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Abstract

Bootstrap percolation is one of the simplest cellular automata. In r-bootstrap
percolation on a graph G, an infection spreads according to the following determin-
istic rule: infected vertices of G remain infected forever and in consecutive rounds
healthy vertices with at least r already infected neighbours become infected. Per-
colation occurs if eventually every vertex is infected. In this paper we prove that
in the case of 2-bootstrap percolation on the n-dimensional hypercube the maximal
time the process can take to eventually infect the entire vertex set is bn2

3 c.

1 Introduction

In this paper we consider the following process known as r–bootstrap percolation. Initially
a subset A of the set of vertices (called sites when we consider bootstrap percolation) of
a graph G = (V,E) is infected and the remaining vertices are healthy. We set A0 = A
and for t = 1, 2, 3, . . . , we let

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| > r}. (1)

With 〈A〉 =
⋃∞

t=0At we denote the set of all eventually infected vertices. We say that A
percolates if 〈A〉 = V (G).

Bootstrap percolation, suggested in 1979 by Chalupa, Leith and Reich [8], is a par-
ticular example of cellular automata, a concept introduced by von Neumann [11] after a
suggestion of Ulam [13]. One way of considering bootstrap percolation is to assume that a
set of initially infected sites is chosen in a random way, e.g., all sites are initially infected
(i.e., belong to A) independently with some probability p. It is clear that the probability
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of percolation is strictly increasing in p and therefore one of the interesting problems is
to determine the critical probability, pc(G, r), defined as follows:

pc(G, r) = inf{p : Pp(A percolates in r-bootstrap process on G) > 1/2}.

This problem has been considered by various researchers for many choices of G and r, e.g.,
by Aizenman and Lebowitz [1], Holroyd [9] and by Balogh, Bollobás and Morris [3, 4],
who in [5] significantly improved the bounds on the critical probability for 2-bootstrap
percolation on Qn, the n–dimensional hypercube, given earlier by Balogh and Bollobás
[2].

Another type of problems that have been considered are extremal properties of the
process itself. The size of the smallest percolating sets in [n]d was studied by Pete and a
summary of his results can be found in [6]. Recently the question about the maximal size
of a minimal percolating set, posed by Bollobás, was studied by Morris [10] for G = [n]2

and r = 2. A similar problem for 2-neighbour bootstrap percolation on a hypercube was
answered by Riedl [12]. In this paper we answer another question, also posed by Bollobás,
about extremal properties of the infection process when a set of initially infected sites is
chosen in a deterministic way. Namely, we prove the following theorem.

Theorem 1. If A ⊂ Qn percolates, i.e., if 〈A〉 = Qn, then it percolates in at most
⌊
n2

3

⌋
steps. Moreover, this bound is tight for all n ∈ N

In other words, if in the definition of bootstrap percolation we set r = 2, A0 = A and

G = Qn, then At = Qn for some t 6
⌊
n2

3

⌋
whenever

⋃∞
t=0At = Qn. For n ∈ {1, 2, 3, 4}

sets obtaining the maximal percolation time can by found by exhaustive search. For n > 5
a family of optimal sets can be described as follows: a set A infecting Qn in the maximal
possible time consists of a small set initializing the process by infecting Q2 if n = 2 (mod
3), Q3 if n = 0 (mod 3) or Q4 if n = 1 (mod 3) in the maximal time, and of pairs of
sites each of which prolongs the process by infecting three “additional” dimensions in the
maximal possible time. Details of this construction can be found in the proof of Theorem
14. A similar result for G = [n]2 and r = 2 was recently obtained by Benevides and
Przykucki [7].

2 Notation and basic observations

Let N = {1, 2, 3, . . .} denote the set of natural numbers and let N0 = N ∪ {0}. The
n-dimensional hypercube Qn is the graph with vertex set {0, 1}n and edge set {{x, y} :
x, y ∈ {0, 1}n, |{i : xi 6= yi}| = 1}. We shall write Ql for any of the

(
n
l

)
2n−l subcubes

of dimension l in Qn. For x = (xi)
n
1 ∈ {0, 1, ∗}n, let Qx be the subcube {z = (zi)

n
1 ∈

{0, 1}n : zi = xi if xi 6= ∗}. Clearly, x → Qx gives a 1 – 1 correspondence between
{0, 1, ∗}n and the subcubes of Qn. Let d(0, 1) = 1, d(0, 0) = d(1, 1) = d(∗, ∗) = d(0, ∗) =
d(1, ∗) = 0 be the distance of two coordinates. The distance of two subcubes Qx, Qy in
Qn is d(Qx, Qy) =

