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Abstract

We study the asymptotic relation between the probability and the complexity
of Boolean functions in the implicational fragment which are generated by large
random Boolean expressions involving variables and implication, as the number of
variables tends to infinity. In contrast to models studied in the literature so far, we
consider two expressions to be equal if they differ only in the order of the premises. A
precise asymptotic formula is derived for functions of low complexity. Furthermore,
we show that this model does not exhibit the Shannon effect.
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1 Introduction

Since almost two decades a rising interest in probability distributions on a set of Boolean
functions which are induced by random Boolean expressions can be observed. To our
knowledge the first systematic investigations in this direction have been done by Paris
et al. [19] on expressions composed of the two connectives AND and OR. Lefmann and
Savický [17] proved the existence of a limiting distribution (as the size of the expressions
tends to infinity) and established estimates relating probability and complexity. These
bounds were later improved in [1] and the precise asymptotic behaviour for functions of low
complexity was determined by Kozik [16]. A generalisation which takes commutativity of
the connectives into account and maps this property into the model was presented recently
in [10]. The question for the probability of a tautology was pursued for instance in [13,
14, 15, 18] for various logical systems. An overview is presented in Gardy’s survey [8].

In this paper we consider Boolean formulas built of positive variables taken from a
fixed set {x1, . . . , xn} of Boolean variables and the logical connective of implication. The
functions which can be represented by such formulas form the so-called implicational frag-
ment. The implicational fragment plays an important role in the theory of programming
since there are linear time satisfiability tests for such expressions (see [2]). A thorough
study of a closely related model was carried out in [6]: There expressions of the form
A1 → (A2 → (A3 → . . . (Ap → α))) have been represented by binary trees where internal
nodes represent implication and external nodes (leaves) carry labels which correspond
to the variables. Though technically more convenient, a drawback of using plane binary
trees (i.e., binary trees embedded in the plane) is that two expressions which differ only
w.r.t. the order of the premises are considered different. It is more natural to consider
x → (y → z) and y → (x → z) to be the same expression since both represent the func-
tion (x ∧ y) → z. The aim of this paper is to study a model of Boolean expressions which
takes into account that the premises of an implication can be permuted. In particular,
we present a quantitative relation between the probability of a function and its (formula
size) complexity.

Plan of the paper: In the next section we will give a precise description of the model
and state our main result. It will turn out that it is a priori not guaranteed that the
probability measure we introduce actually exists. This issue is discussed in Section 3.
In Section 4 we study the structure of tautologies. We will show that asymptotically
almost all tautologies are simple, i.e. of a particular shape. Section 5 is then devoted to
the asymptotic computation of the probabilities of a general Boolean function. We will
succeed by following the approach of [6] and introducing certain expansion techniques
which may be applied repeatedly to formulas. After all, we prove that applying one
expansion to a minimal formula representing f yields a sufficiently rich class of formulas
from which the asymptotic probability can be computed. In the last section we disprove
the Shannon effect for our model. Roughly speaking, a model exhibits the Shannon effect
if a random function asymptotically almost surely has exponential complexity (w.r.t. to
the number of variables). This is, for instance, true for the set of all Boolean functions
on n variables equipped with the uniform probability.
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2 Model and main result

We start with a precise description of the model:

Definition 1. An implicational formula (or expression) is either a single vari-
able taken from {x1, . . . , xn} or defined recursively as an expression of the form
{A1, A2, . . . Ak} → α where A1, . . . , Ak are themselves formulas and α is a vari-
able. The order of the premises A1, . . . , Ak is not relevant, i.e., all expressions
{Aσ(1), Aσ(2), . . . , Aσ(k)} → α where σ is a permutation of {1, . . . , k} are equal. We call α
the goal of the expression. The size of a formula is the number of variables it is composed
of, where repetitions are counted.

Remark 2. Let us illustrate this definition by an example: Both formulas {(x → y), x} → z
and {x, (x → y)} → z are the same object. Its size is 4 and it represents the Boolean
function (x ∧ (x → y)) → z.

Expressions according to the above definition can be easily represented by trees:

Definition 3. A rooted and non-plane tree where the vertices are labelled by variables
from {x1, . . . , xn} (see Figure 1) is called a general implication tree. The set of all
general implication trees is denoted by An, the set of those with m vertices by An,m.

Obviously, general implication trees represent expressions. The label of the root is
the goal and the subtrees are trees representing the premises. Clearly, the tree must be
non-plane, since the order of the subtrees is irrelevant. The size of the corresponding
expression equals the number of vertices of the tree.

α

T1 T2 · · · Tp

Figure 1: A general implication tree representing the expression A1 → (A2 → (A3 →
. . . (Ap → α))) where A1, . . . , Ap are the expressions represented by T1, . . . , Tp, respec-
tively.

Our particular interest is the relation between probability and complexity of a Boolean
function. Let Fn denote the implicational fragment of all Boolean functions in the vari-
ables x1, . . . , xn. We do not require that a function in Fn actually depends on all the
variables. E.g. the constant functions ⊤ (tautologies) and ⊥ (contradictions) do not
depend on any variable.

Definition 4. We call a variable x an essential variable for a function f =
f(x, x1, . . . , xn−1) if there exists an assignment of True or False to the variables
x1, . . . , xn−1, which we denote by x0, such that f(True, x0) 6= f(False, x0).
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x1

x3

x1

x2 x1 x1 x2

x3

x1

Figure 2: A general implication tree representing the Boolean function x3 → x1.

Definition 5. Let f ∈ Fn. The complexity L(f) is defined as the minimal size of
expressions representing f .

Let Pm,n be the probability distribution induced by the uniform distribution on the
set of all general implication trees of size m. The probability measure Pn is defined as the
limit of the measures Pm,n as m tends to infinity, i.e., Pn = limm→∞ Pm,n. We call Pn(f)
the probability of f .

A general implication tree representing f and having L(f) vertices is called a minimal
tree of f . The set of all minimal trees of f is denoted by Mf .

Remark 6. Note that the probability of the function is defined as the limit of a sequence
of probabilities. A priori, we cannot be sure that this limit exists. We will see in the next
section that this limit indeed exists.

We aim at a quantitative description of the asymptotic probability of a function, as n
tends to infinity, and its relation to the complexity. Precisely, we will show:

Theorem 1. Let n0 be a fixed positive integer and f ∈ Fn0. Then we have

Pn(f) =
λf

nL(f)+1
+ O

(

1

nL(f)+2

)

, as n → ∞,

where λf is a constant independent of n.

Remark 7. Note that we fix the function in advance. Thus the number of essential vari-
ables is fixed as well. Nevertheless, we may always regard a function in n0 variables as an
element of Fn for n > n0. For instance, x → y is the same function as {z → z, x} → y.

