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Abstract

Asymptotic values of hypergraph Ramsey numbers for loose cycles (and paths)
were determined recently. Here we determine some of them exactly, for example
the 2-color hypergraph Ramsey number of a k-uniform loose 3-cycle or 4-cycle:
R(Ck3 , Ck3 ) = 3k − 2 and R(Ck4 , Ck4 ) = 4k − 3 (for k > 3). For more than 3 colors we
could prove only that R(C33 , C33 , C33) = 8. Nevertheless, the r-color Ramsey number
of triangles for hypergraphs are much smaller than for graphs: for r > 3,

r + 5 6 R(C33 , C33 , . . . , C33) 6 3r

Keywords: Hypergraph Ramsey Number, Loose Cycle, Loose Path.

1 Introduction

In this paper, we consider the problem of finding the 2-color Ramsey number for
uniform hypergraph paths and cycles. There are several natural definitions for a cycle
and a path in a uniform hypergraph. The one we focus on here is called loose. The
k-uniform loose cycle Ckn (shortly, a cycle of length n), is the hypergraph with vertex
set {v1, v2, . . . , vn(k−1)} and with the set of n hyperedges ei = {v1, v2, . . . , vk} + i(k − 1),
i = 0, 1, . . . , n − 1, where we use mod n arithmetic and adding a number t to a set
H = {v1, v2, . . . , vk} means a shift, i.e. the set obtained by adding t to subscripts of
each element of H. Similarly, the k-uniform loose path Pk

n (simply, a path of length n),
is the hypergraph with vertex set {v1, v2, . . . , vn(k−1)+1} and with the set of n hyperedges
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ei = {v1, v2, . . . , vk} + i(k − 1), i = 0, 1, . . . , n − 1. Also by a star Sk
n we mean the k-

uniform hypergraph with vertex set {v, v1, v2, . . . , vn(k−1)} and with the set of n edges
ei = {v}∪ {v1, v2, . . . , vk−1}+ i(k− 1), i = 0, 1, . . . , n− 1. For k = 2 we get the definition
of the cycle Cn, the path Pn and the star K1,n with n edges. A classical result in graph
Ramsey theory (see [5]) states that R(Pn, Pm) = n +

⌊
m+1
2

⌋
, where n > m > 1. Also it is

well-known (see [3, 4]) that for every n > m and even m, R(Pn, Cm) = R(Pn, Pm) = n+ m
2

.

For given k-uniform hypergraphs H1,H2, . . . ,Ht the Ramsey number
R(H1,H2, . . . ,Ht) is the smallest integer N such that in every t-coloring of the
edges of the complete k-uniform hypergraph Kk

N there is a monochromatic copy of Hi in
color i, for some i, 1 6 i 6 t. It was proved [8] that R(C3n, C3n) is asymptotically equal to
5n
2

. Subsequently, Gyárfás et. al. in [6] extended this result to the k-uniform loose cycles
and proved that R(Ckn, Ckn) is asymptotically equal to 1

2
(2k − 1)n. Here we determine the

exact value of the 2-color Ramsey number of a k-uniform loose triangle and quadrangle,
R(Ck3 , Ck3 ) = 3k − 2 (Theorem 5) and R(Ck4 , Ck4 ) = 4k − 3 (Theorem 9). We observe
that the r-color Ramsey number of loose triangles in 3-uniform hypergraphs is linear, in
contrast to the graph case, when it is at least exponential (Proposition 13).

Perhaps the following lower bound always gives the exact value of the 2-color hy-
pergraph Ramsey numbers for loose paths and cycles. This is certainly the case for all
results of this paper, therefore we shall always prove just the claimed upper bounds for
the Ramsey numbers. During this paper, for a 2-edge coloring of a uniform hypergraph
H, say red and blue, we denote by Fred and Fblue the induced hypergraph on edges of
color red and blue, respectively.

