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Abstract

We prove a conjecture of Postnikov, Reiner and Williams by defining a partial

order on the set of tree graphs with n vertices that induces inequalities between the

γ-polynomials of their associated graph-associahedra. The partial order is given by

relating trees that can be obtained from one another by operations called tree shifts.

We also show that tree shifts lower the γ-polynomials of graphs that are not trees,

as do the flossing moves of Babson and Reiner.

1 Introduction

For any building set B there is an associated simple polytope PB called the nestohedron
(see [Po] Section 7 and [PRW] Section 6). When B = B(G) is the building set deter-
mined by a graph G, PB(G) is the well-known graph-associahedron of G (see [BV], [Er],
[PRW] Sections 7 and 12, and [Vol]). The numbers of faces of PB of each dimension are
conveniently encapsulated in its γ-polynomial γ(B) = γ(PB) (see [PRW] Section 1 for
the definition). Postnikov, Reiner and Williams conjectured the following monotonicity
property of the γ-polynomials of the graph-associahedra of trees.

Conjecture 1. [PRW, Conjecture 14.1]. There exists a partial order 6 on the set of
(unlabelled, isomorphism classes of) trees with n vertices, with the following properties:

• Pathn is the unique 6-minimal element,

• K1,n−1 is the unique 6-maximal element,

• T 6 T ′ implies γ(B(T )) 6 γ(B(T ′)).
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Here Pathn denotes the graph that is a path with n vertices, and K1,n−1 is the graph with
n vertices with exactly one vertex of degree n− 1 and n− 1 vertices of degree 1.

This conjecture implies the following lower and upper bounds for the γ-polynomial of
a tree T with n vertices

γ(B(Pathn)) 6 γ(B(T )) 6 γ(B(K1,n−1)). (1)

These upper and lower bound theorems have been proven by Buchstaber and Volodin
[BV, Theorem 9.4]. Moreover, they show that the lower bound is attained only for Pathn

and the upper bound is attained only for K1,n−1. Their proof relies on some general results
about γ-polynomials of flag nestohedra which were announced in [Vol] and whose proofs
are included in [BV]; see Lemmas 10, 11, 14 and theorems 9, 12 and 13. Note that the
methods of Buchstaber and Volodin require one to work with the more general class of
flag nestohedra in order to deduce the results about graph-associahedra. In this paper we
make use of these theorems to show that Conjecture 1 can be proven with the relation of
tree shifts that we define.

We also use these theorems to show that flossing moves lower the γ-polynomial. Floss-
ing moves were originally defined in [BR] Section 4.2 and it was suggested in [PRW] Section
14 that they might lower the γ-polynomial. Our definition of flossing move is more general
than that in [BR] as it can be applied to any pair of leaves that floss a vertex, and it does
not have to be applied to a tree graph.

Section 2 contains preliminary definitions and results relating to polytopes and build-
ing sets. Section 3 contains more specific results relating to the γ-polynomial that are
needed for the main theorems in Sections 4 and 5. Section 4 introduces tree shifts
and in Theorem 15 we show that they lower the γ-polynomial of the associated graph-
associahedra. We then prove Conjecture 1, in Theorem 16. Section 5 introduces flossing
moves and Theorem 17 shows that they lower the γ-polynomials.

2 Building sets and nestohedra

A building set B on a finite set S is a set of non empty subsets of S such that

• For any I, J ∈ B such that I ∩ J 6= ∅, I ∪ J ∈ B.

• B contains the singletons {i}, for all i ∈ S.

B is connected if it contains S. For any building set B, Bmax denotes the set of maximal
elements of B with respect to inclusion. The elements of Bmax form a disjoint union of S,
and if B is connected then Bmax = {S}. Building sets B1, B2 on S are equivalent, denoted
B1

∼= B2, if there is a permutation σ : S → S that induces a one to one correspondence
B1 → B2.

Example 2. Let G be a graph with no loops or multiple edges, with n vertices labelled
distinctly from [n]. Then the graphical building set B(G) is the set of subsets of [n] such

the electronic journal of combinatorics 19(2) (2012), #P36 2



that the induced subgraph of G is connected. B(G)max is the set of connected components
of G.

Let B be a building set on S and I ⊆ S. The restriction of B to I is the building set

B|I := {J | J ⊆ I, and J ∈ B} on I.