3 Existence of the limiting probability Pn

In order to show our result we will use the so-called symbolic method (see [5] for a
description of this method). A general implication tree can be formally described by
a grammar: If P denotes the set of all general implication trees and L the set of all
variables, then obviously P = L × multiset(P). Let us denote by P (z) =

∑

m>0 Pmzm
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the generating function of general implication trees. Then the coefficient Pm = [zm]P (z)
is the number of general implication trees of size m. According to the symbolic method,
the grammar can be translated into the functional equation

P (z) = nz exp





∑

i>1

P (zi)

i



 .

Moreover, let Pf (z) =
∑

m>0 Pf,mzm denote the generating function of general implication
trees representing the Boolean function f . Pf,m is the number of all general implication
trees with m vertices which represent f . Similarly as before, we get

Pf (z) = z l1{f lit} + z
n
∑

j=1

∞
∑

l=1

∑

{g1∧...∧gl}→xj=f

l
∏

k=1

exp

( ∞
∑

i=1

Pgk
(zi)

i

)

where l1{f lit} gives 1 if f is a variable and 0 otherwise, the index j chooses the label of
the root of the tree and the index l counts the number of different Boolean functions
represented by at least one subtree of the root. Thus the range of the innermost sum
is the set of all choices of mutually different functions g1, . . . , gl. For every f we get an
equation like this, altogether forming a system of functional equations.

We can apply the Drmota-Lalley-Woods theorem (DLW) to this system. We will not
go into details here but refer the reader to [5, Chapter VII] or [3, Sec. 2.2.5].

DLW states that, under certain technical conditions, all functions in the system have
the same dominant singularity η and admit, locally around η, an expansion of the form

Pf (z) = gf (z) − hf (z)

√

1 − z

η
(1)

where gf (z) and hf (z) are analytic at z = η. The system above fulfills all assumptions
of DLW. We refer to [6, Sec. 3] where an application of DLW in a very similar context is
carried out in detail.

By the transfer lemma (see [4, Corollary 2]) we can further extract asymptotic coeffi-
cients from an expansion like (1) and obtain

[zm]Pf (z) ∼ an(f)n−3/2η−nas m → ∞, (2)

where an is a positive constant. Note that P (z) =
∑

f Pf (z) and P (z) admits a singular
expansion of the same type, it has the same singularity and therefore has coefficients of
the same asymptotic behaviour. Since the limiting distribution Pn is determined by the
limits limm→∞[zm]Pf (z)/[zm]P (z), (2) immediately implies the existence of the limiting
distribution.

4 Simple tautologies

The proof of our main result relies on the expansion techniques introduced in the next
section. These are essentially sets of rules how to attach certain trees to a given tree. For
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instance, adding a tautology as a premise never changes the function. Thus we want to
count the number of trees obtained by expansions and in particular the trees representing
a tautology. Exact counting of tautologies is not easy, but fortunately only tautologies
of a simple shape are asymptotically relevant. The three families that will be presented
in the next definition have been introduced in the paper [7] in the case where premises
cannot commute.

Definition 8. A simple tautology is a general implication tree in which exactly one
subtree of the root is a leaf labelled by the same label as the root itself (c.f. Figure 3). If
this label is x, we say that the simple tautology is realised by x.

x

x T1 · · · Tp

Figure 3: A simple tautology realised by the variable x.

A simple non-tautology is a general implication tree such that the label of the root
is different from the labels of all its children (c.f. Figure 4).

x

xi1

· · ·

xi2

· · ·

· · ·
xip

· · ·

Figure 4: A simple non-tautology: x /∈ {xi1 , . . . , xip
}.

A less simple non-tautology is a general implication tree such that (c.f. Figure 5):

• exactly one of the children of the root, say s, has the same label x as the root itself,

• the subtree rooted at s has more than one vertex,

• every child of s has a root labelled by a label different from all the labels appearing
on the first level of the tree, and all the grand-children of s have root-labels different
from x and from their parent’s label.

In order to proceed, we will show that asymptotically almost every expression is a
simple tautology, a simple non-tautology or a less simple non-tautology.

Definition 9. Let Bn ⊆ An and Bn,m = {t ∈ Bn | t has m vertices}. We define the
limiting ratio of Bn by

µn(Bn) = lim
m→∞

|Bn,m|
|An,m| .
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x

y1

· · ·

y2

· · ·

· · · yr

· · ·

x

T1 · · · Tp

The (Ti)i=1...p are trees rooted by wi /∈ {x, y1, . . . , yr} and whose
sons are labelled by labels zij /∈ {x, wi}:

wi

zi1

· · ·

zi2

· · ·

· · · ziq

· · ·

Figure 5: A less simple non-tautology

Remark 10. Note that we can easily construct sets Bn such that µn(Bn) does not exist.
But the considerations of the previous section imply that for all f ∈ Fn the set An,f of all
general implication trees which represent f has a limiting ratio and even more we have
µn(An,f ) = Pn(f).

Let T denote the set of tautologies, Ts the set of simple tautologies, Ns and Nℓ the
set of simple and less simple non-tautologies, respectively.

Theorem 2. Asymptotically almost every tautology is simple, i.e. µn(Ts) ∼ µn(T ) as
n → ∞.

In order to prove this theorem we will show that µn(Ts ∪ Ns ∪ Nℓ) = 1 − O
(

1
n2

)

which

implies µn(T \ Ts) = O
(

1
n2

)

. On the other hand, the set of simple tautologies is much
larger, as the following proposition shows.

Proposition 11. The limiting ratio of simple tautologies satisfies µn(Ts) = 1
en

+ O
(

1
n2

)

,
as n → ∞.

Proof. A simple tautology is constructed by L × Z × multiset(P \ Z) where P and L
are the set of general implication trees and the set of variables, respectively, and Z is
the set of a single variable. The Z corresponds to the distinguished leaf in the first level
determined by the label of the root. Hence the generating function of simple tautologies
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is

S(z) = nz2 exp





∑

i>1

P (zi) − zi

i



 = zP (z) exp



−
∑

i>1

zi

i



 = z(1 − z)P (z).

We know that S(z) and P (z) have the same singularity η and singular expansions of
the kind (1) around them. It follows that (cf. [10, Lemma 3.4])

µn(Ts) = lim
m→∞

Sm

Pm

= lim
z→η

S ′(z)

P ′(z)
.

We have
S ′(z)

P ′(z)
=

(1 − z)P (z)

P ′(z)
− zP (z)

P ′(z)
+

z(1 − z)P ′(z)

P ′(z)
.

From (1) we can deduce that P ′(z) tends to infinity as z tends to η, while P (η) is bounded.
Therefore, the first two summands become negligible compared to the third one if z tends
to η, and

lim
z→η

S ′(z)

P ′(z)
= η(1 − η).