Lemma 1. For every n > m > 2 and k > 3, (k − 1)n + bm+1
2
c is a lower bound for both

R(Pk
n,Pk

m) and R(Pk
n, Ckm). Moreover, R(Ckn, Ckm) > (k − 1)n + bm+1

2
c − 1.

Proof. To prove that (k − 1)n + bm+1
2
c is a lower bound for both Ramsey numbers

R(Pk
n,Pk

m) and R(Pk
n, Ckm), we exhibit a 2-coloring of the edges of the complete k-uniform

hypergraph on (k − 1)n + bm+1
2
c − 1 vertices such that Pk

n * Fred and Pk
m * Fblue (also

Ckm * Fblue). For this purpose, Partition the vertex set into parts A and B, where
|A| = (k − 1)n and |B| = bm+1

2
c − 1. We color all edges that contain a vertex of B blue,

and the rest red. Now, this coloring can not contain a red copy of Pk
n, since any such

copy must have all vertices in A and |A| = (k − 1)n. Clearly a longest blue path (also
a longest blue cycle) has length at most m − 1, as claimed. By the same argument and
considering parts A and B with |A| = (k − 1)n− 1 and |B| = bm+1

2
c − 1, we obtain that

(k − 1)n + bm+1
2
c − 1 6 R(Ckn, Ckm), which completes the proof. �

2 Ramsey number of short paths and cycles

The following lemma shows an easy but useful property of monochromatic cycles in
uniform hypergraphs on R(Pk

n,Pk
m) vertices.
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Lemma 2. Let n > m > 3 and Kk
(k−1)n+bm+1

2
c be 2-edge colored red and blue. If Ckn ⊆ Fred

then either Pk
n ⊆ Fred or Pk

m ⊆ Fblue. Also, if Ckn ⊆ Fred then either Pk
n ⊆ Fred or

Ckm ⊆ Fblue.

Proof. Let ei = {v1, v2, . . . , vk} + i(k − 1) (mod n), i = 0, 1, . . . , n − 1, be the edges
of Ckn ⊆ Fred and W = {x1, x2, . . . , xbm+1

2
c} be the set of the remaining vertices. Let

1 6 i 6 m − 1 and set e′0 = (e0 \ {v1}) ∪ {x1}, e′i = (ei \ {v(i+1)(k−1)+1}) ∪ {x i+2
2
} if

i is even and e′i = (ei \ {vi(k−1)+1}) ∪ {x i+1
2
} if i is odd. If one of e′i is red, we have a

monochromatic Pk
n ⊆ Fred, otherwise e′0e

′
1 . . . e

′
m−1 form a Pk

m ⊆ Fblue, which completes
the proof of the first part. For the second part, for even m replace the hyperedges e′0 and
e′m−1 by (e0 \ {vk}) ∪ {x1} and (en−1 \ {v(n−1)(k−1)+1}) ∪ {xm

2
}, respectively, and for odd

m replace e′0 by (e0 \ {vk−1, vk}) ∪ {x1, xm+1
2
}. By a similar argument, e′0e

′
1 . . . e

′
m−1 form

a Ckm ⊆ Fblue, which completes the proof. �

Another tool is a simple but useful folkloristic remark.

Remark 3. If a k-uniform complete hypergraph is 2-colored and both colors are used at
least once, then there are two edges of distinct colors intersecting in k − 1 vertices.

Proof. Select a red hyperedge e and a blue hyperedge f with maximum intersection and,
on contrary, suppose that m = |e ∩ f | < k − 1. Let g be an edge that contains e ∩ f and
intersects e \ f in bk−m

2
c vertices and intersects f \ e in dk−m

2
e vertices. Now, g, e or g, f

contradicts the choice of e and f . �

Corollary 4. R(Pk
2 ,Pk

2 ) = 2k − 1.