The contraction of B by I is the building set

B/I := {J − (J ∩ I) | J ∈ B, J 6⊆ I} on S − I.

Example 3. If G is a graph on [n], and I ∈ B(G), then B(G)/I = B(G′) where G′ is the
graph on [n]− I such that any two vertices i, j ∈ [n]− I are adjacent if they are adjacent
in G, or both i and j are adjacent to vertices in I in the full graph G.

Given a building set B, a subset N ⊆ B\Bmax is a nested set if it satisfies

• For any I, J ∈ N , either I ⊆ J , J ⊆ I, or I ∩ J = ∅.

• For any collection of k > 2 disjoint subsets J1, . . . , Jk ∈ N , the union J1∪· · ·∪Jk 6∈ B.

The nested set complex ∆B is the simplicial complex on B − Bmax whose faces are the
nested sets. We associate a polytope to a building set as follows. Let e1, . . . , en denote
the endpoints of the coordinate vectors in Rn. Given I ⊆ [n], define the simplex ∆I :=
ConvexHull(ei | i ∈ I). Let B be a building set on [n]. The nestohedron PB is a polytope
given by the Minkowski sum of the simplices ∆I for all I ∈ B

PB :=
∑

I∈B

∆I .

If B is a graphical building set PB is known as the graph-associahedron. The nestohedron
is related to the nested sets of any building set B, as described in the following theorem.

Theorem 4. [Po, Theorem 7.4] [FS, Theorem 3.14]. Let B be a building set on [n]. The
nestohedron PB is a simple polytope of dimension n−|Bmax|. The simplicial polytope polar
dual to PB has boundary complex isomorphic to ∆B.

For a simple d dimensional polytope P , the f -polynomial, h-polynomial and γ-
polynomial are polynomials in Z[t] defined as follows:

f(P )(t) := f0 + f1t+ · · ·+ fdt
d,

where fi is the number of i-dimensional faces of P . The h-polynomial is given by

h(P )(t+ 1) := f(P )(t),

and it is known to be positive and symmetric. Since it is symmetric, it can be written

d∑

i=0

hit
i =

⌊ d

2
⌋∑

i=0

γit
i(1 + t)d−2i,
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for some γi ∈ Z, and the γ-polynomial is given by

γ(P )(t) := γ0 + γ1t+ · · ·+ γ⌊ d

2
⌋t

⌊ d

2
⌋.

If a polytope P is combinatorially equivalent to P1 × P2 × · · · × Pn where P1, . . . , Pn

are a set of polytopes, then by the definition of combinatorial equivalence we have that
f(P ) = f(P1)f(P2) · · · f(Pn), and consequently γ(P ) = γ(P1)γ(P2) · · · γ(Pn). When B is
a building set, we denote the γ-polynomial for PB by γ(B). If B and B′ are building sets,
the notation γ(B) 6 γ(B′) implies that for all i the coefficient of ti in γ(B) is less than or
equal to the coefficient of ti in γ(B′).

A d− 1-dimensional face of a d-dimensional polytope is called a facet. A simple poly-
tope P is flag if any collection of pairwise intersecting facets has non empty intersection.
A building set B is flag if PB is flag. The conditions in Proposition 5 determine whether
a building set is flag.

Proposition 5. [PRW, Proposition 7.1]. For a building set B, the following are equiva-
lent:

(1) PB is flag.

(2) If J1, . . . , Jm, m > 2, are disjoint and J1 ∪ · · · ∪ Jm ∈ B, then the sets can be
reindexed so that for some k such that 1 6 k 6 m − 1, J1 ∪ · · · ∪ Jk ∈ B and
Jk+1 ∪ · · · ∪ Jm ∈ B.

(3) If N ⊆ B\Bmax such that

– for any I, J ∈ N either I ⊆ J , J ⊆ I or I ∩ J = ∅,

– for any I, J ∈ N such that I ∩ J = ∅, one has I ∪ J 6∈ B,

then N is a nested set.

It follows from Proposition 5 that a graphical building set is flag. A minimal flag
building set D on a set S is a connected building set on S that is flag, such that that
no proper subset of its elements form a connected flag building set on S. Minimal flag
building sets are described in detail in [PRW, Section 7.2]. They take the form of a binary
tree, where the vertices biject to elements of D, and the direct descendants of any non
leaf vertex that represents an element I ∈ D are the two elements in D whose disjoint
union is I. For any minimal flag building set D, γ(D) = 1 (see [PRW] Section 7.2).

