the group set. Here we apply Theorem 8 with k = 5, t = 4. In the following table, we
present Si, Ri, Ci and A(Si) for i = 1 and 2.

A(S1) S1 A(S2) S2

(0,6) {(3,3), (19,6), (0,2), (17,5), (2,4)} (0,6) {(4,5), (17,4), (9,2), (12,3), (15,6)}
(0,5) {−, (7,5), (14,3), (13,1), (4,6)} (0,5) {−, (15,5), (2,6), (11,3), (19,4)}
(0,4) {−, (2,5), (0,4), (9,6), (1,2)} (0,4) {−, (4,4), (6,6), (12,1), (13,2)}
(0,3) {−, (8,1), (3,6), (19,2), (10,5)} (0,3) {−, (18,3), (11,1), (12,2), (7,6)}
(0,2) {−, (16,2), (16,4), (1,6), (8,3)} (0,2) {−, (3,2), (5,4), (9,3), (16,6)}
(0,1) {−, (5,1), (5,5), (10,4), (14,2)} (0,1) {−, (6,3), (6,5), (14,1), (18,2)}
C1 : {(4,2), (14,4), (14,3), (0,6), (0,5)} C2 : {(6,3), (5,1), (8,6), (8,2), (7,5)}
R1 : {(7,4), (11,5), (1,3), (17,1), (0,6)} R2 : {(10,6), (18,1), (15,4), (13,3), (8,2)}

For i = 3 and 4, let Si = Si−2 · (1,−1), Ri = Ri−2 · (1,−1), Ci = Ci−2 · (1,−1) and
A(Si) = A(Si−2) · (1,−1). Then it is easy to check that (∪4i=1Si,∪4i=1Ri,∪4i=1Ci) is an in-
transitive starter and A(S) = ∪4

i=1A(Si) is the corresponding adder for an FGDRP(5, 208).
Here the twenty points from Z20 × {∞} can be distributed to the five blocks of size four
in each Si for 1 6 i 6 4 in an arbitrary way. So we use the symbol “−” to denote any
point from Z20 × {∞}.
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Lemma 10. There exists an FGDRP(5, 2010).

Proof : Here we take Z20 × (GF (9) ∪ {∞}) as the point set and {Z20 × {x} | x ∈
GF (9)∪{∞}} as the group set. Suppose that ω is a primitive element of GF (9) satisfying
ω2 = ω + 1. We apply Theorem 8 with k = 5, t = 4. First we display S1, R1, C1 and
A(S1) in the following table.

A(S1) S1

(0,1) {(16,ω0), (7,ω6), (14,ω2), (10,ω7), (1,ω1)}
(0,ω) {(3,ω0), (18,ω1), (18,ω2), (6,ω3), (4,ω7)}
(0,ω2) {(6,ω0), (14,ω1), (2,ω2), (3,ω3), (1,ω4)}
(0,ω3) {−, (4,ω0), (13,ω1), (0,ω4), (9,ω5)}
(0,ω4) {−, (8,ω4), (15,ω2), (8,ω5), (11,ω6)}
(0,ω5) {−, (12,ω5), (16,ω3), (15,ω7), (17,ω6)}
(0,ω6) {−, (0,ω7), (9,ω6), (19,ω4), (19,ω5)}
(0,ω7) {−, (2,ω1), (10,ω2), (12,ω0), (17,ω5)}
C1: {(15,ω7), (2,ω3), (14,ω0), (5,ω5), (11,ω4)}
R1: {(11,ω5), (5,ω2), (5,ω7), (13,ω6), (7,ω1)}

Then, for 1 6 i 6 4, let Si = S1 · (1, ω2(i−1)), Ri = R1 · (1, ω2(i−1)), Ci = C1 · (1, ω2(i−1))
and A(Si) = A(S1)·(1, ω2(i−1)). It is an easy matter to verify that (∪4i=1Si,∪4i=1Ri,∪4

i=1Ci)
is the required intransitive starter and A(S) = ∪4i=1A(Si) is the corresponding adder.
Similarly with Lemma 9, the twenty points from Z20×{∞} can be distributed to the five
blocks of size four in each Si for 1 6 i 6 4 in an arbitrary way. So we still use the symbol
“−” to denote any point from Z20 × {∞}.

Now we are in a position to complete the existence of NGBTDs with block size five.

Theorem 11. For any positive integer m, there exists an NGBTD(5,m).

Proof : By Theorem 1, we need only to show an NGBTD(5,m) exists for each m ∈
{15, 32, 40, 45}.