Proof. Let Kk
2k−1 be 2-edge colored red and blue. We may assume that Fred and

Fblue are both nonempty. By Remark 3, assume that e = {v1, v2. . . . , vk} ∈ Fred and
e′ = {v2, v3, . . . , vk+1} ∈ Fblue. Let W be the set of the remaining vertices of Kk

2k−1. If the
k-set e′′ = {v1, vk+1} ∪W is red then e, e′′ is a red copy of Pk

2 , otherwise e′, e′′ is a blue
copy of Pk

2 . �

Theorem 5. For every k > 3, R(Ck3 , Ck3 ) = 3k − 2.

Proof. Suppose indirectly that the edges of Kk
3k−2 can be colored red and blue without

monochromatic Ck3 . Then Fred and Fblue are both nonempty, using Remark 3, select edges
e = {v1, v2, . . . vk} ∈ Fred and e′ = {v2, v3, . . . vk+1} ∈ Fblue. Let v ∈ V (Kk

3k−2) \ (e∪ e′) be
an arbitrary vertex and let W be the set of the remaining vertices. Note that |W | = 2k−4.
Partition the vertices of W into two sets A and B with |A| = |B| = k − 2. The case
k = 3 can be easily settled as follows. Since there is no monochromatic Ck3 , w.l.o.g. e1 =
{v, v2, w1} is red, e2 = {v, v3, w2} is blue, where W = {w1, w2}. Now, if f = {v, v1, v4} is
red then e, f, e1 is red Ck3 , otherwise, e′, f, e2 is blue Ck3 . So we may assume that k > 4
and we prove the following claim.
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Claim. Let T ⊆ A, S ⊆ B such that |T | = t > 1, |S| = s and s + t = k − 2.
Let t1 ∈ T and s1 ∈ B \ S be arbitrary vertices. If e1 = {v, v2} ∪ T ∪ S is red, then
{v, vi} ∪ (T \ t1) ∪ (S ∪ {s1}) is red for any vi ∈ {v3, . . . , vk}.

Proof. Let T ′ = A \ T , S ′ = B \ S. Note that |T ′| = s and |S ′| = t. We may assume
that the hyperedge e2 = {v1, vk+1, v}∪T ′ ∪ (S ′ \ s1) is blue, otherwise e, e1, e2 would form
a red Ck3 . Now, If the hyperedge e3 = {v, vi} ∪ (T \ t1) ∪ (S ∪ {s1}), vi ∈ {v3, . . . , vk}, is
red as claimed, otherwise e′, e2, e3 would form a blue Ck3 .

Now we return to the proof of the theorem. Without loss of generality, we may assume
that the edge e1 = {v, v2} ∪ A is red. Using the claim successively k − 2 times switching
v3 and v4, we obtain that e1 and {v, v3} ∪B are both red, giving a red Ck3 with e and the
proof is finished. �

Theorem 5 gives the following corollary.

Corollary 6. For every k > 3, R(Pk
3 ,Pk

3 ) = R(Ck3 ,Pk
3 ) = 3k− 1 and R(Sk

3 ,Sk
3 ) = 3k− 2.

Proof. To prove R(Pk
3 ,Pk

3 ) 6 3k−1, suppose that the edges ofKk
3k−1 are arbitrary colored

red and blue. By Theorem 5, we must have a monochromatic copy of Ck3 . Without loss
of generality, we may assume that Ck3 ⊆ Fred. Using Lemma 2, we obtain that Pk

3 ⊆ Fred

or Pk
3 ⊆ Fblue, which shows that R(Pk

3 ,Pk
3 ) 6 3k − 1. By the same argument, one can

easily obtain that R(Pk
3 , Ck3 ) 6 3k − 1. To see R(Sk

3 ,Sk
3 ) 6 3k − 2, let the edges of Kk

3k−2
be arbitrary colored red and blue. By Theorem 5, we have a monochromatic, say red,
copy of Ck3 . Assume that e1 = {v, v1, . . . , vk−2, u}, e2 = {u, u1, . . . , uk−2, w} and e3 =
{w,w1, . . . , wk−2, v} are the hyperedges of the copy of Ck3 and T = {t} be the remaining
vertex of Kk