∑n
i=1 d(xi, yi), where vectors x, y represent subcubes Qx and Qy. In

the hypercube graph the distance between sets Qx, Qy is also d(Qx, Qy).
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For p, q ∈ N and y0, y1, . . . , yp ∈ {0, 1, ∗} we denote by [y0]
q the sequence (y0, y0, . . . , y0)

of length q, and by (y1y2 . . . yp) the set of all permutations of the multiset {y1, . . . , yp}.
We use a self explanatory notation to concatenate and nest such sequences, e.g.,

[0]2([∗]2[1]2)0 = {00 ∗ ∗110, 00 ∗ 1 ∗ 10, 00 ∗ 11 ∗ 0, 001 ∗ ∗10, 001 ∗ 1 ∗ 0, 0011 ∗ ∗0}.

From now on let us consider 2-bootstrap percolation only. A set A is said to be closed
under percolation if 〈A〉 = A. Let us recall some simple results from Balogh and Bollobás
[2].

Lemma 2. The only subsets of a hypercube that are closed under percolation are those
which are a union of disjoint subcubes that are at distance at least 3 from each other.

For vectors x, y ∈ {0, 1, ∗}n set x ∨ y = z = (zi) where zi = xi if xi = yi and ∗
otherwise. It follows from the definition of ∨ that Qx, Qy ⊂ Qz.

Lemma 3. For vectors x, y ∈ {0, 1, ∗}n with d(x, y) 6 2 we have 〈Qx ∪Qy〉 = Qx∨y.

Given an infection process on Qn with an initial set A ⊂ Qn, a subcube Ql ⊂ Qn is
said to be internally spanned if the restriction of the process to Ql fully infects Ql, i.e., if
〈A ∩Ql〉 = Ql.

Lemma 4. Let A ⊂ Qn be such that 〈A〉 = Qn. Then there is a nested sequence Q0 =
Q

xi1
i1
⊂ Q

xi2
i2
⊂ . . . ⊂ Q

xit
it

= Qn, of internally spanned subcubes (with respect to A),
where 2ij + 2 > ij+1 for all j, 0 6 j 6 t − 1. Furthermore, for j > 2 each subcube

Q
xij

ij
is spanned by two internally spanned cubes, namely by Q

xij−1

ij−1
and a subcube Qmj−1

of dimension mj−1 6 ij−1 which is not a member of the sequence.

We call a longest nested sequence of internally spanned cubes as in Lemma 4 a building
sequence of the hypercube. For a vector x ∈ {0, 1, ∗}n we define the dimension of x as
dim(x) = |{i : xi = ∗}|. Obviously, dim(x) equals dim(Qx), the dimension of the cube
Qx.

For a set of initially infected sites A of a graph G we set A0 = A and let TG(A) =
min{t : At = 〈A〉}, where the sets At are defined as in (1). We call TG(A) the spreading
time of A in G. For the n-dimensional hypercube Qn its maximal percolation time is

M(n) = max
A:〈A〉=Qn

TQn(A).

3 Maximal percolation time

In this section we shall prove that M(n) = bn2

3
c for all n ∈ N. We start with the following

simple lemma.

Lemma 5. For any n ∈ N, M(n) 6M(n+ 1).
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Proof. Let A be such that 〈A〉 = Qn and TQn(A) = M(n). Let

Ã = {(a1, . . . , an, j) : (a1, . . . , an) ∈ A and j ∈ {0, 1}}.

Then
〈
Ã
〉

= Qn+1 and M(n) = TQn(A) = TQn+1(Ã) 6M(n+ 1).

We shall now define a specific norm which at first sight might not be intuitive and
seem odd. However, due to the symmetries of the hypercube we shall highly benefit
from it and not lose any generality by considering this particular norm. In the following
series of lemmas, which will help us understand how infection spreads on Qn depending
on the configuration of the set of initially infected sites, the Reader should think of the
particular norm of x as of a quantity that reflects (but not always equals to) the sum of
distances between x and S and between x and T . These six lemmas shall be summarized
in Corollary 12.

Let n ∈ N and s, n1, . . . , ns, d ∈ N0 with n > n1 + . . . + ns + d. For each x ∈ {0, 1}n
set

‖x‖a1...adn1,...,ns
=

(
n−d∑
i=1

xi

) s∏
i=1
ni>0

1{∑n1+...+ni
j=n1+...+ni−1+1 xj>0

} d∏
i=1

1{xn−d+i=ai}

 .

