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Abstract
Let n > 4 be even. It is shown that every set S of n points in the plane can

be connected by a (possibly self-intersecting) spanning tour (Hamiltonian cycle)
consisting of n straight-line edges such that the angle between any two consecutive
edges is at most 2π/3. For n = 4 and 6, this statement is tight. It is also shown
that every even-element point set S can be partitioned into at most two subsets,
S1 and S2, each admitting a spanning tour with no angle larger than π/2. Fekete
and Woeginger conjectured that for sufficiently large even n, every n-element set
admits such a spanning tour. We confirm this conjecture for point sets in convex
position. A much stronger result holds for large point sets randomly and uniformly
selected from an open region bounded by finitely many rectifiable curves: for any
ε > 0, these sets almost surely admit a spanning tour with no angle larger than ε.
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1 Introduction

In the Euclidean traveling salesman problem (TSP), given a set of points in the plane, one
seeks a shortest tour that visits each point. In recent years, there has been an increased
interest in studying tours that optimize objective functions related to angles between
consecutive edges in the tour, rather than the length. The problem has applications in
motion planning, where restrictions on turning angles have to be enforced. For example,
an aircraft or a boat moving at high speed, required to pass through a set of given
locations, cannot make sharp turns in its motion. This and other applications to planning
curvature-constrained paths for auto-vehicles and aircraft are discussed in [2, 7, 13, 14].

Consider a set of n > 2 points. A spanning tour is a directed Hamiltonian cycle,
drawn with straight-line edges; if n = 2 the tour consists of the two edges, with opposite
orientations, connecting the two points. When three points, p1, p2, and p3, are traversed
in this order, their rotation angle ∠p1p2p3 is the angle in [0, π] determined by segments
p1p2 and p2p3; see Figure 1. If p3 is on the left (resp. right) side of the oriented line −−→p1p2
we say that the tour, or path makes a left (resp. right) turn at p2. If a tour (or path)
makes only right turns, we call it pseudo-convex. If all of its rotation angles are at most
π/2, we call it an acute tour (or path). If all rotation angles are at least π/2, the tour (or
path) is obtuse.

Given a set A of angles, the angle-restricted tour (ART) problem is to decide whether
a set S of n points in the plane allows a (possibly self-intersecting) spanning tour such
that all the n angles between consecutive segments belong to the set A; see [12].
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Figure 1: (a) acute (b) obtuse (c) obtuse and pseudo-convex (d) acute and pseudo-convex

Fekete and Woeginger [12] proved that every finite set of at least five points admits
a pseudo-convex tour and a non-intersecting pseudo-convex spanning path. They also
noticed that every n-element point set S admits an acute spanning path. To see this,
start at any point p1 ∈ S. Assuming that the initial portion p1 . . . pi of such a path has
already been defined and i < n, let pi+1 be an element of S \ {p1, . . . , pi} farthest away
from pi. It is easy to check that the resulting path p1 . . . pn is acute. It is also clear that
such a path cannot be always completed to an acute tour. Indeed, if all points are on
a line and n is odd, then along any (spanning) tour, one of the rotation angles must be
equal to π.
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The question arises: Does every even-element point set admit a tour with small rota-
tion angles? More precisely, given an n-element point set S in the plane, where n is even,
let α = α(S) > 0 denote the smallest angle such that S admits a (spanning) tour with the
property that all of its rotation angles belong to [0, α]. Finally, let α(n) be the maximum
of α(S) over all n-element point sets in the plane. Trivially, α(2) = 0. The 4-element
point set formed by the 3 vertices and the center of an equilateral triangle shows that
α(4) > 2π/3. The 6-point configuration depicted in Fig. 2 (left) shows that α(6) > 2π/3.

a

b c

Figure 2: Left: ∆abc is an isosceles triangle with ∠bac = 2π/3. Point a and the 3 points below
it are placed on the altitude of the triangle, and very closely inter-spaced. Every tour on these
6 points has a rotation angle of at least 2π/3 − ε. Right: n − 1 equidistant points very closely
inter-spaced on a small circular arc of a circle, and one point at the center. Every tour on these
n points has a rotation angle of at least π/2− ε.

In this note we show that α(n) 6 2π/3, for all even n > 4.

Theorem 1. Let n > 4 be even. Every set of n points in the plane admits a spanning
tour such that all of its rotation angles are at most 2π/3. This bound is tight for n = 4, 6.
Such a tour can be computed in O(n4/3 log1+ε n) time, for every ε > 0.

