
Stamp Foldings, Semi-meanders, and Open Meanders:
Fast Generation Algorithms

Joe Sawada∗

School of Computer Science
University of Guelph

CANADA

jsawada@uoguelph.ca

Roy Li
School of Computer Science

University of Guelph
CANADA

royli0106@hotmail.com

Submitted: Nov 12, 2010; Accepted: Jun 2, 2012; Published: Jun 13, 2012
Mathematics Subject Classifications: 68R05, 05A99

Abstract

By considering a permutation representation for stamp-foldings and semi-meanders
we construct tree-like data structures that will allow us to generate these objects in con-
stant amortized time. Additionally, by maintaining the wind-factor and applying an addi-
tional optimization, the algorithm for semi-meanders can be modified to produce the fastest
known algorithm to generate open meanders.

Keywords: Stamp folding, semi-meander, meander, CAT algorithm, permutation

1 Introduction

An open meander can be described by a geographic analogy of a river starting from the north-
west and meandering back and forth across an infinite horizontal road. The river never intersects
itself and it can flow freely to the east. The order of an open meander is the number of times
the river intersects or crosses the road. For example, an open meander of order 6 is shown in
Figure 1(a). A semi-meander is a slight generalization of an open meander where one of the
end points is allowed to be wound inside the river. An example of a semi-meander, that is not
a meander is shown in Figure 1(b). If we generalize a step further, and allow both ends of the
river to be wound up inside itself, then we obtain a stamp folding. An analogy is to consider
a folding of a linear strip of n stamps into a single pile, where the perforations between the

∗Supported by NSERC.

the electronic journal of combinatorics 19(2) (2012), #P43 1



12 23 34 45 56 61 1 23 4 56 7

(b) (c)(a)

Figure 1: (a) An open meander of order 6. (b) A semi-meander of order 6. (c) A stamp folding of order 7.

stamps are assumed to be infinitely elastic. An example of a stamp folding that is not a semi-
meander is shown in Figure 1(c). Observe that each labeled crossing represents a stamp. As
shown in the Figure 1, each of these three objects can be represented by a permutation; however
not all permutations represent even the most general of these objects - the stamp foldings. For
example, the permutation 1423, would require the strip of stamps (or river) to intersect itself.

The focus of this paper is to develop efficient algorithms to exhaustively list stamp foldings,
semi-meanders and open meanders of order n. For a history on combinatorial generation al-
gorithms consult Knuth’s recent addition to his series The Art of Computer Programming [5].
Stamp foldings were first discussed in [7, 11], and algorithms for generating stamp foldings
were considered in Scott Lausch’s Master’s thesis [9]. An implementation of the latter algo-
rithm is used by the “Combinatorial Object Server” at http://www.theory.csc.uvic.ca/ in the
permutation section. A FORTRAN algorithm to generate all semi-meanders is outlined in the
appendix of [2], but no analysis is provided. An explicit algorithm for generating meanders
has been given by Di Francesco et al [2] with complexity proportional to the Catalan numbers
(cn ≈ 4n). Franz and Earnshaw’s [3] algorithm also appears to have an asymptotic running time
that is greater than the number of meanders being generated (no implementation details or anal-
ysis is provided). The fastest known algorithm is given by Bobier and Sawada [1]. Although a
rigorous analysis is not provided, the implementation of the algorithm is very simple.

For each of these three objects we can consider equivalences under various actions. For
semi-meanders, if one end is uniquely determined to be allowed to wind inside the curve, we can
consider equivalence under reversal to obtain symmetric semi-meanders. For stamp foldings, if
we consider the stamps to be unlabeled without regard for the orientation of the stamps, then
we obtain unlabeled stamp foldings. For example the permutation 1342 is equivalent to 4213
by relabeling the stamps. If we consider the reversal of each folding we may also obtain two
different permutations; in this case we also obtain 2431 and 3124 as illustrated below.