An NGBTD(5, 15) is given in Lemma 5. For m ∈ {32, 40, 45}, we apply Theorem 2
with k = 5, w = 0 and other suitable parameters displayed in the following table to obtain
the desired NGBTD(5,m).

m g h u the source of an FGDRP(k, gu)

32 20 4 8 Lemma 9
40 20 4 10 Lemma 10
45 25 5 9 Lemma 7

4 Applications to Constant Composition Codes

Let Q = {at : 0 6 t 6 m − 1} be an arbitrary alphabet set with m elements. A
code C ⊆ Qn over Q with size M and minimum distance d is referred to as a constant
composition code (CCC), or an (n,M, d, [w0, w1, · · · , wm−1])m-CCC, if each codeword has
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precisely wi occurrences of ai for any i (0 6 i 6 m − 1). Here the definition implies
n =

∑
06i6m−1wi.

Since the constant composition [w0, w1, · · · , wm−1] is essentially an unordered multiset,
we usually write it in an exponential notation: a constant composition [au1

1 a
u2
2 · · · aus

s ]
indicates ui occurrences of ai for 1 6 i 6 s for brevity. We denote the maximum size
M of an (n,M, d, [w0, w1, · · · , wm−1])m-CCC by Am(n, d, [w0, w1, · · · , wm1 ]). A CCC with
this size is called optimal. The following upper bound was established by Luo et al. [6].

Theorem 12. [6] If nd− n2 + (w2
0 + w2

1 + · · ·+ w2
m−1) > 0, then

Am(n, d, [w0, w1, · · · , wm1 ]) 6
nd

nd− n2 + (w2
0 + w2

1 + · · ·+ w2
m−1)

.

The study of optimal CCCs has attracted extensive attention due to their numer-
ous applications (see, for example, [3, 6] and the references therein). Particularly, Ding
and Yin [3] presented a combinatorial characterization of constant composition codes
and established an equivalent relationship between CCCs and a class of designs called
generalized doubly resolvable packings (GDRPs) which are defined below.

Let X be a set of v elements (called points) and A be a collection of subsets (called
blocks) of X. Then the pair (X,A) is called a λ-packing of order v, if every pair of distinct
points of X occurs in at most λ blocks. Furthermore, it is termed a generalized doubly
resolvable packing (GDRP), if the blocks of A can be arranged into an m × n array R
which satisfies the following properties:

(1) Each cell of R is either empty or contains one block;
(2) For 0 6 i 6 m− 1, the blocks in row i of R form a wi-parallel class, that is, every

point occurs in exactly wi blocks;
(3) The blocks in every column of R form a parallel class, that is, every point occurs

in exactly one block.
We denote such a GDRP by a GDRP(m × n, λ; v). The multiset T =

{w0, w1, · · · , wm−1} is called the type of the GDRP. For more details, the interested reader
may refer to [3, 11, 12].

Theorem 13. [3, 12] The existence of a GDRP(m× n, λ; v) of type {w0, w1, · · · , wm−1}
is equivalent to an (n,M, d, [w0, w1, · · · , wm−1])m-CCC, where M = v and d = n− λ.

Theorem 14. If there exists an NGBTD(k,m), then there exists an optimal (km+1, km+
1, k(m− 1) + 2, [11km])m+1-CCC.

Proof : It is readily checked that an NGBTD(k,m) is a GDRP(m×(km+1), k−1; km+
1) of type {1, k, · · · , k}. By Theorem 13, we have an (n,M, d, [w0, w1, · · · , wm−1])m-CCC
with n = M = km+ 1, d = k(m− 1) + 2, w0 = 1, w1 = w2 = · · · = wm−1 = k. In addition,
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by Theorem 12, we have

Am(km+ 1, k(m− 1) + 2, [11km])

6
(km+ 1)(k(m− 1) + 2)

(km+ 1)(k(m− 1) + 2)− (km+ 1)2 + (12 + k2 + · · ·+ k2)

=
(km+ 1)(k(m− 1) + 2)

(km+ 1)(1− k) + (1 +mk2)

= km+ 1

Hence the obtained CCC is optimal. Then the proof is complete.

Theorem 15. Let m, k be integers satisfying m > 1, 2 6 k 6 5 and (k,m) 6∈ (3, 3). Then
there exists an optimal (km+ 1, km+ 1, k(m− 1) + 2, [11km])m+1-CCC.

Proof : By Theorem 1, 4 and 11, there exists an NGBTD(k,m) for any integers m
and k where m > 1, 2 6 k 6 5 and (k,m) 6∈ (3, 3). Then the conclusion follows from
Theorem 14.
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