Let B be a building set. A binary decomposition or decomposition of a non singleton
element I ∈ B is a set D ⊆ B that forms a minimal flag building set on I. Suppose that
I ∈ B has a binary decomposition D. The two maximal elements D1, D2 ∈ D−{I} with
respect to inclusion are the maximal components of I in D. The following lemma gives
another definition of when a building set is flag.

Lemma 6. A building set B is flag if and only if every non singleton I ∈ B has a binary
decomposition.
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Proof. The only if part follows immediately from [PRW, Proposition 7.3].

For the if part, suppose that B is a building set and every element has a binary decom-
position. We show that B is flag by showing that part (3) of Proposition 5 holds. Suppose
by contradiction that (3) does not hold so that there exists a set S = {S1, . . . , Sk} ⊂ B,
k > 3, such that Si ∩ Sj = ∅, Si ∪ Sj 6∈ B for all i 6= j, and S1 ∪ · · · ∪ Sk = I ∈ B. Fix
a decomposition D of I. Now consider all one element sets of D (the set of all {i} such
that i ∈ I). They are each a subset of one element of S. Suppose by induction that all
elements in D that are sets with 6 i elements are a subset of one element of S. Then any
i+ 1 element subset of D must also be contained in one element of S. This is true since
each i+1 element subset of D is the union of two elements of D each with less than i+1
elements. These two subsets must be contained in the same element of S since if they
were contained in two distinct elements then their union would intersect two elements Si

and Sj of S which implies Si ∪ Sj ∈ B. As the size of the elements of the decomposition
increase, they are eventually equal to I, which implies that k = 1, a contradiction since
k > 3.

Corollary 7. A building set B is flag if and only if for every non singleton I ∈ B, there
exists two elements D1, D2 ∈ B such that D1 ∩D2 = ∅ and D1 ∪D2 = I.

Lemma 8. Suppose B is a flag building set. If I, J ∈ B and J ( I, then there is a
decomposition of I in B that contains J .

Proof. Consider the set {J, {i1}, . . . , {ik}} where {i1, . . . , ik} = I − J . This is a set of
disjoint elements whose union is in B. Therefore, by Proposition 5 part (2) we can reindex
these sets until we obtain two disjoint sets each in B whose union is I. We can repeatedly
perform this same procedure on the elements in {J, {i1}, {i2}, . . . , {ik}} that are subsets of
each of the new sets obtained at each step. All of the new sets obtained with reindexing,
together with a decomposition of J , and the element I are a decomposition of I that
contains J .

3 Face shavings of flag building sets

The following Theorem is proven by Volodin [Vol].

Theorem 9. [Vol, Lemma 6]. Let B and B′ be connected flag building sets on [n] such
that B ⊆ B′. Then B′ can be obtained from B by successively adding elements so that at
each step the set is a flag building set.

Suppose that a connected flag building set B′ on [n] is obtained from a flag building
set B on [n] by adding an element I. Then I has a binary decomposition in B′ with
two maximal components D1, D2. This implies that PB′ can be obtained by shaving the
codimension 2 face of PB that corresponds to the nested set {D1, D2}.

Lemma 10. Let B be a building set with nestohedron PB. Suppose that F0 is a facet of
PB corresponding to a (non-maximal) building set element I. Then the face poset of F0

is isomorphic to the poset of faces of PB|I × PB/I .
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Proof. The poset of faces of F0 is the subposet of the faces of P , consisting of faces that
are contained in F0. Since the facet F0 corresponds to the nested set {I}, the set of faces
of P that are contained in F0 correspond to nested sets that contain I. The complex of
nested sets of B that contain I is isomorphic to ∆B|I ×∆B/I . The isomorphism is given
by

(N1, N2) ∈ ∆B|I ×∆B/I 7→ N1 ∪N ′
2 ∪ {I},

where N ′
2 := {D | D ∈ N2 and D ∪ I 6∈ B} ∪ {D ∪ I | D ∈ N2, D ∪ I ∈ B}. It is not too

hard to see that this is a map to nested sets that contain I, that preserves the inclusion
relation, and that is injective and surjective.