1 23 4 12 3414 2 3 1 2 43

Note that each equivalence class will consist of either 2 or 4 permutations. An example of a
class that contains only two permutations is {1234, 4321}. Similarly we can obtain symmetric
meanders by considering the same actions. Enumeration sequences for each of these 6 objects

the electronic journal of combinatorics 19(2) (2012), #P43 2



are given in the table below for n up to 25. Each sequence is labeled with its corresponding
sequence number in Sloane’s Encyclopedia of Integer Sequences [10].

A000136 A001011 A000682 A000560 A005316 A077055
n Stamp Foldings Unlabled Stamps Semi-meanders Symmetric Semis Open Meanders Symmetric Meanders
1 1 1 1 1 1 1
2 2 1 2 1 1 1
3 6 2 4 2 2 1
4 16 5 10 5 3 2
5 50 14 24 12 8 3
6 144 38 66 33 14 8
7 462 120 174 87 42 13
8 1392 353 504 252 81 42
9 4536 1148 1406 703 262 72

10 14060 3527 4210 2105 538 273
11 46310 11622 12198 6099 1828 475
12 146376 36627 37378 18689 3926 1970
13 485914 121622 111278 55639 13820 3506
14 1557892 389560 346846 173423 30694 15368
15 5202690 1301140 1053874 526937 110954 27888
16 16861984 4215748 3328188 1664094 252939 126510
17 56579196 13976335 10274466 5137233 933458 233809
18 184940388 46235800 32786630 16393315 2172830 1086546
19 622945970 155741571 102511418 51255709 8152860 2039564
20 2050228360 512559185 329903058 164951529 19304190 9652364
21 6927964218 1732007938 1042277722 521138861 73424650 18360296
22 22930109884 5732533570 3377919260 1688959630 176343390 88172609
23 77692142980 19423092113 10765024432 5382512216 678390116 169610371
24 258360586368 64590165281 35095839848 17547919924 1649008456 824506191
25 877395996200 219349187968 112670468128 56335234064 6405031050 1601297937

The main results of this paper are as follows:

. A constant amortized time algorithm to generate stamp foldings,

. A constant amortized time algorithm to generate semi-meanders,

. The fastest known algorithm to generate open meanders.

Additionally, these algorithms can be modified to obtain:

. A O(n) amortized time algorithm to generate unlabeled stamp foldings,

. A constant amortized time algorithm to generate symmetric semi-meanders,

. A O(n) amortized time algorithm to generate symmetric open meanders.

For each algorithm, we use a permutation to represent each object as illustrated in Figure 1.
An alternate permutation representation has been considered in [4]. The key to each algorithm is
a special tree-like data structure whose nodes contain a pair of doubly linked lists. By focussing
on a specific current node, we can determine all the valid intervals to extend the order of a given
object in constant time. Once the order is extended, the data structure can also be updated in
constant time. In Section 2 we begin by outlining this data structure for semi-meanders. Stamp
foldings are slightly more complicated and are detailed in Section 2.2. Then in Section 3.2,
by maintaining the wind-factor for semi-meanders we obtain an efficient algorithm to generate
open-meanders. This algorithm is analyzed and compared experimentally with the previously
fastest known algorithm to exhaustively list open-meanders [1]. The paper concludes with a
summary in Section 4.

the electronic journal of combinatorics 19(2) (2012), #P43 3



2 Generating semi-meanders and stamp foldings

In this section we begin by describing an algorithm to exhaustively list all semi-meanders and
symmetric semi-meanders of order n, since they are the easiest to handle using the permutation
representation. The key to making the algorithm run in constant amortized time is the main-
tenance of a tree of special nodes. Then, by applying a subtle tweak to this data structure, we
outline a constant amortized time algorithm for stamp foldings.

2.1 Semi-meanders

The basic idea behind our algorithm is to extend a semi-meander of order t represented by
a permutation P to a semi-meander of order t+1 by considering all valid intervals to extend
the semi-meander curve. For example, Figure 2(a) below illustrates a semi-meander of order 9
along with its corresponding permutation representation. The valid intervals to extend the semi-
meander through are (3,2), (1,9), (9,8) and (7,4) respectively. We consider the permutation to be
prefixed with a ‘0’ and suffixed with a ‘−’, so that every interval has a clearly defined start and
end value. From our example, this means that (0, 3) would be the leftmost interval and (4,−)
would be the rightmost interval.