3k−2. If one of the hyperedges e′1 = {t, w, v1, . . . , vk−2}, e′2 = {t, u, w1, . . . , wk−2}
or e′3 = {t, v, u1, . . . , uk−2} is red, then we have a red copy of Sk

3 ⊆ Fred, otherwise e′1e
′
2e
′
3

form a Sk
3 ⊆ Fblue, which completes the proof. �

To determine R(Ck4 , Ck4 ) for k > 3, we need the following lemma.

Lemma 7. If Kk
4k−3 is 2-edge colored red and blue without monochromatic Ck4 , then there

exist two pairs of red-blue hyperedges e, e′ and f, f ′ such that (e ∪ e′) ∩ (f ∪ f ′) = ∅.

Proof. Set V = V (Kk
4k−3). Since there is no monochromatic Ck4 , Fred and Fblue are both

nonempty. By Remark 3, select e = {v1, v2, . . . , vk} ∈ Fred and e′ = {v2, v3, . . . , vk+1} ∈
Fblue and let W denote the set of vertices uncovered by e∪e′. If W is not monochromatic,
we can select red-blue hyperedges f, f ′ in W which clearly (e ∪ e′) ∩ (f ∪ f ′) = ∅. Thus
let W span a monochromatic hypergraph, w.l.o.g blue. Let W1,W2 be disjoint subsets of
W with cardinality k − 1 and w ∈ W \ (W1 ∪W2) and hi = Wi ∪ {w} (i = 1, 2). We
may assume that g1 = {vk+1} ∪W1 is blue. Indeed, otherwise consider g2 = {v1} ∪W2.
If g2 is blue, then the red-blue pairs e, g2 and g1, h1 satisfy the theorem. Otherwise, the
red-blue pairs g1, e

′ and g2, h2 satisfy the theorem. By symmetry, We may assume that
{vk+1} ∪W2 is also blue.
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Next we observe that the hyperedge f1 = {v2} ∪ W2, is red. If not, consider w1 ∈
W1, w2 ∈ W2 and set f ′ = {w1, w2}∪ (W \ (W1∪W2)). But then e′, f1, f

′, g1 is a blue copy
of Ck4 . By a similar argument, f2 = {v3}∪W1 must be red. However, we may assume that
b = {v1} ∪W2 is also red, otherwise f1, b and f2, h1 are two disjoint red-blue pairs. Now
the red-blue pairs b, h2 and f2, e

′ are disjoint and satisfying the theorem. This observation
completes the proof. �

Corollary 8. R(C34 , C34) = 9.

Proof. Suppose on the contrary that K3
9 is 2-edge colored red and blue without a

monochromatic C34 . By Lemma 7, we have two pairs of red-blue hyperedges e, e′ and
f, f ′ such that (e∪e′)∩ (f ∪f ′) = ∅. Using Remark 3 for e∪e′ and f ∪f ′, we may assume
that |e ∩ e′| = |f ∩ f ′| = 2. Let e = {v1, v2, v3}, e′ = {v2, v3, v4} and f = {w1, w2, w3},
f ′ = {w2, w3, w4}. There is a single vertex u uncovered by these four edges. W.l.o.g let
{v2, u, w2} be red, then g = {v1, v4, w3} and h = {w1, w4, v3} are both blue, otherwise we
have a red C34 . Now, e′, g, f ′, h form a blue C34 , a contradiction. �

Theorem 9. For every k > 3, R(Ck4 , Ck4 ) = 4k − 3.