It remains open whether the bound 2π/3 can be replaced by π/2, for every even n > 8,
as was conjectured in [12]. In other words, every n-element set may admit an acute tour,
whenever n > 8 is even. The point set depicted in Fig. 2 (right) demonstrates that this
statement, if true, cannot be improved. That is, we have α(n) > π/2, for all even n > 8.

We confirm three weaker versions of this statement. In Section 4, we show that if we
enforce acute rotation angles, two tours instead of one will certainly suffice.

Theorem 2. Let n > 8 be even.
(i) Every set of n points in the plane can be partitioned into two even parts, each of

which admits an acute spanning tour. Given the n points, the two tours can be computed
in O(n) time.

(ii) Every set of n points in the plane can be partitioned into two parts of sizes 2⌊n
4
⌋

and 2⌈n
4
⌉, each of which admits an acute spanning tour. Given the n points, the two tours

can be computed in O(n4/3 log1+ε n) time, for every ε > 0.

In Section 5, we prove the existence of an acute tour in the special case when the
points are in convex position.

Theorem 3. Every even set S of n points in the plane in convex position, with n > 12,
admits an acute spanning tour. Given the n points, such a tour can be computed in O(n)
time.
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A much stronger statement holds for random point sets, uniformly selected from a not
necessarily connected region.

Theorem 4. Let B be an open region in the plane bounded by finitely many rectifiable
Jordan curves and let S be a set of n points, randomly and uniformly selected from B.
Then, for any ε > 0, the point set S almost surely admits a spanning tour with no rotation
angle larger than ε, as n tends to infinity.

The last result easily generalizes to higher dimensions.

Related problems and results. Various angle conditions imposed on geometric graphs
(graphs with straight-line edges) drawn on a given set of points have been studied in [3,
4, 5, 6, 12]. In particular, Fekete and Woeginger [12] have focused on rotation angles
of Hamiltonian cycles and paths and raised many challenging questions. For instance,
they conjectured that any point set admits a (possibly self-intersecting) Hamiltonian path
in which each turning angle is at most 5π/6. Bárány, Pór, and Valtr [6] obtained a
first partial result by showing that any point set admits a (possibly self-intersecting)
Hamiltonian path in which each turning angle is at most 8π/9.

Aichholzer et al. [3] studied similar questions for planar geometric graphs. Among
other results, they showed that any point set in general position in the plane admits a
non-intersecting Hamiltonian (spanning) path with the property that each rotation angle
is at most 3π/4. They also conjectured that this value can be replaced by π/2. Arkin et
al. introduced the notion of reflexivity of a point set, as the minimum number of reflex
vertices in a polygonalization (i.e., simple polygon) of the set [5]. They gave estimates for
the maximum reflexivity of an n-element point set. Recently, Ackerman et al. have made
further progress on this problem [1].

2 Balanced partitions

It is well known (see, e.g. [10], Section 6.6) that every region (every continuous probability
measure) in the plane can be cut into four parts of equal area (measure) by two orthogonal
lines. This statement immediately implies:

Lemma 1. Given a set S of n > 8 points in the plane (n even), one can always find
two orthogonal lines ℓ1, ℓ2 and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 with |S1| = |S3| = ⌊n

4
⌋,

|S2| = |S4| = ⌈n
4
⌉ such that S1 and S3 belong to two opposite closed quadrants determined

by ℓ1 and ℓ2, and S2 and S4 belong to the other two opposite quadrants.

Proof. By a standard compactness argument, it is sufficient to prove this statement
for point sets S in general position, in the sense that no 3 points of S are on a line, no
3 determine a right angle, and no two segments spanned by 4 points are orthogonal to
each other. Choose a very small ε > 0 and replace each point p ∈ S by a disk of radius
ε around p. Applying the above mentioned result from [10] to the union of these n disks,
we obtain two orthogonal lines that meet the requirements of the lemma.
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Lemma 2. Given a set S of n points in the plane (n even), there exist three concurrent
lines such that the angle between any two of them is π/3, and there is a partition S =
S1 ∪ . . .∪ S6 with |S1| = |S4|, |S2| = |S5|, and |S3| = |S6|, such that Si is contained in the
ith closed angular region (wedge) determined by the lines, in counterclockwise order.