3,2 1,9

2X

1X

0,3

2,1

0,3

2,1

(a)

(c)(b)

3,2 9,8 7,4

4,−

6,7

5,6

1,9

8,5

X

Y

4,−

6,7

8,5

5,6 7,10 10,4

9,8

Y

23 1 9 8 5 6 7 4

Figure 2: (a) A semi-meander of order 9 and its permutation representation. (b) The node tree for the semi-
meander in (a). (c) The node tree obtained by extending the semi-meander in (a) to cross the interval (7,4).

the electronic journal of combinatorics 19(2) (2012), #P43 4



procedure Gen (t)
if (t > n) then Process(P )
else

LIST := list of valid intervals to extend the semi-meander
for each interval I ∈ LIST do

insert t into permutation P depending on I
Gen(t+1)
remove t from P

end

Figure 3: Algorithm Gen(t), to list semi-meanders of order n.

Given a permutation representing a semi-meander of order t, our goal is to efficiently de-
termine which of the t + 1 intervals can be used for the next crossing. If these intervals are
available in a list, then we can use the simple algorithm Gen(t) in Figure 3 to generate all semi-
meanders of order n. The permutation P is initialized to have one crossing and the initial call
is Gen(2). For this first recursive call, the LIST will consist of the two intervals (0, 1) and
(1,−). The permutation itself can be updated in constant time if it is represented as a doubly
linked list with pointers to each element. The function Process(P ) is a generic function that
may perform some action on the current semi-meander P .

In order to efficiently obtain and update such a list of intervals, it is useful to split the list
into two doubly linked lists L and R such that L (respectively R) contains all valid intervals to
the left (right) of the current crossing. For example, if the current permutation P is 321985674
as illustrated in Figure 2(a), then L = 〈(3, 2), (1, 9)〉 and R = 〈(9, 8), (7, 4)〉. The lists are
doubly linked so that the addition or deletion of an interval can be done in constant time. We
call the data structure containing these two lists a node. If X is a node, then we let LX denote
its left list and let RX denote its right list.

If we consider what happens when we extend a semi-meander by crossing through an inter-
val I , then it becomes apparent that we need to know which intervals become valid in addition
to the new intervals that have just been created. For example, if we extend the semi-meander
in Figure 2(a) by crossing the interval (7,4) then in addition to the new intervals (7, 10) and
(10, 4), the next crossing would also be able to cross interval (5,6) to the left but nothing else to
the right. This leads to building a tree of nodes where each interval points to a unique node in
the tree and where each interval appears in exactly one node. As an example, the tree of nodes
correponding to the semi-meander in Figure 2(a) is shown in part (b) where the current node
labeled X is in bold.

To incorporate the tree of nodes data structure to the basic algorithm Gen(t):

• pass the current node X as a parameter to each recusive call,

• set LIST to the concatenation of LX and RX ,

• let Y represent the node pointed to by the current interval I = (i, j), and

• add a function Update(X,Y, I) to update the tree of nodes data structure and the permutation P .

the electronic journal of combinatorics 19(2) (2012), #P43 5



The challenge that remains is how to efficiently implement the function Update(X, Y, I).
Observe that as the interval I is crossed by the semi-meander, it will be replaced with 2 new
intervals in Y : I1 = (i, t) and I2 = (t, j). It is not difficult to see that I1 should be added to
the end of LY and that I2 will be inserted to the front of RY . Once I is removed from X , the
remaining intervals of X get split into 2 nodes X1 and X2 such that X1 contains the intervals
accessible by crossing I1 and X2 contains the intervals accessible by crossing I2. Once these
nodes are created, we set I1 to point to X1 and I2 to point to X2. Precisely how the node X
is split into X1 and X2 depends on whether I belongs to LX or RX . If the intervals in the list
containing I are i1, i2, . . . , ik, where ic denotes the interval I being crossed, then the following
table describes how to construct X1 and X2:

I ∈ LX I ∈ RX

LX1 = i1, . . . , ic−1 LX1 = i1, . . . , ic−1
RX1 = RX RX1 = null
LX2 = null LX2 = LX

RX2 = ic+1, . . . , ik RX2 = ic+1, . . . , ik

Each of these assignments can be implemented in constant time by maintaining pointers to
the start and end of each interval list. To summarize, the function Update(X, Y, I) does the
following:

• insert the new interval I1 = (i, t) to the end of LY ,

• insert the new interval I2 = (t, j) to the front of RY ,

• remove interval I from X ,

• split X into two new nodes X1 and X2

• set I1 to point to X1 and set I2 to point to X2.