We now have to determine an asymptotic expansion of η, as n → ∞. By an application
of the implicit function theorem (cf. [3, Theorem 2.19]), (η, P (η)) is a solution of the
system

{

P = nzeP Q
1 = nzeP Q

where Q = exp
(

∑

i>2
P (zi)

i

)

is analytic in η. Therefore, P (η) = 1 and η = 1
neQ(η)

. Further,

as P (z) = nz+O(z2), we know that Q(z) = 1+nz2 +O(z3), which implies η = O
(

1
n

)

and

Q(η) = 1+O
(

1
n

)

. We can thus conclude that η = 1
en

+O
(

1
n2

)

. By further bootstrapping
it is possible to show

η =
1

en
− 1

2e2n2
+ O

(

1

n3

)

. (3)

We finally get limz→η
S′(z)
P ′(z)

= η(1 − η) = 1
en

+ O
(

1
n2

)

.

Proposition 12. The limiting ratio of simple non-tautologies satisfies µn(Ns) = 1 − 2
n

+

O
(

1
n2

)

.

Proof. The set of simple non-tautology satisfies Ns = L × multiset((L \ Z) ×
multiset(P)). Since (L \ Z) × multiset(P) gives

(n − 1)z exp





∑

i>1

P (zi)

i



 =
n − 1

n
P (z),

the generating function of simple non-tautologies is given by the equation

Ns(z) = nz exp





n − 1

n

∑

i>1

P (zi)

i



 = nz

(

P (z)

nz

)
n−1

n

= (nz)
1/nP (z)

n−1
n .
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The limiting ratio of simple non-tautologies is µn(Ns) = limm→∞
[zm]Ns(z)

Pm
= limz→η

N ′

s(z)
P ′(z)

,
and

N ′
s(z) =

1

n
(nz)

1−n
n P (z)

n−1
n +

n − 1

n
(nz)

1/nP ′(z)P (z)
n−1−n

n .

If we divide by P ′(z) and consider the limit when z tends to η, the first term of the sum
becomes negligible compared to the second. Eventually, P (η) = 1 implies

lim
z→η

N ′
s(z)

P ′(z)
=

n − 1

n

(

1

e

)1/n

+ O
(

1

n2

)

=
(

1 − 1

n

)2

+ O
(

1

n2

)

= 1 − 2

n
+ O

(

1

n2

)

,

which completes the proof.

Proposition 13. We have µn(Nℓ) =
(

2 − 1
e

)

· 1
n

+ O
(

1
n2

)

.

Proof. First, we may assume that y1, . . . , yr (c.f. Figure 5) are pairwise different. Any
dependency introduces an additional factor 1/n and therefore the set of such trees is
negligibly small.

Let us fix an integer r > 0 and variables {x, y1, . . . , yr}. Moreover, let T (z) be the
generating function of the Ti, i = 1 . . . p, as in Figure 5. Since for the choice of the
root-label r +1 possible labels are forbidden, and for the labels in the first generation two
possible labels are ineligible, we obtain

T (z) = (n − r − 1)z exp





∑

i>0

n − 2

n

P (zi)

i



 = (n − r − 1)z

(

P (z)

nz

)
n−2

n

. (4)

To construct Nℓ we start with a pair of equally labelled vertices (the root and one of

its children). Then we have
(

n−1
r

)

possibilities to choose y1, . . . , yr. The resulting subtrees
are all different, hence this is no multiset but an ordinary set of trees. Finally, from the
multiset comprising the Ti’s (c.f. Figure 5) we must exclude the empty set, since x is not
a leaf. These considerations yield the formal relation

Nℓ = L × Z ×
⋃

r>0

(

n − 1

r

)

(Z × multiset(P))r × (multiset(Tr) \ {∅}),

where Tr is the set of trees with the generating function given in (4). Therefore, the
generating function Nℓ(z) of less simple non-tautologies is given by

Nℓ(z) = nz2
∑

r>0

(

n − 1

r

)(

P (z)

n

)r


exp





∑

i>1

T (zi)

i



− 1





= nz2
∑

r>0

(

n − 1

r

)(

P (z)

n

)r


exp





∑

i>1

(n − r − 1)zi

i

(

P (zi)

nzi

)
n−2

n



− 1



 .
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As before, the limiting ratio of less simple non-tautologies is µn(Nℓ) = limz→η
N ′

ℓ
(z)

P ′(z)
. Let

Q(z) = exp

(

∑

i>2
(n−r−1)zi

i

(

P (zi)
nzi

)
n−2

n

)

. Then

lim
z→η

N ′
ℓ(z)

P ′(z)
∼ nη2

∑

r>0

(

n − 1

r

)

P (η)r−1

nr
×









n − 2

n
(n − r − 1)η

(

P (z)

nη

)
n−2

n

+ r



Q(η)e(n−r−1)η(P (η)
nη )

n−2
n − r



 .

We know that P (η) = 1 and η ∼ 1
en

. Therefore Q(η) ∼ 1 and hence

lim
z→η

N ′
ℓ(z)

P ′(z)
∼ 1

ne2

∑

r>0

(n − 1)r

r!nr

((

n − 2

n
(n − r − 1)

1/ne

(1/e)
n−2

n

+ r

)

e(n−r−1) 1
en

e
n−2

n − r

)

Truncating the sums at n1/3 causes a negligibly small error, moreover we can use the
estimate (n − 1)r/nr ∼ 1 and obtain

lim
z→η

N ′
ℓ(z)

P ′(z)
∼ 1

ne2

⌈ n
3

⌉
∑

r=0

1

r!
((r + 1)e − r) ∼ 2

n
− 1

en
.

It is interesting to note that, asymptotically, these three families of trees play the same
rôle in the model without commutativity of the premises [7] and in our model.

5 Probability of a general Boolean function

To show Theorem 1 we follow the ideas used in [6] and define different kinds of expansions:
tautology expansions, premise expansions and goal expansions.

Definition 14. Given a general implication tree, the tree obtained by adding a new
subtree te to a node ν of t is called an expansion of t.

• If the expanded tree represents the same function as t, we call the expansion a valid
expansion.

• If te is a simple tautology, the expansion is called a tautology expansion of t.
For any choice of ν, the expanded tree represents the same function as t and the
expansion is valid.

• If te has exactly one subtree being a leaf labelled by x, then the expansion is an
x-premise expansion. If ν has an ancestor labelled by x, or is labelled by x, then
the expansion is valid(c.f. Figure 6).

• If the root of te is labelled by x, then the expansion is called x-goal expansion. If
ν is the parent of a leaf labelled by x or if ν has an ancestor which is a brother of a
leaf labelled by x, then the expansion is valid (c.f. Figure 7).
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root

x

ν

y

x

Figure 6: A valid x-premise expansion in ν (y can be any label in {x1, . . . , xk}).

Fix a Boolean function f ∈ Fn0 . We denote by Et(Mf ) (resp. Ep(Mf ), resp.
Eg(Mf )) the set of trees obtained by a valid tautology (resp. premise, resp. goal)
expansion of a minimal tree of f , and by E(Mf ) the union of these three sets.