Note that, setting s = 0,

‖x‖a1...ad =

(
n−d∑
i=1

xi

)(
d∏

i=1

1{xn−d+i=ai}

)
,

so that, setting s = d = 0, ‖x‖ =
∑n

j=1 xj. Note crucially that ‖x‖a1...adn1,...,ns
> 0 only if x has

at least one 1 in each of the sequences (xn1+...+ni−1+1, . . . , xn1+...+ni
) for each i = 1, . . . , s

with ni > 0.

Lemma 6. Let k, l ∈ N0, n = k+ l, and set S = [∗]k[0]l and T = [0]k[∗]l and A0 = S ∪T .
Then

At ⊃ {x ∈ {0, 1}n : ‖x‖ 6 t+ 1} = ([∗]t+1[0]k+l−t−1)

for every t ∈ N.

Proof. By induction on t, noting that ‖x‖ 6 1 implies x ∈ A0, and that every x ∈ {0, 1}n
with ‖x‖ = t+ 1 > 2 has at least two neighbours y with ‖y‖ = t.

Lemma 7. Let k, l ∈ N0, n = k + l + 1, and set S = [∗]k[0]l+1 and T = [0]k[∗]l1 and
A0 = S ∪ T . Then

At ⊃
(
[0]k+l∗

)
∪
{
x ∈ {0, 1}n : 1 6 ‖x‖0 6 t

}
∪
{
x ∈ {0, 1}n : 1 6 ‖x‖1 6 t

}
=

([∗]t[0]k+l−t)0 ∪ ([∗]t[0]k+l−t)1

for every t ∈ N.
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Proof. Clearly we have [0]k+l∗ ⊂ S ∪ T = A0. We shall show that both ‖x‖0 = 1 and
‖x‖1 = 1 imply x ∈ A1. If ‖x‖1 = 1 then either x ∈ T ⊂ A0 or xj = 1 for some 1 6 j 6 k.
In the latter case x has two neighbours in A0: one is [0]k+l1 (obtained by changing xj to
0) and one is in S (obtained by changing xn to 0), thus x ∈ A1. In the same way we prove
that ‖x‖0 = 1 implies x ∈ A1.

Now we proceed by induction noting that every x ∈ {0, 1}n with ‖x‖1 = t+ 1 > 2 has
at least two neighbours y with ‖y‖1 = t and analogously for ‖x‖0 = t+ 1 > 2.

Lemma 8. Let k, l ∈ N0, n = k + l + 2, and set S = [∗]k[0]l+2 and T = [0]k[∗]l11 and
A0 = S ∪ T . Then

A1 ⊃ [0]k+l ∗ ∗
and

At ⊃
{
x ∈ {0, 1}n : 1 6 ‖x‖01 6 t− 1

}
∪
{
x ∈ {0, 1}n : 1 6 ‖x‖10 6 t− 1

}
∪{

x ∈ {0, 1}n : 1 6 ‖x‖00 6 t− 2
}
∪
{
x ∈ {0, 1}n : 1 6 ‖x‖11 6 t− 2

}
=

([∗]t−1[0]k+l−t+1)01 ∪ ([∗]t−1[0]k+l−t+1)10 ∪ ([∗]t−2[0]k+l−t+2)00 ∪ ([∗]t−2[0]k+l−t+2)11

for every t > 2.

Proof. An example of this case is shown in Figure 1. Clearly we have {[0]k+l+2, [0]k+l11} ⊂
S ∪ T = A0. If x ∈ {[0]k+l01, [0]k+l10} then x has two neighbours in A0 obtained by
changing the value of one of the two last coefficients, thus x ∈ A1.

We shall show that both ‖x‖01 = 1 and ‖x‖10 = 1 imply x ∈ A2. Indeed, let ‖x‖01 = 1
and xj = 1 for some 1 6 j 6 k + l. Thus x has two neighbours in A1: one is [0]k+l01
(obtained by changing xj to 0) and one is in S ∪T (obtained by changing xn to 0 or xn−1
to 1, depending on whether j 6 k or not), thus x ∈ A1. In the same way we prove that
‖x‖10 = 1 implies x ∈ A2.

Now we proceed by induction noting that every x ∈ {0, 1}n with ‖x‖01 = t + 1 > 2
has at least two neighbours y with ‖y‖01 = t and analogously for ‖x‖10 = t+ 1 > 2.