As an example of the steps involved in an update, Figure 2(c) shows the result of how the
node tree from Figure 2(b) gets updated when the interval (7,4) (from RX) is crossed. Observe
in the figure that the new intervals added to Y point to nodes labeled X1 and X2.

By applying the tree of nodes data structure, the resulting algorithm GenSemi(t,X) is
shown in Figure 4. The procedure Restore() undoes the changes made in Update(X, Y, I).
Both functions can be implemented to run in constant time. To initialize the algorithm an initial
node X is created with LX = 〈(0, 1)〉 and Rx = 〈(1,−)〉. The initial intervals point to nodes
with empty interval lists. The initial call is GenSemi(2, X).

To analyze this algorithm, observe that each recursive call is the result of a constant amount
of work. Thus, the total amount of work done by the algorithm is proportional to the number
of recursive calls in the computation tree. Since the number of semi-meanders generated is
equal to the number of leaves in the computation tree, an amortized analysis can be performed
by considering the ratio of the total number of nodes in the computation tree to the number of
leaves. If this ratio is bounded by a constant then the algorithm will run in constant amortized
time, i.e., the total work done divided by the number of objects generated is bounded by a
constant. Since there are no dead ends in this algorithm, every recursive call will lead to an

the electronic journal of combinatorics 19(2) (2012), #P43 6



procedure Update(X , Y , I)
insert new intervals I1 := (i, t) and I2 := (t, j) into Y
remove I = (i, j) from X
split X into X1 and X2

point I1 to X1

point I2 to X2

update P
end

procedure GenSemi (t,X)
if (t > n) then Process(P )
else

for each interval I = (i, j) ∈ LX , RX do
Y := node pointed to by I
Update(X , Y , I)
GenSemi(t+1, Y )
Restore()

end

Figure 4: Algorithm GenSemi(t,X), to list semi-meanders of order n.

semi-meander being generated. Also, there are always at least two possible ways to extend a
semi-meander of order i to one of order i + 1: i.e., each internal node has at least 2 children.
Thus, the number of leaves will be greater than the number of internal nodes which implies that
the ratio is constant.

Theorem 1. Semi-meanders of order n can be generated in constant amortized time.

2.1.1 Symmetric semi-meanders

By considering reflective symmetry about the first crossing we obtain symmetric semi-meanders.
To generate symmetric semi-meanders using the algorithm in GenSemi(t,X), we force the
second crossing to be to the left (or equivalently to the right) of the first crossing. This can be
implemented in constant time by skipping the intervals in the right list when t = 2. Alterna-
tively, the semi-meander can be initialized to have two crossings.

Corollary 2. Symmetric semi-meanders of order n can be generated in constant amortized time.

2.2 Stamp Foldings

Recall that a stamp folding is a generalization of a semi-meander where both ends are allowed
to wind inside the curve (river, strip of stamps). To generate stamp foldings, we can apply
the semi-meander algorithm GenSemi(t,X) with a slight change to the data structures. In

the electronic journal of combinatorics 19(2) (2012), #P43 7



23 4 5 678

1 23 4 5 6789

4,5

3,1

1,2

7,6

1 23 4 5 67

8,7

7,6

1,2

(c)

(b)

8,75,80,3 2,4 6,−

(a)

6,−4,59,3

2,4 5,8

0,9

0,3 4,52,4 6,−

7,65,73,1

3,1

1,2

1

Figure 5: (a) A stamp folding of order 7 and its corresponding data structure representation. (b) The changes
after extending the stamp folding in (a) by crossing (5,7). (c) The changes after extending the stamp folding in (b)
by crossing (0,3).

particular, for stamp foldings the two intervals (0, x) and (y,−) will always belong to the same
node X and will both point to the same node Y . This means we no longer have a tree of nodes,
which makes the algorithm slightly more complicated when one of the intervals (0, x) or (y,−)
is crossed. As an illustration, the node structures for a series of stamp foldings in Figure 5.