Proof. Just like before, by compactness, it is sufficient to prove the statement for point
sets in general position. This time, it is convenient to assume that no 3 points of S
determine an angle which is an integer multiple of π/3, and there are no 2 pairs of points
such that the angle between their connecting lines is an integer multiple of π/3.

Choose again a very small ε > 0 and replace each point p ∈ S by a disk Dp of radius ε
centered at p. Approximate very closely the union of these disks by a continuous measure
µ which is strictly positive on every Jordan region in the plane and for which µ(R2) = n
and |µ(Dp)− 1| < ε for every p ∈ S.

We say that a line ℓ is a bisecting line with respect to the continuous measure µ if
the measures of both half-planes bounded by ℓ are equal to n/2. Clearly, there is a
unique bisecting line parallel to every direction, and this line changes continuously as the
direction varies. Choose three bisecting lines ℓ1, ℓ2, ℓ3 such that the angle between any
two of them is π/3. By changing the direction of ℓ1, we can achieve that these lines pass
through the same point. Indeed, as we turn ℓ1 by π/3, the crossing point of the other two
lines moves from one side of ℓ1 to the other. Therefore, there is an intermediate position
in which the three lines pass through the same point.

An easy case analysis shows that if ε was sufficiently small, then either no ℓi intersects
any disk Dp or there is one ℓi that intersects two Dp’s and the others do not intersect any.
In the former case, the lines satisfy the conditions in the lemma, in the latter one, they
can be slightly perturbed so as to meet the requirements.

Given a set S of n points in general position in the plane (i.e., no three points are
collinear), a line passing through two elements of S is called a halving line if there are
⌊(n − 2)/2⌋ points on one of its sides and ⌈(n − 2)/2⌉ points on the other [15]. The
number of halving lines of an n-element point set in the plane is bounded from above by
O(n4/3), as was established by Dey [11]. It is also known that the set of halving lines can
be computed in O(n4/3 log1+ε n) time [8], for every ε > 0.

Remark. Starting with an arbitrary halving line ℓ and following the rotation scheme
described in [15], one can enumerate all halving lines for S. Using this approach, one
obtains algorithmic proofs of Lemmas 1 and 2 that run in O(n4/3 log1+ε n) time, for every
ε > 0.

3 Constructing a tour with rotation angles at most

2π/3

In this section, we prove Theorem 1. As we mentioned in the Introduction, for small even
values of n, namely for n = 4 and n = 6, we need to allow rotation angles as large as
2π/3. Here we show that this value suffices for all even n.
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Let ℓ1, ℓ2, ℓ3 be three concurrent lines satisfying the conditions of Lemma 2. They
divide the plane into six wedges.

Y

ℓ1

ℓ3
ℓ2

Z X

Z ′

Y ′

X ′

Figure 3: Three concurrent bisecting lines of S: ℓ1, ℓ2, ℓ3, at angles 0, π/3, and 2π/3.

Let X, Y, Z,X ′, Y ′, Z ′ denote the six wedges in counterclockwise order, labeled as in
Fig. 3. Note that the angle between the x-axis and any edge pi−1pi of a tour with pi−1 ∈ X
and pi ∈ X ′, say, belongs to the interval [0, π/3]. A piece pi−1pipi+1 of a tour is of the
form XX ′X, say, if pi−1, pi+1 ∈ X and pi ∈ X ′.

Observation 1. Consider a piece of a tour, which is of the form XQX, where Q = Y ′, X ′,
or Z. Then the rotation angle at the middle point of this piece, which belongs to Q, is
at most 2π/3. The same holds for any other piece consisting of two edges, which starts
and ends in the same wedge, and whose middle point belongs to one of the three opposite
wedges.

Observation 2. Consider a piece of a tour, which is of the form XX ′Y or XX ′Z ′. Then
the rotation angle at the middle point of this piece, which belongs to X ′, is at most 2π/3.
The same holds for any other piece of the form X ′XZ, X ′XY ′, Y Y ′X, Y Y ′Z, Y ′Y X ′,
Y ′Y Z ′, ZZ ′Y , ZZ ′X ′, Z ′ZX, Z ′ZY ′.