Finally we show that, for every t > 3, both ‖x‖00 = t − 2 and ‖x‖11 = t − 2 imply
x ∈ At. This is immediate as every such x has two neighbours y and z with ‖y‖01 = t− 2
and ‖z‖10 = t− 2 which, by what we have just proved, belong to At−1.

In the next lemma we assume k, l > 0 to avoid a trivial situation when k = 0 or l = 0
and S ∪ T = Qn.

Lemma 9. Let k, l ∈ N, n = k + l, and set S = [∗]k[0]l and T = [0]k[∗]l and A0 = S ∪ T .
Then

At ∩ {x ∈ {0, 1}n : ‖x‖k,l > t+ 2} = ∅
for every 0 6 t 6 k + l − 2.

Proof. By induction on t, noting that ‖x‖k,l > 2 implies x /∈ S ∪ T = A0, and that
for every x ∈ {0, 1}n with ‖x‖k,l = t + 1 > 3, at most one of the neighbours y of x

satisfies ‖y‖k,l < t (there might be one neighbour z with ‖z‖k,l = 0 if
∑k

j=1 xj = 1 or∑n
j=k+1 xj = 1).
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Figure 1: An example of spreading process on Q5 for x = ∗ ∗ 000 and y = 00 ∗ 11. Here
n = m = 5, k = 2, l = 1, p = 0 and d = 2. Labels 1, 2, 3, 4 and 5 denote the time step
at which vertices are infected. We see that here indeed TQn(Qx ∪Qy) = m− p = 5.

In the next lemma we avoid a trivial situation when k = l = 0 and S ∪ T = Q1 by
assuming without loss of generality that k > 0.

Lemma 10. Let k ∈ N, l ∈ N0, n = k + l + 1, and set S = [∗]k[0]l+1 and T = [0]k[∗]l1
and A0 = S ∪ T . Then

At ∩
{
x ∈ {0, 1}n : ‖x‖1k > t+ 1

}
= ∅

for every 0 6 t 6 k + l − 1.

Proof. By induction on t, note first that ‖x‖1k > 1 implies x /∈ S ∪ T = A0. Now, for
t > 1 assume that every x with ‖x‖1k > t does not belong to At−1 and note that for every
x ∈ {0, 1}n with ‖x‖1k > t+ 1 > 2, at most two of the neighbours y of x satisfy ‖y‖1k < t.

These two might be w with ‖w‖0k = t+1 obtained by changing xn to 0 and, if
∑k

i=1 xi = 1,
z with ‖z‖1k = 0. We claim that z, if it exists, is not in At−1.

Indeed, for z to exist we must have
∑k

i=1 xi = 1 and
∑k+l

i=k+1 xi = t > 1, so in particular
l > 1. Let z′ denote the vector obtained by swapping the first k coordinates with the last
l; that is,

z′ = (zk+1, . . . , zk+l, z1, . . . , zk, zk+l+1).

Then ‖z′‖1l > t, and so, by the case t − 1 of the lemma (which we are assuming that we
have already proved) applied to the sets S ′ = [∗]l[0]k+1 and T = [0]l[∗]k1, it follows that
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z′ is not infected after t − 1 steps of the bootstrap process with initial set S ′ ∪ T ′. By
symmetry (since we have only reordered the coordinates), it follows that z /∈ At−1, as
required.

Thus x can have at most one infected neighbour at time t − 1 and therefore it does
not belong to At.

In the next lemma we avoid a trivial situation when k = l = 0 and A1 = Q2 by
assuming without loss of generality that k > 0.

Lemma 11. Let k ∈ N, l ∈ N0, n = k + l + 2, and set S = [∗]k[0]l+2 and T = [0]k[∗]l11
and A0 = S ∪ T . Then

At ∩
{
x ∈ {0, 1}n : ‖x‖01k > t ∨ ‖x‖10k > t

}
= ∅

for every 1 6 t 6 k + l, and

At ∩
{
x ∈ {0, 1}n : ‖x‖11k > t− 1

}
= ∅

for every 2 6 t 6 k + l + 1.