Since an interval I = (0, x) is special, consider what happens just before such an interval is
crossed (a similar analysis applies to (y,−)). Assume that the interval I points to the node Y .
In the case of semi-meanders, all valid intervals will be in the right list RY and the left list LY

will be empty. However, for stamp-foldings, if Y was created by crossing through an interval
of the form (y,−) then all available intervals will be in the left list LY and the right list RY will
be empty. Since there are pointers to the front of each list, this can be checked in constant time.
Thus after we cross I , if the left list LY is non-empty then we set RY = LY and set LY to be

the electronic journal of combinatorics 19(2) (2012), #P43 8



empty. The only remaining modification is to move the interval of the form (y,−) from X to
the end of RY . This can also be done in constant time since we maintain pointers to the end of
each list.

In order to convert the algorithm GenSemi(t,X) into one that generates all stamp foldings,
the following operations must be added to the function Update(X, Y, I):

• If crossing an interval I in node X of the form (0, x) then
. if LY is not empty assign RY = LY and set LY to be empty,
. move the interval (y,−) which is the last interval in RX to the end of RY and point

it to node X1.
• If crossing an interval I in node X of the form (y,−) then

. if RY is not empty assign LY = RY and set RY to be empty,

. move the interval (0, x) which is the first interval in LX to the front of LY and point
it to node X2.

The function Restore() must undo these operations.

The analysis for stamp foldings is the same as for semi-meanders since at each recursive
call there are at least two ways to extend the current permutation.

Theorem 3. Stamp foldings of order n can be generated in constant amortized time.

2.2.1 Unlabeled stamp foldings

Recall from Section 1 that if we consider the stamps to be unlabeled and disregard the orienta-
tion of each stamp folding, we obtain an unlabeled stamp folding. Each equivalence class has
at most 4 permutations and we let the lexicographically smallest permutation be the canonical
representative. Unfortunately, to determine whether a given permutation is in canonical form is
not a trivial matter like it was for symmetric semi-meanders. Thus it remains an open problem
to generate unlabeled stamp foldings in constant amortized time. By performing a simple lin-
ear time check on each permutation against the 4 possible symmetries we obtain the following
theorem.

Theorem 4. Unlabeled stamp foldings of order n can be generated in O(n) amortized time.

3 The wind-factor and open meanders

The wind-factor [2] of a semi-meander is the smallest number of additional crossings required
to extend the semi-meander into an open meander. Thus, meanders are precisely the semi-
meanders with wind-factor 0. For example, the wind-factor of the semi-meander in Figure 2(a)
is 1 and it also corresponds to the depth of the current node in its tree of nodes. As another
example, the wind-facor of the semi-meander in Figure 1(b) is 2. We consider the wind-factor

the electronic journal of combinatorics 19(2) (2012), #P43 9



for two reasons. First it may be of interest to list all semi-meanders with a given wind-factor.
Second, it is important to maintain if we want to efficiently modify the semi-meander algorithm
to generate all open meanders. We begin this section by outlining how to modify the semi-
meander algorithm GenSemi(t,X) so it maintains the wind-factor. Then we discuss how it
can be applied to efficiently generate meanders.

3.1 Maintaining the wind-factor

In order to generate all semi-meanders with a given wind-factor w, we must maintain the current
wind-factor at each step of the algorithm GenSemi(t,X). In order to efficiently maintain this
information, we need to know the unique interval that can be crossed to reduce the wind-factor
if w > 0 or to maintain the wind-factor if w = 0. We call such an interval the unwinding
interval and for a node X we denote its unwinding interval by UX . If w > 0, then every node
in the path up the tree from the current node will have an unwinding interval associated with it.
For example, in Figure 2(a-b), the unwinding interval for the current node labeled X is (1,9).
The node pointed to by this interval will have wind-factor w = 0 and if it becomes the current
node, the unique interval that maintains the wind-factor is (4,−).