[Vol, Proposition 5] states that if a polytope Q can be obtained from a simple n-
dimensional polytope P by shaving a face G of dimension k to obtain a new facet F0,
then F0 is combinatorially equivalent to G×∆n−k−1, where ∆d denotes the d-dimensional
simplex. If G is of dimension n−2 then F0 is combinatorially equivalent to G×∆1, so that
γ(F0) = γ(G)γ(∆1) = γ(G). Hence, in the case that the polytopes are flag nestohedra,
using Lemma 10, we can rewrite [Vol, Corollary 1] as:

Lemma 11. [Vol, Corollary 1]. If B′ is a flag building set on [n] obtained from a flag
building set B on [n] by adding an element I then

γ(B′) =γ(B) + tγ(B′|I)γ(B
′/I)

=γ(B) + tγ(B|I)γ(B/I).

Proof. The first identity is a direct consequence of the preceding discussion. From the
definition of the contraction of a building set we have that B′/I = B/I so that γ(B′/I) =
γ(B/I). Let D1, D2 be the maximal components of I in the decomposition of I in B′.
They are unique since I 6∈ B. Using Lemma 14 below we have that B′|I = D[B|D1

,B|D2
]

where D is the building set {{1}, {2}, [2]}. Hence

γ(B′|I) = γ(D)γ(B|D1
)γ(B|D2

) = γ(D)γ(B|I) = γ(B|I).

Note that if B is a flag building set on [n] and I ∈ B, then B/I and B|I are flag building
sets. This is obvious for B|I . For the claim about B/I, we let D ∈ B/I. Then if D ∈ B
there exist two elements D1, D2 in B/I such that D1 ∩ D2 = ∅ and D1 ∪ D2 = I. If
D 6∈ B then D ∪ I ∈ B, and since I ⊆ I ∪ D, by Lemma 8, I is in a decomposition D
of I ∪ D and this implies there are two elements D1, D2 ∈ D such that D1 ∩ D2 = ∅,
D1 ∪D2 = D ∪ I, and I is a proper subset of either D1 or D2. Let Di denote the image
of Di in the contraction. Then D1 ∩D2 = ∅ and D1 ∪D2 = D.

Using Theorem 9 and Lemma 11 [Vol] shows the following two Theorems. Their proof
uses the inductive hypothesis that both γ(B′|I) and γ(B′/I) of Lemma 11 are such that
γ(B′|I) > 0 and γ(B′/I) > 0.
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Theorem 12. [Vol, Theorem 2]. For any flag nestohedron PB we have

γ(B) > 0.

Theorem 13. [Vol, Theorem 3] [BV, Theorem 1.1]. If B and B′ are connected flag
building sets on [n] and B ⊆ B′, then γ(B) 6 γ(B′).

The following construction is due to Erokhovets [Er]. Let [i, j] denote the interval {i, i+
1, . . . , j}. Let B,B1,B2, . . . ,Bn be connected building sets on [n], [k1], . . . , [kn] respectively,
and let [ki] denote the interval [

∑i−1
j=1 kj + 1,

∑i
j=1 kj]. Define the connected building set

B[B1,B2, . . . ,Bn] on [k1 + k2 + · · · + kn], where B|[ki] is equivalent to Bi, and add the

elements [ki1 ] ∪ [ki2 ] ∪ · · · ∪ [kim ] for every {i1, i2, . . . , im} ∈ B.

Lemma 14. [Er]. Let B,B1, . . . ,Bn be connected building sets on [n], [k1], . . . , [kn] respec-
tively. Let B′ = B[B1, . . . ,Bn]. Then PB′ is combinatorially equivalent to PB ×PB1

×· · ·×
PBn

.

4 Tree shifts

Our goal of this section is to prove Theorem 15.

We will now introduce the tree shift operation mentioned in Theorem 15. We call a
degree one vertex of an arbitrary graph a leaf (this is the standard name for a degree one
vertex of a tree).

LetG be a connected graph with n vertices labelled 1 to n, with the following properties
and extra data (for a vertex v we also denote the set {v} by v):

1. G has a leaf l and the nearest vertex to l of degree greater than 2 is labelled c. The
vertices in the path from c to l are labelled c, c1, c2, . . . , ck, l.