Proof of Theorem 1. We distinguish two cases:

Case 1. There are at most two nonempty double wedges. If all points are contained
in a unique double wedge, say XX ′, then by Observation 1, they can be connected by an
acute tour of the form (XX ′)∗. The tours starts in X, ends in X ′, and alternates between
the wedges X and X ′ until all points in X∪X ′ are exhausted. Assume now that there are
exactly two nonempty double wedges, XX ′ and Y Y ′, say, and refer to Fig. 4. Consider a
spanning tour of the form (XX ′)∗(Y Y ′)∗, where (XX ′)∗ and (Y Y ′)∗ are point sequences
that alternate between the corresponding opposite wedges until all points in those wedges
are exhausted. By Observations 1 and 2, at each vertex of this tour the rotation angle is
at most 2π/3.

the electronic journal of combinatorics 19(2) (2012), #P31 6



Y ′

X

Y

X ′

Figure 4: Case 1: points in two double wedges. A tour of the form XX ′XX ′XX ′Y Y ′Y Y ′ is
shown; its starting vertex in X is drawn as an empty circle.
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Figure 5: Case 2: points in three double wedges. Left: a tour of the form X ′XY ′Y Y ′Y y′xzz′x′y
is shown; its starting vertex in X ′ is drawn as an empty circle. Right: a tour of the form
Y ′Y Y ′Y y′xzZ ′Zz′x′y is shown; its starting vertex in Y ′ is drawn as an empty circle.
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Case 2. There are exactly three nonempty double wedges; refer to Fig. 5. Arbitrarily
pick one point from each wedge: x ∈ X, y ∈ Y , z ∈ Z, x′ ∈ X ′, y′ ∈ Y ′, z′ ∈ Z ′. Consider
the two triangles ∆xzy′ and ∆yx′z′. The sum of the interior angles of the two triangles
is obviously 2π. By averaging, there is one pair of points lying in opposite wedges, say x
and x′, whose angles sum up to at most 2π/3. Thus, each of these angles is at most 2π/3:
∠zxy′ 6 2π/3, and ∠yx′z′ 6 2π/3.

If |X ∩ S| = |X ′ ∩ S| > 2, consider a spanning tour (X ′X)+(Y ′Y )+y′xz(Z ′Z)+z′x′y.
Here (X ′X)+ denotes a nonempty alternating path between the wedges X ′ and X, that
starts in X ′, ends in X, and involves all points except x and x′. The notations (Y ′Y )+ and
(Z ′Z)+ are used analogously. An example is depicted in Fig. 5 (left). By Observations 1
and 2, and by our choice of x, y, z, x′, y′, z′, all rotation angles along this tour are at most
2π/3, as required.

If |X ∩S| = |X ′∩S| = 1, consider a spanning tour (Y ′Y )+y′xz(Z ′Z)+z′x′y; see Fig. 5
(right). The arguments justifying that all rotation angles are at most 2π/3 are the same
as before.

The proof of Theorem 1 is now complete.

4 Covering by two acute tours

Proof of Theorem 2. (i) Take a horizontal line ℓ and a partition of our point set
S = S+ ∪ S− into two subsets, each of size n/2, such that S+ and S− are in the closed
half-planes above and below ℓ, respectively. If some points of S lie on ℓ, we can include
them in either of these sets so as to satisfy the condition. Next, take a vertical line ℓ′

which gives rise to another equipartition of S. Assume for simplicity that ℓ and ℓ′ coincide
with the x and y coordinate axes. See Fig. 6, for an illustration.

Figure 6: Even set covered by two tours with 6 and 2 points, respectively; a = 3, and b = 1.
(A double-edge counts as a tour.)

Thus, we obtain a partition S = S1 ∪ S2 ∪ S3 ∪ S4 such that all points of Si belong
to the ith closed quadrant determined by the axes (enumerated in the counterclockwise
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order), |S1| = |S3| = a, and |S2| = |S4| = b for some integers a and b with a + b = n/2.
Connect now all elements of S1∪S3 by a tour of length 2a alternating between S1 and S3.
Similarly, connect the elements of S2 ∪ S4 by an alternating tour of length 2b. Obviously,
both tours are acute. The above procedure can be performed in linear time, using any
linear time selection algorithm [9].

(ii) Find two orthogonal lines and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 satisfying the
conditions of Lemma 1. Using the notation of the proof of part (i), now we have a = ⌊n

4
⌋

and b = ⌈n
4
⌉. As above, we obtain two acute tours, of lengths 2⌊n

4
⌋ and 2⌈n

4
⌉, respectively.

This completes the proof of part (ii) of Theorem 2.