If we add a pointer to the unwinding interval in the node data structure, then we can deter-
mine if a given interval corresponds to the unwinding interval in constant time. To efficiently
maintain the unwinding intervals it is important to know which list it is in: the Left or the Right.
For a given node X let SX ∈ {L,R} denote the list that the unwinding interval belongs to. If
we add the current wind-factor w as a parameter to each recursive call, then we can maintain
the wind-factor in constant time as follows: if the current interval corresponds to the unwinding
interval then we decrement the wind-factor if w > 0 and leave it unchanged if w = 0; otherwise
we increment the wind-factor.

The only challenge that remains is to update the unwinding intervals when a new crossing
is added. To simplify the discussion, let the function SetUnwind(X, I, s) set the unwinding
interval UX = I and its corresponding list SX = s. There are several cases to consider;
however, by maintaining a boolean to remember if the unwinding interval has been visited
when iterating through the interval lists, each case can be performed in constant time and added
to the function Update(X, Y, I) as follows:

• If I = UX when w > 0: no update required.
• If I = UX when w = 0: call SetUnwind(Y, I2, R).
• If I 6= UX and I ∈ LX :

. If UX ∈ LX and comes after I call SetUnwind(Y, I2, R) & SetUnwind(X2, UX ,R).

. Otherwise call SetUnwind(Y, I1, L) & SetUnwind(X1, UX , SX).
• If I 6= UX and I ∈ RX :

. If UX ∈RX and comes after I call SetUnwind(Y, I2, R) & SetUnwind(X2, UX , SX).

. Otherwise call SetUnwind(Y, I1, L) & SetUnwind(X1, UX , L).

the electronic journal of combinatorics 19(2) (2012), #P43 10



The correctness of these updates can easily be observed by considering a few sample semi-
meanders like the one in Figure 2(a). Applying these extra operations allows us to generate all
semi-meanders of order n with a given wind-factor w. As a summary, to maintain the wind-
factor efficiently the node data structure is as follows:

• LX : a doubly linked list of valid intervals to the left of the current crossing ordered from
left to right,
• RX : a doubly linked list of valid intervals to the right of the current crossing ordered from

left to right,
• UX : a pointer to the unwinding interval if it exists,
• SX ∈ {L,R}: a character indicating which list the unwinding interval is in if it exists.

3.2 Generating Open Meanders

To generate open meanders, we can simply apply the semi-meander algorithm that maintains
the wind-factor and then output only those semi-meanders with wind-factor 0. Such an algo-
rithm would be far from efficient since it effectively generates all semi-meanders. However by
applying the following optimization we obtain a much more efficient algorithm. The basic idea
is to consider a semi-meander with wind-factor w and order n − w. For such a semi-meander
there there is no point in winding any further, since it will never produce an open meander of
order n. Thus, in this situation, we only produce a recursive call for the interval corresponding
to the unwinding interval. Specifically, the optimization is as follows:

Observation 5. If w is the wind-factor of a semi-meander of order t−1 and n−t 6 w, then the
only way the semi-meander can be extended into an open meander of order n is by unwinding.

Pseudocode that applies this optimization to generate open meanders is given by GenMe-
ander(t,X,w) shown in Figure 6. The initialization is the same as with semi-meanders with
the wind-factor w initially set to 0. It is assumed that the function Update(X, Y, I) updates
the unwinding intervals as outlined in the previous subsection and that the function Restore
undoes this action.

The analysis for algorithm GenMeander(t,X,w) is a challenge because of the introduction
of degree one nodes in the computation tree when applying the optimization. Each such degree
one node will correspond to a semi-meander of order n − i with a wind-factor of i for some
i > 0. Let Comp(n) denote the number of nodes in the computation tree to generate open
meanders of order n. We partition the computation tree into sets of nodes based on the order of
the node and the wind-factor. Let S(i, j) denote the number of semi-meanders or order i with a
wind-factor of j. Since the wind-factor of a node with order i will never exceed n− i (from the

the electronic journal of combinatorics 19(2) (2012), #P43 11



procedure GenMeander (t,X,w)
if (t > n) then Process(P )
else

if (n− t 6 w) then
Y := node pointed to by UX

Update(X,Y, UX )
GenMeander(t+1, Y , w − 1)
Restore()

else
for each interval I ∈ LX , RX do

Y := node pointed to by I
Update(X,Y, I)
if (I = UX ) then GenMeander(t+1, Y , max(0, w − 1))
else GenMeander(t+1, Y , w + 1)
Restore()

end

Figure 6: Algorithm GenMeadner(t,X,w), to list open meanders of order n.