Proof. Again, an example of this case is shown in Figure 1. Note first that x ∈ [∗]k+l01,
x ∈ [∗]k+l10 and ‖x‖11k > 1 each imply x /∈ S ∪ T = A0. Also both ‖x‖01k > 1 and
‖x‖10k > 1 imply x /∈ A1 as such x can have at most one neighbour y, obtained by
changing respectively xn and xn−1 to 0, in A0. Similarily ‖x‖11k > 1 implies x /∈ A1 as
such x can have at most one initially infected neighbour y ∈ [∗]k+l11 with ‖y‖11k = 0,
while all of its other neighbours y have either ‖y‖01k > 1, ‖y‖10k > 1 or ‖y‖11k > 1. What
is more, ‖x‖11k > 1 implies x /∈ A2 as all these neighbours are not even in A1.

Now, for t > 1 assume that every x with ‖x‖01k > t or ‖x‖10k > t does not belong to At

and that every x with ‖x‖11k > t does not belong to At+1.
Note that for every x ∈ {0, 1}n with ‖x‖01k > t + 1, at most three of its neighbours

y satisfy ‖y‖01k < t which is a necessary condition to belong to At. One of these three
neighbours is v with ‖v‖11k = t+ 1 > 2 obtained by changing xn−1 to 1, thus also v /∈ At.
The other two might be w with ‖w‖00k = t + 1 > 2 obtained by changing xn to 0 and, if∑k

i=1 xi = 1, z with ‖z‖01k = 0. We claim that z, if it exists, is not in At.

Indeed, for z to exist we must have
∑k

i=1 xi = 1 and
∑k+l

i=k+1 xi = t > 1, so in particular
l > 1. We now follow steps similar to those in the proof of Lemma 10: let z′ denote the
vector obtained by swapping the first k coordinates with the last l; that is,

z′ = (zk+1, . . . , zk+l, z1, . . . , zk, zk+l+1, zk+l+2).

Then ‖z′‖01l > t, and so, by the case t of the lemma (which we are assuming that we have
already proved) applied to the sets S ′ = [∗]l[0]k+2 and T = [0]l[∗]k11, it follows that z′ is
not infected after t steps of the bootstrap process with initial set S ′ ∪ T ′. By symmetry
(since we have only reordered the coordinates), it follows that z /∈ At, as required. Thus
x can have at most one infected neighbour at time t and therefore it does not belong to
At+1.
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Finally, every x ∈ {0, 1}n with ‖x‖11k = t + 1 > 2 has at most one neighbour y with
‖y‖11k = 0 which might be in At+1. All other neighbours of x are either v with ‖v‖11k = t, w
with ‖w‖01k = t+1 or y with ‖z‖10k = t+1, neither of which is in At+1. Thus x /∈ At+2.

Let us now summarize what we know about the spreading time of Qx
k ∪Q

y
l in Qn for

particular choices of x and y.

Corollary 12. For vectors x, y ∈ {0, 1, ∗}n such that dim(x) = k, dim(y) = l, dim(x ∨
y) = m, where k, l < m 6 n, d(x, y) = d 6 2, and such that |{i : xi = yi = ∗}| = p, the
spreading time of Qx ∪Qy in Qn is given by

TQn(Qx ∪Qy) =

{
m− p, if d = 2 and (k, l) 6= (m− 2,m− 2),

m− p− 1, otherwise.

Proof. By the symmetry of the hypercube, without loss of generality assume that l 6 k
and that

x = [∗]k[0]n−k, y = [∗]p[0]k−p[∗]l−p[1]d[0]n−m.

Note that we have m = p + (k − p) + (l − p) + d = k + l − p + d. Note also that both
the first p coordinates, for which xi = yi = ∗, and the last n −m coordinates, for which
xi = yi = 0, do not matter when we look at the spreading times since infection process
will behave like 2p parallel infection processes on identical (m− p)-dimensional subcubes
which do not influence each other.

d = 0: by Lemma 6 we have TQn(Qx ∪Qy) 6 k− p+ l− p− 1 = m− p− 1. Also, noting
that the maximal value of the norm ‖ · ‖k,l in Lemma 9 is k + l, TQn(Qx ∪Qy) >
k − p+ l − p− 1 = m− p− 1.

d = 1: by Lemma 7 we have TQn(Qx ∪ Qy) 6 k − p + l − p = m − p − 1. Also, noting
that the maximal value of the norm ‖ · ‖1k in Lemma 10 is k + l, TQn(Qx ∪Qy) >
k − p+ l− p = m− p− 1. Note that if k − p = l− p = 0 then m− p = 1 and the
formula on TQn(Qx ∪Qy) is also correct.

d = 2: if (k, l) = (m− 2,m− 2) then p = m− 2, infection takes exactly one step and the
formula on TQn(Qx∪Qy) is correct. In the other case, by Lemma 8, TQn(Qx∪Qy) 6
k− p+ l− p+ 2 = m− p. Also, noting that the maximal value of the norm ‖ · ‖11k
in Lemma 11 is k + l, TQn(Qx ∪Qy) > k − p+ l − p+ 2 = m− p (see Figure 1).