2. There exists a set of vertices F of G−{c, c1, . . . , l} such that F ∪ c is a subgraph of
G that forms a tree, and such that there is no vertex of G−(c∪F ) that is connected
to a vertex in F .

3. G− (F ∪ {c, c1, c2, . . . , ck, l}) 6= ∅, and is denoted E.

A tree shift is the following move applied to a graph with the properties described. Infor-
mally, we remove F and reattach F to l. More formally, we remove any edge (v, c) where
v ∈ F , and replace it with the edge (v, l) (see Figure 1).
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Figure 1: A graph G followed by the tree shift of G.

E
c c1 c2 ck l

F

E
c c1 c2 ck l

F

Theorem 15. Let G be a connected graph, and let G′ be a resulting tree shift of G. Then
γ(B(G′)) 6 γ(B(G)).

Proof. We suppose that G has n vertices, and we label G as in the definition of a tree
shift. We assume by induction that for any connected graph H with less than n vertices,
if H ′ is a tree shift of H, then γ(B(H ′)) 6 γ(B(H)). When n < 4 no tree shift is
possible so the result is vacuously true. Let v be a leaf of G (and G′) contained in
F . The set B := B(G − v) ∪ {{v}, [n]} is a flag building set contained in B(G) and
B′ = B(G′ − v) ∪ {{v}, [n]} is a flag building set contained in B(G′), hence, by Theorem
9 we can add elements to B to obtain B(G) so that at each step the set obtained is a
flag building set. Similarly, we can add elements to B′ to obtain B(G′) so that at each
step the set we obtain is a flag building set. By Lemma 11 and Theorem 12 each time an
element is added to these flag building sets the γ-polynomial of the resulting building set
increases. We will construct an injection

B(G′)− B
′
→ B(G)− B

I ′ 7→ I,

and show that the increase in the γ-polynomial when adding I ′ is less than or equal to
the increase when adding I. This shows that

γ(B(G′))− γ(B′) 6 γ(B(G))− γ(B). (2)

By Lemma 14
γ(B) = γ(B(G− v))

and
γ(B′) = γ(B(G′ − v)),

so that Equation 2 becomes

γ(B(G′))− γ(B(G′ − v)) 6 γ(B(G))− γ(B(G− v)).

By induction, since G′ − v is a tree shift of G− v, or is equal to G− v, we have

γ(B(G′ − v)) 6 γ(B(G− v))
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so that
γ(B(G′)) 6 γ(B(G)).

We will now construct the injection. Suppose that I ′1, I
′
2, . . . , I

′
k are the building set

elements that are added to B
′
to obtain B(G′) (in order) and I ′j ⊆ I ′i. Then j > i, since

I ′j∩(I ′i−{v}) 6= ∅ and I ′j∪(I ′i−{v}) = I ′i which implies that when I ′j is in the building set
I ′i must be too. Similarly, no subset of an element is added before it when we are adding
sets to obtain B(G).

Let B′
m be the building set B

′
∪ {I ′1, I

′
2, . . . , I

′
m}. By Lemma 11 we have that

γ(B′
m)− γ(B′

m−1) = tγ(B′
m−1|I′m)γ(B

′
m−1/I

′
m).

Suppose that I ′m ∩ E = ∅, so that I ′m = D ∪ {l, ck, . . . , ck−α+1} for some D ⊆ F and let
Im = D ∪ {c, c1, . . . , cα}, one of the elements that is added to B to obtain B(G). Note
that we may have ck−α+1 = c and cα = l. Note also that Im is not necessarily the mth
element that is added to B (see Figure 2).

Figure 2: The set Im followed by the set I ′m.

E
c cα ck l

v

E
c ck−α−1 ck l

v

We let Bm denote the building set obtained after adding the elements up to and including
Im to B. Let B̃m−1 denote the building set Bm − {Im} (note that B̃m−1 is not necessarily
equal to Bm−1 since Im−1 is not necessarily added directly before Im). Then by Lemma
11

γ(Bm)− γ(B̃m−1) = tγ(B̃m−1|Im)γ(B̃m−1/Im).

Since we do not add a subset of a set before adding the set, we have that

B̃m−1|Im = B(G)|Im−{v} ∪ {{v}} ∼= B(G′)|I′m−{v} ∪ {{v}} = B′
m−1|I′m .