Proof. The case k = 3 follows from Corollary 8, so we may assume that k > 4. Suppose
indirectly that the edges of Kk

4k−3 can be colored red and blue without monochromatic
Ck4 . Clearly, Fred and Fblue are both nonempty. By Remark 3 and Lemma 7, we can select
f = {w1, w2, . . . , wk} ∈ Fred, f

′ = {w2, w3, . . . , wk+1} ∈ Fblue and e = {v1, v2, . . . , vk} ∈
Fred, e

′ = {v2, v3, . . . , vk+1} ∈ Fblue so that (f ∪ f ′) ∩ (e ∪ e′) = ∅. Set V = V (Kk
4k−3) and

let W = V \ (e ∪ e′ ∪ f ∪ f ′), note that |W | = 2k − 5. Partition the vertices of W into
two sets A and B with |A| = |B| = k − 3 and let u be the remaining vertex of W . In the
following claims, we let T ⊆ A, S ⊆ B such that |T | = t > 1, |S| = s and s + t = k − 3.
Also let t1 ∈ T and s1 ∈ B \S be arbitrary. Set T ′ = A\T , S ′ = B \S, note that |T ′| = s
and |S ′| = t.

Claim 1. If i ∈ {2, 3, . . . , k} and e1 = {w1, wk+1, vi} ∪ T ∪ S is red, then for any
j ∈ {2, 3, . . . , k}, the hyperedge g1 = {v1, vk+1, wj} ∪ (T \ t1) ∪ (S ∪ {s1}) is also red.

Proof. Let m ∈ {2, 3, . . . , k} \ {i}. The hyperedge f1 = {u, vm, wj} ∪ T ′ ∪ S ′ is blue,
otherwise e, f1, f, e1 form a red Ck4 . By a similar argument, for i 6= j, h = {v1, vk+1, wi} ∪
T ∪ S is red (otherwise e′, f ′, f1, h is blue Ck4 ) and f2 = {u,w1, wk+1, vi} ∪ T ′ ∪ (S ′ \ s1)
is blue (otherwise e, f, h, f2 is red Ck4 ). Now, if g1 is blue then e′, g1, f

′, f2 is a blue Ck4 , a
contradiction, thus g1 is red as claimed.

By symmetry, we have the following claim, which is given without proof.

Claim 2. If i ∈ {2, 3, . . . , k} and e1 = {v1, vk+1, wi} ∪ T ∪ S is red, then for any
j ∈ {2, 3, . . . , k}, the hyperedge g1 = {w1, wk+1, vj} ∪ (T \ t1) ∪ (S ∪ {s1}) is also red.

To finish the proof, we need the following.
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Claim 3. If e1 = {v2, w2, u}∪T ∪S is red, then g1 = {w1, wk+1, vi}∪ (T \ t1)∪ (S ∪{s1})
is red for any i ∈ {3, 4, . . . , k}.

Proof. Let i ∈ {3, 4 . . . , k}. The hyperedge f1 = {v1, vk+1, wj}∪T ′ ∪S ′ is blue for for any
j ∈ {3, 4, . . . , k}, otherwise e, f1, f, e1 would form a red Ck4 . Then h = {w1, wk+1, vi}∪T∪S
is red otherwise e′, f1, f

′, h would give a blue Ck4 . The edge f2 = {v1, vk+1, wj, u} ∪ T ′ ∪
(S ′ \ s1) is blue otherwise e′, f2, f

′, h is a blue Ck4 . Now, if g1 is blue then e′, g1, f
′, f2 is a

blue Ck4 , a contradiction. Therefore g1 is red as claimed.

Now we finish the proof of the theorem. Without loss of generality, let e1 = {v2, w2, u}∪
A be red. Using Claim 3, {w1, wk+1, vi} ∪ (T \ t1) ∪ (S ∪ {s1}), i ∈ {3, 4, . . . , k}, is red
and so using Claim 1 and Claim 2 successively k − 3 times and switching the pairs
(v3, w3), (v4, w4) (starting with t = k−3), we obtain that the edge h1 = {v1, vk+1, w3}∪B
is red, a contradiction, since e, e1, f, h1 is a red Ck4 . This observation completes the proof.