Lemma 15. The limiting ratio of the family E(Mf ) verifies, asymptotically when n tends
to infinity,

µn(E(Mf )) =
λf

nL(f)+1
+ O

(

1

nL(f)+2

)

,

with λf being a constant depending only on f .

Proof. Let Ex denote the set of trees with exactly one child of the root being a leaf labelled
by x and by Gx the set of trees with root labelled by x. Every x-premise (resp. x-goal)
expansion of a tree t is realised by attaching a tree from Ex (resp. Gx) to some node of t.

We already know (cf. Section 4) that µn(T ) ∼ 1/en, as n → ∞. Using again the
symbolic method, we obtain the generating function of the family Ex:

Ex(z) = nz2 exp
∑

i>0

P (zi) − zi

i
= z(1 − z)P (z) = S(z),

and therefore µn(Ex) = 1
en

+ O( 1
n2 ). The generating function of the family Gx is given by

Gx(z) = P (z)/n and therefore µn(Gx) = 1/n.
Let t be a tree and define

p(t) =
∑

x∈{x1,...,xn}
#vertices of t where a valid x-premise expansion is possible,

g(t) =
∑

x∈{x1,...,xn}
#vertices of t where a valid x-goal expansion is possible.

the electronic journal of combinatorics 19(2) (2012), #P37 11



root

z

x y

ν

x

Figure 7: A valid x-goal expansion in ν (y and z can be any label in {x1, . . . , xk}).

Note that a tautology expansion is always valid. Hence the limiting ratio of E(Mf ) is
given by

µn(E(Mf ))= lim
m→∞

∑

t∈Mf

(

p(t)
[zm−L(f)]Ex(z)

[zm]P (z)
+ g(t)

[zm−L(f)]Gx(z)

[zm]P (z)
+ L(f)

[zm−L(f)]S(z)

[zm]P (z)

)

=
1

(en)L(f)

(

λp
1

en
+ λg

1

n
+ L(f)

1

en

)

,

where λp =
∑

t∈Mf
p(t) and λg =

∑

t∈Mf
g(t). Set

λf =
1

eL(f)

(

λp

e
+ λg +

L(f)

e

)

.

Thus,

µn(E(Mf )) =
λf

nL(f)+1
+ O

(

1

nL(f)+2

)

.

Note that trees obtained by at least two distinct kinds of expansions have been counted
several times here. These trees have two constraints though: either two premises with
specific labels, or a premise and the goal with fixed labels. As λp, λg and L(f) are
independent of n, such double expansions have a limiting ratio O(1/nL(f)+2).

Lemma 16. Further expansions yield an asymptotically negligible contribution to the
limiting ratio. Precisely, we have

µn





⋃

k>2

Ek(Mf ) \ E(Mf )



 = O
(

1

nL(f)+2

)

, when n → ∞.
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Proof. First, consider a minimal tree t and expand it once by a tree t′, such that the
resulting tree t′′ is in Eg(Mf ). Then any tree obtained from t′′ by doing a second expansion
at a node of t′ lies in E(Mf ).

Second, consider a minimal tree t and expand it once (by attaching a tree t′) such
that the resulting tree t′′ lies in Ep(Mf ) ∪ Et(Mf ). If we expand a second time, then we
obtain a tree not in E(Mf ) if and only if the second expansion is done at a node of t or
the expansion is done at the (unique) child of the root of t′ which is a leaf labelled by the
variable realising the expansion (or the child labelled in the same way than the root in
tautology expansions, respectively).

Let us calculate the limiting ratio of the set of premise expansion trees where the
expansion is done at the child of the root which realises the expansion: the generating
function of this family is

N(z) = Ex(z)(Ex(z) + Eg(z) + S(z)).

Hence, its limiting ratio is of order 1
n2 and the trees obtained by such a nested expansion

of a minimal tree have limiting ratio O
(

1
nL(f)+2

)

.
We obtain an analogous result for the set of trees obtained by a second expansion in

the specific node related to the first tautology expansion.
The considerations above imply that the only possibly non-negligible family of ex-

panded trees in
⋃

k>2 Ek(Mf ) \ E(Mf ) is the set of trees obtained by k expansions of
some minimal tree t, all of which have been done at nodes of t. The limiting ratio of the
family of trees obtained by k expansions of a minimal tree, done in k of its initial nodes
(counted with possible repetitions), is

Gk(z) =
L(f)k

k!
(Et(z) + Ep(z) + Eg(z))kmfzL(f),

where mf is the number of minimal trees of f . Its limiting ratio is O( 1
nL(f)+k ) which is

negligible compared to 1
nL(f)+1 for all k > 2.

Note that expanding a tree is obviously a reversible procedure. Thus valid expansions
have valid reductions as their counterparts. In [6] the authors presented an example of a
tree which cannot be reduced though it is not minimal.

Definition 17. We pick a tree representing f and simplify it by removing every subtree
which is a tautology, a premise or a goal expansion. If the tree cannot be simplified further
and is not minimal, we call the obtained tree an irreducible tree of f . The set of such
trees is denoted by If .

In order to complete the proof of Theorem 1, we have to show that the set of trees
obtained by sucessive expansions of all irreducible trees has a negligibly small limiting
ratio. The reader will observe that these reductions are not confluent, consequently by
expanding irreducible trees we will obtain some trees several times. The following results
will state that this double counting is negligible. We will adopt some ideas of the corre-
sponding proof in [6] for binary plane implication trees. In fact, we only have to prove
the analogue of [6, Corollary 25]:
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Lemma 18. Fix a subset Γ ⊆ {x1, . . . , xn}. Let Ap
q be the set of trees having at least p

nodes labelled by a variable in Γ at depth less than or equal to q. Moreover, set E∗(Ap
q) =

⋃

k>0 Ek(Ap
q). Then

µn(E∗(Ap
q) = O

(

1

np

)

.

Proof. Let us consider the set Bp
q of trees of height less than or equal to q and with at

most pq vertices, at least p of which have labels chosen from Γ. Let X(Bp
q) denote the set

of trees obtained by adding an arbitrary number of general implication trees at nodes of
Bp

q . Note that Ap
q ⊆ X(Bp

q). If we denote by Φq,p(z) the generating function of Bp
q , then

[zℓ]Φq,p(z) 6 cℓ

(

ℓ
p

)

γpnℓ−p,

with γ being the cardinality of Γ and cℓ a constant. Adding a multiset of trees at a node
z of Bq,p gives an additional exp(

∑

i>1
P (zi)/i) = P (z)/nz. Therefore, the generating function

ΦXq,p
(z) of X(Bq,p) verifies

[zm]ΦXq,p
(z) 6 [zm]

∑

ℓ6pq

cℓ

(

ℓ
p

)

γpnl−p P (z)ℓ

nℓ
=

1

np

∑

ℓ6pq

[zm]CℓP (z)ℓ,

where Cℓ is a constant. Thanks to the asymptotic coefficients derived from the singular

expansion of type (1) by a transfer lemma (see [4]), we know that [zm]P (z)ℓ

[zm]P (z)
tends to a

constant as m → ∞, since P (z) and P ℓ(z) both have a square-root singularity at η.
Therefore, there are constants Kℓ such that

[zm]ΦXq,p
(z)

[zm]P (z)
6

1

np

∑

ℓ6pq

Kℓ,

which implies that the limiting ratio of the set Ap
q is of order O

(

1
np

)

.