The next lemma will be used later to simplify a recurrence formula we shall obtain for
M(n).

Lemma 13. Let a(1) = 0, a(2) = 1, a(3) = 3 and for n > 4

a(n) = max

{
a(n− 2) + n,

a(n− 3) + 2n− 3.

Then a(n) = a(n− 3) + 2n− 3 for all n > 4.
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Proof. First, we immediately see that a(4) = a(1) + 5 = a(2) + 4 = 5. Similarly, it can
be trivially checked that the lemma holds for 4 6 n 6 6.

Now, we prove the lemma by induction. For n > 4 we assume that it holds for n, n+1
and n+ 2, and for n+ 3 we obtain

a(n+ 3) = max{a(n) + 2(n+ 3)− 3, a(n+ 1) + n+ 3} =

max{a(n− 3) + 4n, a(n− 2) + 3n+ 2} = a(n− 3) + 4n = a(n) + 2(n+ 3)− 3,

where the third equality follows from the fact that

a(n− 3) + 4n = a(n− 3) + 2n− 3 + (2n+ 3) > a(n− 2) +n+ (2n+ 3) > a(n− 2) + 3n+ 2.

Let us prove a recursion formula for the maximal percolation time which we shall later
use to give a closed-form expression for M(n).

Theorem 14. We have M(1) = 0, M(2) = 1, M(3) = 3, M(4) = 5 and for n > 5

M(n) = max

{
M(n− 2) + n,

M(n− 3) + 2n− 3.

Proof. The values of M(n) for n 6 4 can be found by exhaustive search. The maximal
percolation time can be obtained with the following sets of sites:

n = 1 : {0, 1}, n = 2 : {00, 11}, n = 3 : {000, 110, 001}, n = 4 : {0000, 1100, 0111}.

We shall first prove that for n > 5 the following holds.

M(n) > max

{
M(n− 2) + n,

M(n− 3) + 2n− 3.

Consider the following two ways of infecting Qn. Note that the second way corresponds
to the optimal family briefly described at the end of Section 1.

1. Let An−2 be a set that internally spans the hypercube Qx
n−2 for x = [∗]n−200 in

time M(n− 2) and such that the site [0]n becomes infected at time M(n− 2). Let

Ãn−2 = An−2 ∪ [0]n−211; then
〈
Ãn−2

〉
= Qn and, by Corollary 12 case d = 2,

TQn(Ãn−2) = M(n− 2) + n,

2. Let An−3 be a set that internally spans the hypercube Qx
n−3 for x = [∗]n−3000 in

time M(n− 3) and such that the site [0]n becomes infected at time M(n− 3). Let
Ãn−3 = An−3∪ [0]n−3110∪ [1]n (note that we require n > 5 here so that the distance

between [0]n−3110 and [1]n is > 3). Then clearly
〈
Ãn−3

〉
= Qn. The set of sites

infected after M(n − 3) steps is [∗]n−3000 ∪ [0]n−3110 ∪ [1]n. By Lemmas 8 and 11
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after M(n− 3) +n− 2 steps all neighbours y of [1]n−10 having norm ‖y‖110 = n− 4,
‖y‖010 = n− 3 or ‖y‖100 = n− 3 (i.e., all sites at distance two from [1]n in [∗]n−10),
become infected at time exactly M(n − 3) + n − 2, so at time M(n − 3) + n − 2
the only infected site in [∗]n−11 is [1]n. Thus by Corollary 12 it takes at least n− 1
more steps to fully infect Qn, and so TQn(Ãn−3) = M(n− 3) + 2n− 3.

Now let us prove an upper bound on M(n), i.e.,

M(n) 6 max

{
M(n− 2) + n,

M(n− 3) + 2n− 3.