�

From Lemma 2 and Theorem 9 we get the following.

Corollary 10. For every k > 3, R(Pk
4 ,Pk

4 ) = R(Ck4 ,Pk
4 ) = 4k − 2.

Proving R(Ck3 , Ck3 , Ck3 ) = 3k− 1 for k > 3 seems difficult, we could do it only for k = 3.

Theorem 11. R(C33 , C33 , C33) = 8.

Proof. We suppose that the third color is green and the vertex set is V . The lower
bound is obtained by coloring triples of {1, 2, . . . 7} by red if the smallest element in the
triple is 1, blue if the smallest element in the triple is 2 and green otherwise. To see the
upper bound, we consider some cases.

Case 1. There is a monochromatic, say green S = S3
3 with edges e1 = {A, 1, 4}, e2 =

{A, 2, 5} and e3 = {A, 3, 6}.

There is one vertex, B, not covered by S. Set U = {1, 2, 3},W = {4, 5, 6} and let H
be the graph obtained from the complete graph spanned by U ∪W by removing the pairs
14, 25, 36. Clearly, for any edge ij of H, the hyperedge {B, i, j} is red or blue, otherwise
we have a green C33 . For any edge ij of H we define a mirror edge kl so that k is the
third vertex in the edge of S containing {A, i} and l is the third vertex of the edge of S
containing {A, j}.

Subcase 1.1. For any edge ij of H and its mirror edge kl, the hyperedges
{i, j, B}, {k, l, B} have different colors (one of them red and the other is blue).

Among the hyperedges {1, 5, B}, {2, 6, B}, {3, 4, B} two colored with the same color,
say the first two is colored with red. By the subcase assumption, the hyperedges
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{2, 4, B}, {3, 5, B} are blue. Now the hyperedge f = {4, 5, 6} defines a monochromatic
C33 : if green, with e1, e2; if red, with {1, 5, B}, {2, 6, B}; if blue, with {2, 4, B}, {3, 5, B}.

Subcase 1.2. There exists an edge of H, say 15, such that with its mirror edge 24, the
hyperedges {1, 5, B}, {2, 4, B} are both red.

We claim that for any vertex v ∈ V \ {1, 2, 4, 5} (there are four such vertices) the
hyperedges {1, 5, v}, {2, 4, v} are red, the hyperedges {1, 4, v}, {2, 5, v} are green and the
hyperedges {1, 2, v}, {4, 5, v} are blue. We call such a quadruple Q = {1, 2, 4, 5} a factored
quadruple. First observe that the hyperedges {1, 2, 3}, {1, 2, 6}, {4, 5, 3} and {4, 5, 6} are
blue, otherwise we have a monochromatic C33 . Similarly, the hyperedges {1, 4, 6}, {2, 5, 6}
are green. These observations with the initial assumptions are easily imply that Q is
factored from A as required. An easy consequence is that Q is factored from the other
three vertices in the same way.

At this point we introduce new notations, consider a factored quadruple Q =
{A1, A2, A3, A4} and its complement R = V \ Q = {1, 2, 3, 4}. Two of the four hy-
peredges in R have the same color, say {1, 2, 3}, {2, 3, 4} are green. Let GR be the graph
with vertex set R and with all edges except 23. Observe that for any edge ij ∈ E(GR), the
hyperedge f = {Ak, i, j} is red or blue. Indeed, otherwise consider the green hyperedge e
in R that splits ij, say i ∈ e, j /∈ e. Since Q is factored, there is a green hyperedge g with
one vertex in e \ {i} that intersects Q in two vertices and Ak ∈ g. The edges e, f, g would
form a green C33 .