Thanks to this lemma the proofs of [6] can easily be adapted to our new model: The
idea is to define a set N which is the union of certain sets of the form Ap

q, all of them
satisfying p > L(f) + 1 which implies µn(N ) = O (1/nL(f)+2). Then the set of irreducible
trees If is partitioned according to the tree size and the number of essential and inessential
variables of f that occur among the labels. The final step is to show that the sets in this
decomposition are either empty or subsets of N . All those arguments are independent of
whether the premises are considered permutable or not. Thus the following lemma holds
in our model.

Lemma 19. The limiting ratio of the set E∗(If ) verifies

µn(E∗(If )) = O
(

1

nL(f)+2

)

.

Proof. See [6, Sec. 5].
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Proof of Theorem 1. The set of implication trees representing a fixed Boolean function f
is the union of the following sets: the set Mf of minimal trees of f , the set E(Mf ) of
minimal trees of f expanded once, the set E>2(Mf ) of minimal trees of f expanded at
least twice, and the set E∗(I) of (iterated) expansions of irreducible trees representing f .

When n tends to infinity, thanks to Lemmas 16 and 19, the set E(Mf ) is the only one
to contribute to the asymptotic probability of f . This contribution is given in Lemma 15.

6 Disproving the existence of the Shannon effect

To show that our model does not exhibit the Shannon effect, we will follow the proof
presented in [9] for binary plane implication trees: we consider a family Π of trees with less
than g(n) vertices where g(n) is a suitable function of sufficiently fast but subexponential
growth in n. If we show that the limiting ratio of all expansions of all trees of Π is non-
zero, then there is a set of functions of subexponential complexity (actually bounded by
g(n)) with positive probability, which contradicts the assertion of the Shannon effect.

Some care is required since we want to avoid double-counting. Thus we restrict the
expansions to those where, given an expanded tree, the location where the expansion took
place can be identified. Of course, doing so we will not get all trees of E(Π) but alone all
those representing a function f with L(f) < g(n). Since we are only interested in lower
bounds, it is sufficient to get enough trees to guarantee a positive probability.

Given two variables x, y, we denote by Hx,y the family of trees with exactly two children
of the root being leaves labelled by x and y, respectively, and with no siblings x and ỹ,
where ỹ 6= y, in the first g(n) levels. Let Hx,y(z) be the generating function of this family.
Moreover, consider the family Πx,y of trees with root label x and in which a leaf labelled
by x and a leaf labelled by y cannot be siblings. The generating function of this family is
denoted by Πx,y(z). We generate trees by expanding a tree t ∈ Πx,y with trees only from
Hx,y. Hence, an expansion can easily be identified: the forbidden pattern of t appears
in every tree of Hx,y among the children of the root. So, the topmost occurence (from
the root) of siblings x and y exhibits the location where the expansion took place. The
second condition (forbidden siblings x and ỹ) enables us to identify y. Finally, note that
every such expansion is an x-premise expansion of t.

In order to derive an expression for Hx,y(z) let us introduce the following operator:
Let Q(z) be a generating function and set

Ψ(Q) = nz exp





∑

i>1

Q(zi) − nzi

i



 ((1 − z)−n − (n − 1)z2).

If we assume that the combinatorial structure Q corresponding to Q(z) is a tree class
related to our model, then the exponential term corresponds to a multiset of non-leaves.
The last factor corresponds to a multiset of leaves with a restriction on the multisets
of size two. Indeed, we subtract the n − 1 forbidden multisets {x, ỹ}. Therefore the
combinatorial structure which corresponds to Ψ(Q) has the following property: Either
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the number of leaves in the first level is different from two or the set of labels of the two
leaves is different from any set {x, ỹ} with ỹ 6= y. Then we obtain

Hx,y(z) = nz3(1 − z) exp





∑

i>1

P̃ (zi)

i





where P̃ (z) = Ψg(n)(P ). Here Ψl denotes l consecutive applications of Ψ. Observe that
P̃ (z) has the same dominant singularity η as P (z).

To count the number of trees of the family Πx,y let us first count the number Nk

of trees where the root is unlabelled, it has exactly k children, all those children are
leaves, and the set of the labels of these leaves does not contain the set {x, y} as a
subset. This is exactly the number of k-multisets of labels which contain at most one
of the labels x and y. The number of such trees without this restriction is given by
Zk(n, n, . . . , n) = Zk(n) =

(

n+k−1
k

)

where Zk denotes the cycle index of the symmetric
group Sk. Moreover, the number of such trees with at least one leaf labelled by x and one
leaf labelled by y is

lx+ly6k
∑

lx,ly>1

Zk−lx−ly(n − 2, n − 2, . . . , n − 2)

=
k
∑

l=2

(l − 1)Zk−l(n − 2, n − 2, . . . , n − 2) =
k
∑

l=2

(l − 1)Zk−l(n − 2),

which gives Nk = Zk(n) −∑k
l=2(l − 1)Zk−l(n − 2).

Lemma 20. For k > 0 we have Nk =
(

n+k−1
k

)

− (k − 1)
(

n+k−4
k−2

)

+ (n − 2)
(

n+k−4
k−3

)

.

Proof. The well-known identity (see for example [12, page 174])

M
∑

m=0

m

(

x + m

m

)

= (x + 1)
M
∑

m=1

(

x + 1 + m − 1

m − 1

)

= (x + 1)

(

x + 1 + M

M − 1

)

yields

Nk =

(

n + k − 1

k

)

− (k − 1)
k−2
∑

l=0

(

n − 3 + l

l

)

+
k−2
∑

l=0

l

(

n − 3 + l

l

)

=

(

n + k − 1

k

)

− (k − 1)

(

n + k − 4

k − 2

)

+ (n − 2)

(

n + k − 4

k − 3

)

.

Let Dx,y(z) be the generating function associated to the class Dx,y of trees in which a
leaf labelled by x and a leaf labelled by y cannot be siblings. Clearly, Dx,y(z) = nΠx,y(z).
Decomposing Dx,y according to the number of leaves in the first level we obtain

Dx,y(z) = nz exp





∑

i>1

Dx,y(zi) − nzi

i





∑

k>0

zkNk

= nzeDx,y(z)Q(z)
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where

Q(z) = exp





∑

i>2

Dx,y(zi) − nzi

i





∑

k>0

zkNk

= (1 − z)n exp





∑

i>2

Dx,y(zi)

i





∑

k>0

zkNk (5)

Proposition 21. The singularity ρ of Dx,y verifies ρ
η

= 1 + d
n2 + O(n−3), as n → ∞,

where d is a non-negative constant. Moreover, the function Q(z) given in (5) is analytic
in the domain |z| 6 ρ.