By keeping only the larger tour, Theorem 2 immediately implies

Corollary 1. For any even n, every n-element point set in the plane admits an acute
even tour covering at least half of its elements.

5 Acute tours for points in convex position

Throughout this section, let S denote a set of n > 8 points in the plane, in convex position
and let S = S1 ∪ S2 ∪ S3 ∪ S4 be a partition satisfying the conditions in Lemma 1. A
3-edge path (on 4 points) is called a hook if the rotation angles at its two intermediate
vertices are acute.

Lemma 3. Let P = {p1, p2, p3, p4} be the vertex set of a convex quadrilateral, with pi ∈ Si,
i = 1, 2, 3, 4. Then at least one of the following two conditions is satisfied.

(i) p1p3p4p2 and p3p1p2p4 are hooks, or
(ii) p1p3p2p4 and p3p1p4p2 are hooks.

Proof. At least one of the two angles defined by the diagonals p1p3 and p2p4 is larger
or equal to π/2. Let x denote the crossing point of these diagonals. If ∠p1xp2 > π/2,
then the two 3-edge paths p1p3p4p2 and p3p1p2p4 are hooks, while if ∠p2xp3 > π/2, then
p1p3p2p4 and p3p1p4p2 are hooks.

We say that a convex quadrilateral P , as in Lemma 3, is of type 1 if ∠p1xp2 > π/2,
and of type 2, otherwise (i.e., if ∠p2xp3 > π/2).

Lemma 4. Let P = {p1, p2, p3, p4}, Q = {q1, q2, q3, q4}, and R = {r1, r2, r3, r4} be three
vertex-disjoint convex quadrilaterals with pi, qi, ri ∈ Si, for i = 1, 2, 3, 4. Then there
exist two hooks induced by two of these quadrilaterals such that the two endpoints of the
first one and the two endpoints of the second one lie in different parts of the partition
S1 ∪ S2 ∪ S3 ∪ S4. Two such hooks are called opposite. (See Fig. 7 (left).)

Proof. By the pigeonhole principle, two out of the three quadrilaterals, say P and Q,
must have the same type. By Lemma 3, one can find a hook in each of them such that
their endpoints are all in different parts of the partition, i.e., two opposite hooks.
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Figure 7: Left: p1p3p4p2 and r3r1r2r4 are two opposite hooks. Right: an acute tour of S of the
form (S1S3)

+p1p3p4p2(S4S2)
+q4q2q1q3, starting at s ∈ S1.

Proof of Theorem 3. Consider a partition S = S1 ∪ S2 ∪ S3 ∪ S4 satisfying the con-
ditions in Lemma 1. Since |S| > 12, we have |Si| > 3. Pick 3 points from each Si, and
using these points construct three vertex-disjoint convex quadrilaterals, P , Q, and R. By
Lemma 4, two of these quadrilaterals, P and Q, say, determine opposite vertex-disjoint
hooks. Suppose without loss of generality that P and Q are of type 1, and these two
hooks are p1p3p4p2 and q4q2q1q3, where pi, qi ∈ Si, i = 1, 2, 3, 4. See Fig. 7(right).

Let (SiSj)
+ denote a polygonal path starting in Si, ending in Sj, alternating between

Si and Sj, and exhausting all points of Si ∪ Sj, except for pi, pj, qi, qj. The following tour
is acute: (S1S3)

+p1p3p4p2(S4S2)
+q4q2q1q3, and this completes the proof.

6 Random point sets

We first verify Theorem 4 for centrally symmetric convex bodies, and then in its full
generality.

Lemma 5. Let B be a centrally symmetric convex body in the plane and let S be a set of
n points, randomly and uniformly selected from B. Then, for any ε > 0, S almost surely
admits a spanning tour with no rotation angle larger than ε, as n tends to infinity.

Proof. Let ε be fixed, and let o denote the center of B. Assume without loss of
generality that area(B) = 1. Any chord through o divides the area of B into two equal
parts. Therefore, there is a positive constant δ = δ(B, ε), depending only on B and ε,
such that for every wedge W with angle at most π − ε

2
and apex at o, we have that

area(W ∩ B) 6 1/2− δ. Let m = ⌈n/2⌉.
Let p1, p2, . . . pn be n random points, independently and uniformly selected from B,

listed in their circular order of visibility from o. The indices are taken modulo n, so that
pn+1 = p1. Note that almost surely all points pi are distinct and different from o.
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If n is odd, consider the spanning tour C = p1pm+1p2pm+2 . . . pmp1. For every i, almost
surely we have

π −
ε

2
6 ∠piopm+i−1 6 π +

ε

2
,

and
π −

ε

2
6 ∠piopm+i 6 π +

ε

2
.