Let A be a set spanning the hypercube Qn for n > 5. Let

Q0 = Q
xi1
i1
⊂ Q

xi2
i2
⊂ . . . ⊂ Q

xit−1

it−1
⊂ Q

xit
it

= Qn

be a building sequence of the hypercube. Let Q
zm1
m1 , Q

zm2
m2 , . . . , Q

zmt−2
mt−2 , Q

zmt−1
mt−1 be the cubes

that merge with cubes Q
xij

ij
like in the statement of Lemma 4. Recall that for each

1 6 j 6 t− 1 we have ij > mj. As adding sites to a set that spans Qn cannot increase its
spreading time we may assume that A is a minimal under containment set spanning Qn.
Therefore it−1 < n. Let us consider the possible scenarios of the infection process started
from A.

1. If it−1 6 n − 2 then, by Lemma 5, after at most M(it−1) 6 M(n − 2) time steps

both Q
xit−1

it−1
and Q

zmt−1
mt−1 are fully infected. Then, since

〈
Q

xit−1

it−1
∪Qzmt−1

mt−1

〉
= Qn, by

Corollary 12 after at most n more steps we have percolation. Thus in this case

TQn(A) 6M(n− 2) + n.

2. If it−1 = n − 1 and it−2 = n − 2 then (since Q
xit−1

it−1
is internally spanned) we must

have some site v ∈ A ∩Qzmt−2
mt−2 such that d(xit−2 , v) = 1 and

〈
Q

xit−2

it−2
∪ v
〉

= Q
xit−1

it−1
.

Also, there must exist some site w ∈ A∩Qzmt−1
mt−1 such that

〈
Q

xit−1

it−1
∪ w

〉
= Qn. Note

that, since it−2 = n − 2, either d(xit−2 , w) = 1 or d(xit−2 , w) = 2. Let us consider
these situations separately.

If d(xit−2 , w) = 2 then
〈
Q

xit−2

it−2
∪ w

〉
= Qn which contradicts the minimality of A,

as 〈A \ {v}〉 = Qn.

If d(xit−2 , w) = 1 then, without loss of generality, we have

xit−2 = [∗]n−200, xit−2 ∨ v = [∗]n−10, xit−2 ∨ w = [∗]n−20 ∗ .

Clearly, after at most M(n− 2) time steps the cube Q
xit−2

it−2
is fully infected. Then,

by Corollary 12 case d = 1, after at most (n − 1) − 1 = n − 2 more steps both

Q
xit−2

∨v
n−1 and Q

xit−2
∨w

n−1 are fully infected. Clearly (or, by Corollary 12 case d = 0),
after one more step we have percolation. Thus in this case

TQn(A) 6M(n− 2) + (n− 2) + 1 = M(n− 2) + n− 1.
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3. If it−1 = n−1, it−2 6 n−3 and d(xit−2 , zmt−2) 6 1 then after at most M(n−3) time

steps both Q
xit−2

it−2
and Q

zmt−2
mt−2 are fully infected. Then, by Corollary 12 case d = 0 or

d = 1, after at most it−1 − 1 = n− 2 more time steps Q
xit−1

it−1
is fully infected. Since

it−1 = n−1 we must have d(xit−1 , zmt−1) 6 1 so, again by Corollary 12 case d = 0 or
d = 1, after at most n− 1 more time steps we have percolation. Thus in this case

TQn(A) 6M(n− 3) + n− 2 + n− 1 = M(n− 3) + 2n− 3.

4. If it−1 = n− 1, it−2 = n− 3, d(xit−2 , zmt−2) = 2 and mt−2 = n− 3 then after at most

M(n− 3) time steps both Q
xit−2

it−2
and Q

zmt−2
mt−2 are fully infected. Then, by Corollary

12 case d = 2, (k, l) = (m−2,m−2), after at most it−1−1 = n−2 more time steps
Q

xit−1

it−1
is fully infected. Again, since it−1 = n − 1 we must have d(xit−1 , zmt−1) 6 1

so, again by Corollary 12 case d = 0 or d = 1, after at most n− 1 more time steps
we have percolation. Thus in this case again

TQn(A) 6M(n− 3) + n− 2 + n− 1 = M(n− 3) + 2n− 3.

5. Finally we consider the case it−1 = n − 1, it−2 6 n − 3, d(xit−2 , zmt−2) = 2 and
mt−2 < n− 3. Without loss of generality

xit−1 = [∗]n−10, xit−2 = [∗]it−2 [0]n−it−2 , zmt−2 = [∗]p[0]it−2−p[∗]mt−2−p110,

with it−2 − p > 0, which follows from mt−2 < n− 3. Again after at most M(n− 3)
time steps both Q

xit−2

it−2
and Q

zmt−2
mt−2 are fully infected so let us assume it is the case

and see how the process goes from this point.