Proof. The second assertion is an immediate consequence of the first one, since the first
one implies ρ ∼ 1/en.

Note that (z, D) = (ρ, Dx,y(ρ)) is a solution of the system
{

D = nzeDQ
1 = nzeDQ

(6)

where Q = Q(z) is the function given in (5). Moreover, Q(0) = 1 and Dx,y(0) = 0

immediately imply ρ ∼ 1/en when n → ∞. For further bootstrapping set ρ ∼ 1
en

(

1 + α
n

)

.

First we wish to get a more accurate asymptotic expansion of Q(ρ), as n → ∞. Therefore,
let us study the three factors in (5) separately. Observe that

(1 − z)n =
(

1 − 1

en

(

1 +
α

n

))n

= exp



−n ln
1

1 − 1
en

(

1 + α
n

)





= exp

(

−1

e

(

1 +
α

n

)

− 1

2e2n

(

1 +
α

n

)2

+ O
(

1

n2

)

)

= exp
(

−1

e
− α

en
− 1

2e2n
+ O

(

1

n2

))

.

Examination of the second factor yields

exp





∑

i>2

Dx,y(zi)

i



 = exp

(

nρ2

2
+ O

(

1

n2

)

)

= 1 +
1

2e2n
+ O

(

1

n2

)

.

Turning to the last factor, we obtain

1 + nρ +
(n − 1)(n + 2)

2
ρ2 +

∑

k>3

[(

n + k − 1

k

)

zk + O
(

nk−2ρk
)

]

=
∑

k>0

1

k!

(

1 +
α

n

)k (1

e

)k

+
1

2

∑

k>2

n−1

ek(k − 2)!

(

1 +
α

n

)k

+ O
(

1

n2

)

= exp
(

1

e
+

α

en

)(

1 +
1

2e2n
+ O

(

1

n2

))

.
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Finally, collecting the contributions of the three factors gives Q(ρ) = 1 + 1
2e2n

+ O (1/n2),

then the second equation of (6) implies ρ = 1
en

(

1 − 1
2e2n

+ O
(

1
n2

))

. Now, (3) implies the
assertion, after all.

Now we are ready to turn to the Shannon effect. We add all the contributions coming
from expansions of a tree t ∈ Πx,y, say of size r, by attaching a tree t′ ∈ Hx,y. Note that
there are r positions where t′ can be attached and that Πx,y(z) = Dx,y(z)/n. Finally, recall
that [zm]R(z) ∼ Cη−mm−3/2 for R(z) = P (z) as well as R(z) = Hx,y(z) (possibly with
different constants C) and [zm]Dx,y(z) ∼ Cρ−mm−3/2, as m → ∞. Hence we obtain

∑

f :L(f)6g(n)

Pn(f) > lim
m→∞

∑

r6g(n)

∑

x 6=y

r
[zr]Dx,y(z)

n

[zm−r]Hx,y(z)

[zm]P (z)

= lim
m→∞

∑

x 6=y

∑

r6L(f)

cr−1/2ηr+3ρ−r

= lim
m→∞

cη3n(n − 1)
∑

r6g(n)

r−1/2ur (7)

where u = η
ρ

= 1 − d
n2 + O

(

1
n3

)

and c is a positive constant. Therefore,

∑

L(f)6g(n)

Pn(f) >
c

n

∫ g(n)

0

ur

√
r

dr

=
c

n

( √
π√

− ln u
−
∫ ∞

g(n)

ur

√
r

dr

)

=
c

n





√
π√

− ln u
+ O





ug(n)

− ln u
√

g(n)







 .

We know that u = 1 − O
(

1
n2

)

, and thanks to (7), we can conclude that u = 1 − Θ
(

1
n2

)

,

because otherwise the right-hand side of (7) would tend to infinity while the left-hand
side is a probability bounded by 1. Thus,

ug(n)

− ln u
√

g(n)
=

n2

d
√

g(n)

(

1 + O
(

1

n

))

(

1 − d

n2
+ O

(

1

n3

)

)g(n)

= Ω(n) if g(n) = O(n2).

= o(n) if
n2

g(n)
= o(1).

Therefore, taking g(n) such that n2 = o(g(n)) gives, as n → ∞,

∑

L(f)6g(n)

Pn(f) >
c
√

π

n

1√
− ln u

+ o (1) =
c
√

π

d
+ o (1)

with c
√

π
d

6= 0. We thus have shown the following result.

Theorem 3. If g(n) is a function in n growing faster than n2, then limn→∞ Pn({f |L(f) 6
g(n)}) > α > 0. Consequently, there is no Shannon effect in our model.
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7 Conclusion

It is interesting to note here that the ideas developed in [7] and in [6] in the implication
model without commutativity of the premises can be directly adapted to the present model
with commutativity. However, the singularity of the generating function of general trees,
which is the fundamental key point of the analysis, cannot be explicitely determined. This
makes all computations more intricate in this model, and whereas in the previous model
we got exact formulas, we must deal with approximations here. Finally, although both
distributions on Boolean functions (with or without commutativity of the premises) are
distinct, they are still quite similar: in fact the order of magnitude of the probability of
each fixed function is the same for both distributions (cf. Theorem 1). Moreover in both
distributions there is no Shannon effect.

We have already noticed that in fact the probability distributions with or without
associativity or commutativity in AND/OR trees are almost identical (see [10]). Would
it be possible to prove a meta-theorem that would give a relation between the probability
distributions induced by logical models taking some properties of the connectives into
account, or not?

In this model of general implicational trees the connectives naturally disappear in the
tree representation and consequently the size is the number of occurrences of variables, or
the total number of nodes in the tree. When we studied commutativity and associativity
in AND/OR trees [10] we defined the size to be the number of leaves, which is equal to the
number of variables. In the non-associative case, this choice is equivalent to counting every
node, because the number of internal nodes is equal to the number of leaves minus one.
But in general trees, there is no link between the number of leaves and the number of
internal nodes and one could imagine different definitions of the size. Since in [10] we
aimed to compare the distribution induced on Boolean functions of this model with the
model without the properties of commutativity and associativity (see [16]), the complexity
notion and therefore the size notion had to be kept.

But if we take into account the storage of the trees, the natural notion of size in
general AND/OR trees is the total number of nodes, i.e. the number of connectives
plus the number of occurrences of variables. We are currently working on this different
notion size ([11]), which induces a change of the notion of complexity: We expect that
the induced distribution will be biased to functions of larger complexity in this model.
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Erratum (20 February 2014)

The paper contains an error in Section 6 where it is shown that the model of random
Boolean formulae into consideration does not exhibit the Shannon effect. The proof is
based on the construction of a sufficiently large family of trees (representing only functions
of small complexity) and containing trees from a family Πx,y expanded once with some tree
of a family Hx,y. The generating function Hx,y(z) of Hx,y is described by an expression
containing a multiple iteration of an operator Ψ on the generating function P (z) of all
trees [pages 15–16].