Therefore, we almost surely have ∠pm+i−1pipm+i 6 ε, for every i, and the tour C meets
the requirements.

If n is even, we choose two odd numbers n1, n2 with n1 + n2 = n such that 0 6

n1 − n2 6 2. That is, n1 is m or m+ 1 while n2 is m or m− 1. Connect the points pi by
two disjoint cycles, C1 and C2, of length n1 and n2, with property that (1) in the cyclic
order around o, the points p1, p2, . . . belong alternately to C1 and C2, as much as possible;
and (2) every edge of C1 and C2 connects two points, pi and pj, with |j− i−m| 6 3 (mod
n). We distinguish two cases.

Case 1. n1 = n2 = m. Let

C1 = p1p2+mp3p4+mp5 . . . pn−1pm,

C2 = p2p3+mp4p5+mp6 . . . pnp1+m.

Switching between these two cycles at two points, we can combine them into a single
spanning tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pn−1pmp2p3+mp4p5+mp6 . . . pnp1+m.

It remains true that |j − i − m| 6 3 (mod n) for every edge pipj of C, so that almost
surely all rotation angles of C will be smaller than ε.

Case 2. n1 = m+ 1, n2 = m− 1. Let

C1 = p1p2+mp3p4+mp5 . . . pnpm+1,

C2 = p2p3+mp4p5+mp6 . . . pn−1pm.

We can combine them into a single spanning tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pnpm+1p2p3+mp4p5+mp6 . . . pn−1pm.

It remains true that |j − i − m| 6 3 (mod n) for every edge pipj of C, so that almost
surely all rotation angles of C will be smaller than ε.

To prove Theorem 4 in its full generality, we need the following technical lemma. Its
proof is very similar to that of Lemma 5. The minor modifications are left to the reader.

Lemma 6. Let B be a centrally symmetric convex set in the plane with nonempty interior.
Let o denote the center of B, let ε > 0 be fixed, let s and t be two points of B, and let S ′

be a set of at most εn/4 points not belonging to B.

the electronic journal of combinatorics 19(2) (2012), #P31 11



Then, for any set S of n points randomly and uniformly selected from B, the set S∪S ′

almost surely admits a spanning path satisfying the following conditions, as n → ∞:
(i) all of its turning angles are at most ε;
(ii) its first two points are p1 and p2 such that ∠op1p2 6 ε/3, and ∠sop1 6 ε/3;
(iii) its last two points are q2 and q1 such that ∠oq1q2 6 ε/3, and ∠toq1 6 ε/3.

Proof of Theorem 4. Assume without loss of generality that area(B) = 1. Consider a
square lattice of minimum distance δ, for some δ > 0 to be specified later. Let A = A(δ)
denote the total area of all cells (lattice squares of side length δ) completely contained in
B, and let A′ = A′(δ) denote the total area of all those cells that intersect B, but are not
completely contained in it. Obviously, A+A′ > 1. Since the boundary of B is the union
of finitely many rectifiable curves, we have

lim
δ→0

A = 1, lim sup
δ→0

A′

δ
< ∞.

Therefore, we can choose δ > 0 so that A′ 6 ε/6.
Let X1, X2, . . . , Xm denote the cells completely contained in B, in some arbitrary

order, and let oi denote the center of Xi. For any 1 6 i 6 m, let si be a point on the line
oioi−1 such that oi belongs to the segment sioi−1. Analogously, let ti be a point on the
line oioi+1 such that oi belongs to the segment tioi+1. Here the indices are taken modulo
m.

Let S be a set of n points in B, selected independently, randomly, and uniformly. Let
Si = S ∩Xi, for 1 6 i 6 m, and let S ′ = S \ ∪m

i=1Si. Divide S
′ into m almost equal parts,

S ′

1, S
′

2, . . . , S
′

m with ||S ′

i| − |S ′

j|| 6 1, for any i, j = 1, . . . ,m.
For each 1 6 i 6 m, apply Lemma 6 with Si, S

′

i, si, and ti, to obtain a spanning
path Pi. The spanning tour P1P2 . . . Pm obtained by the concatenation of these paths
now meets the requirements.
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