Now we may assume that e = {1, 4, A1} is red. Since Q is factored, there is Ai 6=
A1, say A2, such that {j, A1, A2} is red for all j ∈ R. If f = {1, 3, A2} is red, then
e, f, {2, A1, A2} would form a red C33 . Thus f , and similarly g = {2, 4, A2} is blue. Since
Q is factored, with one of A3, A4, say with A3, {j, A2, A3} is blue for all j ∈ R. Now
{1, 2, A3} must be red, otherwise {1, 2, A3}, f = {1, 3, A2}, {4, A2, A3} would form a blue
C33 . Similarly {3, 4, A3} must be red and so hyperedges {1, 2, A3}, {3, 4, A3}, {1, 4, A1}
form a red C33 .
Case 2. There is no monochromatic S = S3

3 .

It is easy to see (also follows from a well-known result [1]) that (centered at any vertex
A) there is a monochromatic, say green, T = S3

2 , with edges {A, 1, 2}, {A, 3, 4}. Let
U = {5, 6, 7} denote the set of vertices uncovered by T .

Subcase 2.1. There is a monochromatic (red or blue) S3
2 in the form {i, 1, 3}, {i, 2, 4}

or {i, 1, 4}, {i, 2, 3}, i ∈ U .

Suppose w.l.o.g that the hyperedges {i, 1, 3}, {i, 2, 4} are red. Then {j, 1, 4}, {j, 2, 3}
must be blue for j ∈ U, j 6= i, otherwise we have green or red C33 . Then no matter what
is the color of the edge {A, i, j}, we have a monochromatic S3

3 and this leads back to the
Case 1.
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Subcase 2.2. For every i ∈ U the pairs of edges {i, 1, 3}, {i, 2, 4} and {i, 1, 4}, {i, 2, 3}
have different (red-blue) colors.

From the subcase definition w.l.o.g. we find two edges {1, 3, i}, {2, 3, j} of the same
color, say red, such that i, j ∈ U, i 6= j. This implies that {A, i, j} is blue (green would give
green S3

3 , red would give red C33). The edge {2, 4, i} is also blue (green or red both would
give a monochromatic C33). No matter what is the color of {1, 4, j}, a monochromatic C33
arises. �

3 Concluding remarks

It would be interesting to decide whether the natural lower bound of Lemma 1 is always
the true value of the Ramsey numbers for k-uniform (loose) paths and cycles if k > 3.
The test case is k = 3.

Question 12. For every n > m > 2, R(P3
n,P3

m) = R(P3
n, C3m) = R(C3n, C3m) + 1 =

2n +
⌊
m+1
2

⌋
? In particular,

R(P3
n,P3

n) = R(C3n, C3n) + 1 =
⌈5n

2

⌉
?

We answer this question affirmatively when one of m,n is small, at most 6, in a paper
under preparation [7].

In certain cases one could get estimates of the Ramsey numbers addressed in this
paper by applying Turán-type results. For example, the behavior of the r-color Ramsey
number of triangles in hypergraphs is essentially different from the graph case. While
R(C3, C3, . . . , C3) is at least exponential in r (for r arguments), it is linear for hypergraphs.

Proposition 13. For r arguments, r + 5 6 R(C33 , C33 , . . . , C33) 6 3r + 1.

Proof. The lower bound is obtained by coloring triples of {1, 2, . . . r+4} by their smallest
element i if i < r, otherwise by color r. The upper bound follows from the Turán number
of C33 (see [2]): If n > 6, F ⊆

(
n
3

)
and F contains no C33 , then |F| 6

(
n−1
2

)
. Therefore, for

the smallest n for which (
n

3

)
> r

(
n− 1

2

)
,

every r-colored K3
n will contain a monochromatic C33 , implying the upper bound. �

It is known from [2] that if n > 8, F ⊆
(
n
3

)
, |F| =

(
n−1
2

)
and F contains no C33 , then all

elements of F goes through a fix point. Using this fact, the upper bound of the previous
proposition can be reduced to 3r for r > 3. We proved here that for r = 2, 3 the lower
bound is the truth and we suspect that this is true for all r.
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