We let K ′ denote the set of vertices in G′ − I ′m that are adjacent in G′ to a vertex in I ′m,
and we let K denote the set of vertices in G− Im that are adjacent in G to a vertex in Im.
Then B′

m−1/I
′
m = B(G′)/I ′m. This is true since we know that B′

m−1/I
′
m ⊆ B(G′)/I ′m since

B′
m−1 ⊆ B(G′). To show that B′

m−1/I
′
m ⊇ B(G′)/I ′m, note that B(G′)/I ′m = B(Ĝ′) where

Ĝ′ is the graph G′ − I ′m with additional edges so that the restriction to K ′ is a complete
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graph. The elements of B(Ĝ′) that are the edges between elements in K ′ are in B′
m−1/I

′
m

because any two vertices in K ′ are linked by a path of vertices contained in I ′m − v. By

a similar argument we have that B̃m−1/Im = B(G)/Im. Note that B(G)/Im = B(Ĝ)
where Ĝ denotes the graph G − Im with additional edges so that the restriction to K is
a complete graph, (see Figure 3).

Figure 3: The graph Ĝ for the contraction Bm−1/Im = B(Ĝ) followed by the graph Ĝ′ for
the contraction B′

m−1/I
′
m = B(Ĝ′). The vertices K and K ′ are drawn with an additional

ring around them.

E
cα+1 ck l

E
c ck−α

We also have that γ(B′
m−1/I

′
m) 6 γ(B̃m−1/Im) because Ĝ′ can be obtained from Ĝ by first

removing edges (which lowers the γ-polynomial of the corresponding graphical building
set by Theorem 13) and then performing a tree shift on a graph with fewer than n vertices
(or doing no tree shift in the case that cα = ck or cα = l), which we assume lowers the
γ-polynomial (see Figure 4). Hence

γ(B′
m)− γ(B′

m−1) = tγ(B′
m−1|I′m)γ(B

′
m−1/I

′
m)

6 tγ(B̃m−1|Im)γ(B̃m−1/Im)

= γ(Bm)− γ(B̃m−1).

Figure 4: The graph that is obtained after removing edges from Ĝ in Figure 3. The tree
shift of this graph gives the graph Ĝ′ of Figure 3.

E
cα+1 ck l
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Now suppose that I ′m ∩E 6= ∅, so that {c, c1, . . . , ck, l} ⊆ I ′m. Let Im denote I ′m, which

is a set that is also added to B to obtain B(G) (see Figure 5). Define B′
m−1, B̃m−1 as in

the previous case.

Figure 5: The set Im followed by the set I ′m.

e
c ck l

v

e
c ck l

v

Then we have that B̃m−1|Im = B′
m−1|I′m and B̃m−1/Im = B′

m−1/I
′
m which are both equal

to B(G)/Im. This can be shown by arguments similar to those used in the case where
I ′m ∩ E = ∅. Hence in this case we also have

γ(B′
m)− γ(B′

m−1) = tγ(B′
m−1|I′m)γ(B

′
m−1/I

′
m)

6 tγ(B̃m−1|Im)γ(B̃m−1/Im)

= γ(Bm)− γ(B̃m−1).

Since for every element I ′m that is added to B′ to obtain B(G′) there is a corresponding
element Im that is added to B to obtain B(G) that increases the γ-polynomial by at least
as much as I ′m we have that

γ(B(G′))− γ(B′) 6 γ(B(G))− γ(B)

as desired.

By applying Theorem 15 to the case where the graph is a tree we obtain the following
Theorem, which is predicted by [PRW, Conjecture 14.1].

Theorem 16. Let S be the set of all tree graphs on n nodes. Define the relation T ′ 6 T
if T ′ can be obtained by applying any number of tree shifts to T . Then 6 defines a partial
order on S with the following properties.

• Pathn is the unique 6-minimum element.

• K1,n−1 is the unique 6-maximum element.

• T ′ 6 T implies γ(B(T ′)) 6 γ(B(T )).
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Proof. This relation is a partial order on S, since given any a, b ∈ S we have that if a 6 b
and b 6 a then a = b because any tree shift decreases the number of leaves by one.