Even if we limit our attention only to the initially infected sites in Q
xit−1

it−1
then,

by Lemma 8, at most two sites in Q
xit−1

it−1
, s = [1]n−10 with ‖s‖110 = n − 3 and

t = [1]n−3000 with ‖t‖000 = n − 3, are not yet infected after (n − 1) − 1 = n − 2
additional steps. Let ỹ ∈ A be such that ỹ ∈ [∗]n−11. Such ỹ must exist as
otherwise no site in [∗]n−11 would ever become infected. If d(ỹ, s), d(ỹ, t) 6= 2 then
all neighbours of ỹ in [∗]n−11 have their neighbour in [∗]n−10 already infected at time
M(n− 3) +n− 2 thus at latest at this moment the infection of the subcube [∗]n−11
starts with ỹ as its “seed” and by Corollary 12 case d = 1 takes at most n− 1 steps
so again

TQn(A) 6M(n− 3) + n− 2 + n− 1 6M(n− 3) + 2n− 3.

If d(ỹ, s) = 2 or d(ỹ, t) = 2 (which strongly constraints our possible choices of ỹ)
then let y∗ ∈ [∗]n−11 be such that d(y∗, ỹ) = 1, d(y∗, s) = d(y∗, t) = 3 (we do not
require y∗ ∈ A). Note that such site can always be found as d(s, t) = 2. Note also
that we must have ‖y∗‖011 = n−4 or ‖y∗‖101 = n−4. Let w∗ be the neighbour of y∗

in [∗]n−10. Clearly d(w∗, s) = d(w∗, t) = 2 since w∗ is obtained from y∗ by changing
y∗n to 0. Also, ‖w∗‖010 = n− 4 or ‖w∗‖100 = n− 4.
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Again by Lemma 8, in the process started from Q
xit−2

it−2
∪ Qzmt−2

mt−2 and constrained

to Q
xit−1

it−1
, w∗ becomes infected after at most (n − 1) − 2 = n − 3 steps. From

this follows that y∗ becomes infected after at most n − 2 steps (recall that it is a
neighbour of w∗ and of an initially infected site ỹ). Also by Lemma 8, all sites
v∗ in [∗]n−10 at distance 2 from y∗, which must have either 0 < ‖v∗‖010 6 n − 3,
0 < ‖v∗‖100 6 n− 3, ‖v∗‖000 = n− 4 or ‖v∗‖110 = n− 4, are as well infected after at
most n− 2 steps. Therefore the infection of the subcube [∗]n−11 starts in the worst
case after M(n− 3) + n− 2 steps with y∗ as its “seed” and it spreads undisturbed
by the states of s and t. Thus by Corollary 12 case d = 1 it can take at most n− 1
additional time steps. Thus once again

TQn(A) 6M(n− 3) + n− 2 + n− 1 6M(n− 3) + 2n− 3.

This completes the proof.

From Lemma 13 and Theorem 14 we get the following corollary.

Corollary 15. We have M(1) = 0, M(2) = 1, M(3) = 3 and for n > 4, M(n) =
M(n− 3) + 2n− 3.

We are now ready to prove our main result.

Proof of Theorem 1. Theorem holds for n ∈ {1, 2, 3}. Assume that it holds for n− 3. By
Corollary 15 we obtain

M(n) = M(n−3)+2n−3 =

⌊
(n− 3)2

3

⌋
+2n−3 =

⌊
n2

3
− 2n+ 3

⌋
+2n−3 =

⌊
n2

3

⌋
.

4 Further questions

In this paper we find the maximal percolation time in the n-dimensional hypercube under
2-bootstrap percolation. It is natural to consider a similar problem on other families of
graphs.

Problem 16. Determine the precise value or the order of magnitude of the maximal
percolation time in [n]d for n and d constant or tending to infinity.

Another very interesting question asks how many small percolating subsets can be
found in a hypercube. A simple result from Balogh and Bollobás [2] says that in 2-
bootstrap percolation every percolating set in Qn must contain at least dn

2
e + 1 sites so

the question can be formulated as follows.

Problem 17. For ε > 0 what is the number of percolating sets of size (1
2

+ ε)n in Qn?

This problem can be also interpreted as determining the probability that a random
(1
2

+ ε)n-set of vertices of Qn percolates. Note that in our proof of the value of M(n) we
show that the maximal spreading time is obtained for a set of size roughly 2n

3
.
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