On page 16 it is claimed that Ψ does not change the singularity η of P . This is
true and even the nature of the singularity is preserved: indeed the singular expansion

P (z) = α − β
√

1 − z/η, as z → η, is transformed into Ψk(P )(z) = αk − βk

√

1 − z/η.
However, the sequence βk tends to zero exponentially fast when k tends to +∞. The
consequence of this is that the constant c appearing in Eq. (7) as well as the subsequent
estimates on the same page depends on k (and hence on n, the number of variables, since
k = Θ(n2)) and actually tends to zero which flaws the proof of Theorem 3.

We present here a correct proof based on the ideas presented in [9].

Proof of Theorem 3

Let us count the number of valid premise expansions of trees of size at most n2. All such
expansions thus compute functions of complexity at most n2. We will prove that the
limiting ratio of valid premise expansions of trees of size at most n2 tends to a positive
constant as n tends to infinity.

Note that one large tree can be a valid premise expansion of two different trees of
size at most n2. To avoid the multiple-counting of such trees, we restrict the family of
expansions as follows: in this section, we only consider premise expansions where the
expanding tree has exactly three subtrees, one labelled by the variable according to which
the expansion is done, and the two others being two implicational trees of size at least
n2. Let us denote by E the family of trees that are obtained by such a premise expansion
of a tree of size at most n2. Given such a tree, it is possible to find where the expansion
has been done, just by looking for the topmost internal node that has two subtrees of
size at least n2. This property ensures not to count several times the same tree in E by
expanding smaller trees.

To calculate the limiting ratio of E , we have to answer the following question: Consider
an implicational tree of size r. How many different valid premise expansions can be done
in this tree? A possible answer is based on the following bivariate generating function,
already introduced in the binary planar case (cf. [9]). First fix a variable y ∈ {x1, . . . , xn},

• T (u, z) is the generating function of implicational trees where z marks all nodes
and u marks the nodes having at least one ancestor labelled by y, counted with
multiplicity. This means that, given a tree t, each node having k ancestors labelled
by y contributes a multiplicative factor zuk to the weight of t.
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• V (u, z) is the generating function of implicational trees where z marks all nodes and
u marks the nodes having at least two ancestors labelled by y, again counted with
multiplicity. This means that in a tree t each node having k ancestors labelled by y
contribute a multiplicative factor zuk−1 to the weight of t.

Now observe: Let F (z) =
∑

m>0 Fmzm where Fm is the cumulative number of vertices in
all implicational trees of size m in which a valid y-premise expansion is possible. Then
F (z) = ∂u∆(1, z) where ∂u∆ := ∂/∂u∆ denotes the partial derivative of ∆(u, z) w.r.t. u.
Moreover, observe that by symmetry T (u, z) and V (u, z) do not depend on y.

We thus get the following lower bound (because we have restricted the expansions):

∑

f | L(f)6n2

Pn(f) >
n2
∑

r=1

∑

y∈{x1,...,xn}
[zr]∂u∆(1, z) lim

m→+∞
[zm−r]Gy(z)

[zm]P (z)
,

=n
∑

[zr]∂u∆(1, z) lim
m→+∞

[zm−r]Gy(z)

[zm]P (z)
(8)

where Gy(z) is the generating function of implicational trees having three subtrees, one
of them of size one, labelled by y, and the two others being implicational trees of size at
least n2. Of course, again by symmetry Gy(z) is independent of y.

Lemma 22. The dominant singularity η of P (z) satisfies

η =
1

en
− 1

2e3n2
− 8e + 9

24e5n3
+ O

(

1

n4

)

.

Proof. The first two terms in the asymptotic expansion were given in Eq. (3). Further
bootstrapping yields the next term.

Corollary 23. For large enough n we have

en > η−1
(

1 − 1

2e2n
− 1

n2

)

and, for all m,

e−m

2
exp

(

− m

n2

(

1 +
1

4e4

))

6 ηm
(

n +
1

2e2

)m

6 2e−m exp
(

− m

4e4n2

)

.

Lemma 24. Let R(z) be the unique solution of R(z) =
(

n + 1
2e2

)

z·exp(R(z)) that satisfies

R(z) =
∑

m>0 Rmzm with Rm > 0. Then for sufficiently large n and m we have

Rm >
η−m

√
2πm3

(

1 − 1

12m

)

exp
(

− m

n2

(

1 +
1

4e4
+

1

2e2n

))

.

Moreover, for m > 3, Pm > Rm.

The idea of the rest of the proof is to deal with R(z) instead of P (z), because it is
simpler to deal with and the coefficients R(z) are a good approximation of those of P (z).
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Proof. Using Lagrange inversion [5, e.g. p. 127], we deduce

Rm =
(

n +
1

2e2

)m mm−1

m!
.

Using Stirling’s formula [5, p. 407] and Lemma 22, we get, for large enough m and for
all n

Rm >
(en)m

√
2πm3

(

1 − 1

12m

)(

1 +
1

2e2n

)m

>
η−m

2
√

2πm3

(

1 − 1

12m

)

(

1 − 1 + 4e4

4e4n2
− 1

2e2n3

)m

.

Thus, for large enough m and n we obtain

Rm >
η−m

2
√

2πm3

(

1 − 1

12m

)

exp
(

− m

n2

(

1 +
1

4e4
+

1

2e2n

))

.

Let us now turn to the second statement of the lemma, that asserts that Rm is a lower
bound for Pm, when m > 3. By differentiating the functional equation satisfied by R(z),
we get:

R′(z) =
R(z)

z
+ R′(z) · R(z). (9)

This equation translates directly to a recurrence satisfied by the coefficients of R(z):

Rm+1 =
1

m
·

m−1
∑

k=0

(k + 1)Rk+1Rm−k ∀m > 2, (10)

with the first coefficients R0 = 0 and R1 = n + 1/(2e2). Let us now introduce the
generating function S(z) satisfying S(z) = nz exp(S(z) + S(z2)/2). Since the functional
equation of S(z) is a truncation of the one satisfied by P , we must have Sm 6 Pm. By
differencing this functional equation we get

S ′(z) =
S(z)

z
+ S ′(z) · S(z) + z · S ′(z2) · S(z)

which translates to

Sm+1 =
1

m
·







m−1
∑

k=0

(k + 1)Sk+1Sm−k +

m−1
2
∑

k=0

(2k + 1)S2k+1Sm−2k−1





 ∀m > 2, (11)

with initial condition S0 = 0 and S1 = n. Comparing (10) with (11) we deduce that the
sequence (Sm)m>0 grows faster than the sequence (Rm)m>0 if Sm > Rm for some m. But
indeed S3 = 3n3/2 + n2/2 and R3 = 3n3/2 + 9e−2n2/4 + 9e−4n/8 + 3e−6/16, thus S3 > R3

(for all n > 1). Hence, we get Pm > Sm > Rm for m > 3.