Pathn is 6-minimal since no tree has fewer leaves than Pathn. Let T be a tree that
is not Pathn. We can apply a tree shift to T since if we travel along the path from any
leaf inwards we must eventually meet a vertex of degree three or more. Hence T is not
6-minimal, so that Pathn is the unique 6-minimum element.

K1,n−1 is 6-maximal because no tree has more leaves than K1,n−1. Suppose that T
′ is

a tree that is not K1,n−1. We can perform a reverse shift, which sends T ′ to a tree T such
that we can apply a tree shift to T to obtain T ′. T ′ must contain two adjacent vertices c
and l, neither of which is a leaf. To obtain T , we attach the component of T ′−{c, l} that
was attached to l in T , and attach it to c, so that the vertices that were attached to l are
now attached to c. Hence T ′ is not 6-maximal, so that K1,n−1 is the unique 6-maximum
element.

By Theorem 15, if T ′ 6 T then γ(B(T ′)) 6 γ(B(T )).

Theorem 15 provides a new (arguably more explicit) proof of the bounds on the γ-
polynomial of trees (Equation 1) than that provided in [BV, Theorem 9.4, (1)].

5 Flossing moves

Let G be a graph with n vertices labelled 1 to n. A pair of leaves l, l̂ in G floss a vertex
v ∈ G if there is a unique path in G from l to l̂ of minimal length, and v is the unique
branched vertex (having degree > 3) on this path. [BR, Proposition 4.8] shows that for
any tree graph T that is not Pathn, there exists a triple of vertices (l, l̂, v) in which the
vertices l, l̂ floss the vertex v. When l, l̂ floss a vertex v, relabel so that

distG(l, v) 6 distG(l̂, v),

where distG(v1, v2) denotes the number of edges in a minimal path in G between vertices
v1 and v2. Flossing moves are defined in [BR], and it was suggested in [PRW] that
they might lower the γ-polynomial of the graph-associahedra. We show that this is
true for flossing moves that are a generalisation of those given in [BR]. Let G be a
graph with a triple of vertices (l, l̂, v) such that l, l̂ are leaves that floss the vertex v
(and distG(l, v) 6 distG(l̂, v)). A flossing move on G is obtained by removing the edge
(l, w) and adding an edge (l̂, l) where w is the nearest vertex (possibly v) to l. We let
r := distG(l, v)+1 (the number of vertices in the chain from l to v), and r̂ := distG(l̂, v)+1
(see Figure 6).
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Figure 6: A graph G followed by a flossing move applied to G. In this example we have
r = 4 and r̂ = 7. The loop represents G minus the path of vertices from l to l̂ that
contains v.

vwl l̂
vw

l̂ l

Theorem 17. Let G be a connected graph, and let G′ be the resulting flossing move of
G. Then γ(B(G′)) 6 γ(B(G)).

Proof. We suppose that G has n vertices, and we label G by l, l̂, r, r̂, v and w, as in the
definition of flossing move. We assume by induction that for any graph with < n vertices,
that a flossing move lowers the γ-polynomial. When n < 4 no flossing move is possible so
the result is vacuously true. B(G) is a flag building set on [n], and the building set B̂ that
is obtained from B(G) by removing all building set elements that contain {l, w} apart
from [n] is also a flag building set on [n]. Hence by Theorem 9, B(G) can be obtained
from B̂ by successively adding building set elements so that at each step the set is a flag
building set. Similarly, B(G′) can be obtained from B̂ by successively adding building set
elements so that at each step the set is a flag building set. Similar to the arguments used
in the proof of Theorem 15, we construct an injection

B(G′)− B̂ → B(G)− B̂

I ′ 7→ I.

We then show that the increase in the γ-polynomial when adding the element in B(G′)−B̂
is less than or equal to the increase when adding the corresponding element in B(G)− B̂
which proves the Theorem.

Let I1, I2, . . . , Ik be the building set elements of B(G′) − B̂. Suppose for some i 6= j
that Ij ⊆ Ii. Then j > i, since Ij ∩ (Ii − {l}) 6= ∅ and Ij ∪ (Ii − {l}) = Ii which implies
that when Ij is in the building set Ii must be too.

Let P be the set of vertices in the minimal path from l to l̂. Let I ′ be an element that
is added to B̂ to obtain B(G′). There are three cases for I ′ that we will consider.

• |I ′| 6 r̂,

• |I ′| > r̂ + 1, and I ′ does not contain all of G− P ,

• |I ′| > r̂ + 1, and I ′ contains all of G− P .
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Suppose that |I ′| 6 r̂, and let I be the element of B(G′)−B̂ such that |I∩P | = r+ r̂−|I ′|,
and I contains all of G− P . In each case we let B1 (respectively B2) denote the building
sets we have before adding I (respectively I ′). Then B1|I = B2/I

′ ∪ {{l}}, so that
γ(B1|I) = γ(B2/I

′). Also, B1/I ∪{{l}} = B2|I′ , so that γ(B1/I) = γ(B2|I′) (see Figure 7).

Figure 7: The graph G followed by G′. Keeping with the values of Figure 6, we have
|I ′| = 5 and |I ∩ P | = 6.
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l̂ l

I ′

Suppose that |I ′| > r̂ + 1, and suppose that I ′ does not contain all of G − P . Let I
be the element of B(G)− B̂ such that |I ∩P | = |I ′ ∩P |, and I ∩ (G−P ) = I ′ ∩ (G−P ).
Then we have that B1/I ∼= B2/I

′, and B1|I = B(G1) ∪ {{l}}, and B2|I′ = B(G2) ∪ {{l}}
where G2 is a graph obtained from a graph G1 by a flossing move (or if distG(l, v) = 1,
G2 = G1). By induction on the number of vertices of the graphs involved we have that
γ(B(G2)) 6 γ(B(G1)) so that γ(B2|I′) 6 γ(B1|I) (see Figure 8).

Figure 8: The graph B1 followed by B2. We have |I ′| > 7.
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Suppose that |I ′| > r̂+1 and I ′ contains all of G−P . Let I be the element of B(G)−B̂
such that |I| = r + r̂ − |I ′ ∩ P |. Then B1/I ∪ {{l}} = B2|I′ , and B1|I = B2/I

′ ∪ {{l}}.
Hence γ(B1/I) = γ(B2|I′) and γ(B1|I) = γ(B2/I

′) (see Figure 9).
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Figure 9: The graph B1 followed by B2. We have |I| = 2 and |I ′ ∩ P | = 9.
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Note that no element I ∈ B(G) − B̂ is used more than once, since in the first case
we have that |I| > r and I contains all of G − P . In the second case we have that
|I| > r̂ + 1 > r and I does not contain all of G − P . In the third case we have that
|I| = r + r̂ − |I ′ ∩ P | 6 r + r̂ − (r̂ + 1) = r − 1.

By Lemma 11 the change in the γ-polynomial when adding I ′ is given by

γ(B2 ∪ {I ′})− γ(B2) = tγ(B2/I
′)γ(B2|I′),

and when adding I it is given by

γ(B1 ∪ {I})− γ(B1) = tγ(B1/I)γ(B1|I).

Since for every element I ′ that is added to B̂ to obtain B(G′), there is an element I that
is added to B̂ to obtain B(G) such that γ(B2/I

′)γ(B2|I′) 6 γ(B1/I)γ(B1|I) we have that
γ(B(G′)) 6 γ(B(G)).

It is exactly when distG(l, v) = 1 that a flossing move is a kind of tree shift. This
is exactly when a flossing move reduces the number of leaves. If we partition the set S
of all tree graphs with n vertices by their number of leaves, then tree shifts send graphs
between the parts, whilst flossing moves such that distT (l, v) 6= 1 give relations between
graphs with the same number of leaves. This is illustrated in the following example for
tree graphs with seven vertices.

Example 18. Arrows are drawn between pairs of graphs with the same number of leaves
when one (at the head) can be obtained from the other (at the tail) by a flossing move.
Arrows are drawn from a graph with i+ 1 leaves to one with i leaves when the graph at
the head can be obtained from the graph at the tail by a tree shift.

the electronic journal of combinatorics 19(2) (2012), #P36 15



6 leaves

5 leaves

4 leaves

3 leaves

2 leaves

Figure 10: Tree graphs with 7 vertices and their tree shift and flossing move relations.

It is suggested in [PRW] that a move on a tree graph that increases the Wiener index
[Wie] might approximately lower the γ-polynomial, although the only moves that we
have found that increase the Wiener index and lower the γ-polynomial are tree shifts and
flossing moves.
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