Let us now turn to the generating function Gy(z) that enumerates the trees used for
the valid y-premise expansions. Recall that those trees have a root with three children,
one being a single leaf y and the two other being both of size larger than n2.
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Lemma 25. There exists a constant γ > 0 such that, for all (fixed) integer r > 0,

lim
m→+∞

[zm−r]Gy(z)

[zm]P (z)
> γηr+2.

Proof. The generating function Gy(z) is given by

Gy(z) = nz2 1

2
(G(z)2 + G(z2)) where G(z) =

∑

m>n2

Pmzm,

the integer Pm being the coefficient of the generating function P (z) of all implicational
trees. Therefore, Gy(z) has the same dominant singularity η as P (z) and it is also of
square-root type, which implies that

lim
m→+∞

[zm]Gy(z)

[zm]P (z)
= lim

z→η

G′
y(z)

P ′(z)
=

nη2

2
2G(η) lim

z→η

G′(z)

P ′(z)
= nη2G(η),

since limz→η
G′(z)
P ′(z)

= limm→+∞
[zm]G(z)
[zm]P (z)

= 1. We thus have to estimate

G(η) =
∑

m>n2

Pmηm
>

2n2
∑

m=n2

Pmηm.

Using Lemma 24, there exists a constant γ̃ such that for large enough n, and for m ∈
{n2, n2 + 1, . . . , 2n2}:

Pm > Rm >
γ̃η−m

√
m3

, and γ̃ 6
1

2
√

2π

(

1 − 1

12n

)

· exp
(

−2 − 1

2e2
− 1

e2n

)

.

Thus, using Euler-McLaurin’s formula, we deduce there exists a constant γ = (2 −
√

2) · γ̃
such that:

G(η) > γ̃
2n2
∑

m=n2

m− 3
2 >

γ

n
.

Therefore

lim
m→+∞

[zm]Gy(z)

[zm]P (z)
> γη2.

And thus, using a transfer theorem [5, Chapter IV], the statement is proved.

In view of Lemma 25, using a direct lower bound based on Equation (8), we get

∑

f | L(f)6n2

Pn(f) >
n2
∑

r= n2

2

∑

y∈{x1,...,xn}
γηr+2 [zr]∂u∆(1, z). (12)

Lemma 26.

∂u∆(1, z) =
(n − 1)P (z)

n − (n − 1)P (z)
(S2(z) − S1(z)) +

zP ′(z)

n − (n − 1)P (z)
, (13)

where S1(z) =
∑

i>2 ∂uV (1, zi) and S2(z) =
∑

i>2 ∂uT (1, zi).
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Proof. In order to study ∂u∆(1, z) we must establish the functional equations satisfied by
T and U . The derivation is the same as in the paper [9]. First,

T (u, z) = (n − 1)z exp





∑

i>1

T (ui, zi)

i



+ uz exp





∑

i>1

T (ui, uizi)

i



 .

Since T (1, z) = P (z), we thus deduce

∂uT (1, z) = z exp





∑

i>1

P (zi)

i







(n − 1)
∑

i>1

∂uT (1, zi) + 1 +
∑

i>1

∂uT (1, zi) +
∑

i>1

P ′(zi)zi



 .

In view of the first displayed equation on page 5, we have

∑

i>1

P ′(zi)zi =
zP ′(z)

P (z)
− 1,

and using the functional equation satisfied by P , we get

∂uT (1, z) =
P (z)

n

(

n∂uT (1, z) + nS2(z) +
zP ′(z)

P (z)

)

,

where S2(z) =
∑

i>2 ∂uT (1, zi). Finally,

∂uT (1, z) =
P (z)

1 − P (z)

(

S2(z) +
zP ′(z)

nP (z)

)

.

Secondly,

V (u, z) = (n − 1)z exp





∑

i>1

V (ui, zi)

i
+ z exp





∑

i>1

T (ui, zi)

i







 ,

which implies, after similar calculations as for T (u, z),

∂uV (1, z) =
P (z)

n − (n − 1)P (z)
((n − 1)S1(z) + S2(z) + ∂uT (1, z)),

where S1(z) =
∑

i>2 ∂uV (1, zi). Finally,

∂u∆(1, z) =
(n − 1)P (z)

n − (n − 1)P (z)
(S2(z) − S1(z)) +

zP ′(z)

n − (n − 1)P (z)
.

In order to complete the proof, we will derive a lower bound for the r-th coefficient
of ∂u∆(1, z). Let us first note that the r-th coefficient of S2(z) − S1(z) is positive (for all

positive r). Thus, using Lemma 26, we obtain [zr] zP ′(z)
n−(n−1)P (z)

6 [zr]∂u∆(1, z).
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Lemma 27. Asymptotically when n tends to infinity, if r = Θ(n2), then

1

n
[zr−1]

R′(z)

1 − n−1
n

R(z)
= Ω

(

η−r

n

)

.

Proof. Set

σr =
1

n
[zr]

n
∑

i=2

(

1 − 1

n

)i

R′(z) · R(z)i.

Obviously, we get the next lower bound:

1

n
[zr−1]

R′(z)

1 − n−1
n

R(z)
> σr−1.

Using the functional equation of R(z) or the recurrence for its coefficients (cf. Eq. (9)
and (10)) in the proof of Lemma 24) it is easy to see that, for all i > 2,

[zr−1]R′(z) · R(z)i = (r − 1)Rr − [zr−1]
i
∑

k=2

R(z)k.

Consider the case where i 6 n and r = Θ(n2), when n tends to infinity. We will show that
the second term of the r.-h. side is negligible: First observe that (r − 1)Rr = Θ(r−1/2η−r)
(by Lemma 24).

Second, let k ∈ {2, · · · , n}. Using Lagrange inversion (see for example Eq. (14) of [5,
p. 732]) yields

i
∑

k=2

[zr−1]R(z)k =
i
∑

k=2

1

r − 1
[Rr−2]k

(

n +
1

2e2

)r−1

Rk−1 exp((r − 1)R)

6
i

r − 1

(

n +
1

2e2

)r−1 i
∑

k=2

(r − 1)r−k−1

(r − k − 1)!

6
i2

r − 1

(

n +
1

2e2

)r−1 (r − 1)r−3

(r − 3)!
6 i2

(

n +
1

2e2

)r−1 (r − 1)r−2

(r − 1)!
,

because the sequence (xk/k!)k is increasing while k 6 x. Thus, using Stirling’s formula [5,
p. 407] and Lemma 22, we conclude, for r = Θ(n2), that

∑i
k=2[z

r−1]R(z)k = O (r−1η−r).
Consequently, σr−1 = Ω (n−1η−r).

Using the previous lemma and Eq (12) we conclude that
∑

f | L(f)6n2 Pn(f) = Ω(1) as
n tends to infinity, and thus Theorem 3 is proved.
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