algorithm’s optimization), we obtain the following expression for Comp(n):

Comp(n) =
n∑

i=1

min(i−1,n−i)∑
j=0

S(i, j).

As an illustration, we consider Comp(7):

Comp(7) = S(1, 0) +

S(2, 0) + S(2, 1) +

S(3, 0) + S(3, 1) + S(3, 2) +

S(4, 0) + S(4, 1) + S(4, 2) + S(4, 3) +

S(5, 0) + S(5, 1) + S(5, 2) +

S(6, 0) + S(6, 1) +

S(7, 0).

Note that S(i, 0) counts the number of open meanders of order i. To prove that the gen-
eration algorithm for open meanders runs in constant amortized time we must show that there
exists some constant c such that

Comp(n)

S(n, 0)
6 c.

the electronic journal of combinatorics 19(2) (2012), #P43 12



Empirically, for n up to 27 this ratio for the algorithm GenMeander(t,X,w) is given in the
following table:

n Comp(n)
S(n,0)

n Comp(n)
S(n,0)

4 3.00000 5 2.87500
6 3.14286 7 2.92857
8 3.13580 9 2.94275

10 3.13197 11 2.96007
12 3.13831 13 2.97923
14 3.14882 15 2.99745
16 3.16008 17 3.01381
18 3.17084 19 3.02824
20 3.18072 21 3.04092
22 3.18965 23 3.05207
24 3.19769 25 3.06194
26 3.20492 27 3.07070

Even though the ratio is growing, it does not rule out the possibility that it is bounded by a
constant. What is required is the ability to bound S(i, j) recursively.

Lemma 6. For i > 1 :

(a) S(i, 0) = S(i− 1, 0) + S(i− 1, 1),
(b) S(i, j) > S(i− 1, j + 1) + S(i− 1, j − 1) for j > 0.

PROOF: For (a) consider the first i−1 crossings for any semi-meander of order i and wind-
factor 0. Either the first i−1 crossings will have wind factor 1 or 0. In either case, there is exactly
one way to extend such semi-meanders into ones with wind-factor 0. For part (b), observe that
each semi-meander of order i−1 and wind factor j+1 can be extended uniquely into a semi-
meander of order i and wind factor j (via the unwinding interval). For a semi-meander of order
i−1 and wind factor j−1, there may be many ways to extend it into one with wind factor j by
adding one more crossing, thus giving the simple bound. 2

The second bound for j > 0 can actually be improved to

S(i, j) > S(i− 1, j + 1) +

bi/2c−1∑
k=0

S(i− 1− 2k, j − 1)

by considering unique extensions of semi-meanders of order i− 1− 2k with wind factor j − 1
into semi-meanders of order i and wind factor j. Unfortunately, even tighter bounds seem to
be required to prove the conjecture that the generation algorithm for open meanders runs in
constant amortized time. Since we do not have a proof of such a claim, we prove the very loose
upper bound of a O(n) amortized time algorithm.

the electronic journal of combinatorics 19(2) (2012), #P43 13



By considering the diagonals of Comp(n) moving from the bottom left to the top right, we
can re-express Comp(n) as follows:

Comp(n) =
n∑

i=1

d i
2
e−1∑

j=0

S(i− j, j).

Since S(i, j) > S(i− 1, j + 1) we get the bound:

Comp(n) 6
n∑

i=1

i · S(i, 0)

6 n ·
n∑

i=1

S(i, 0)

6 cn · S(n, 0),

where c is a constant since open meanders grow exponentially.

Theorem 7. Open meanders of order n can be generated in O(n) amortized time.

Using a 2.2 GHz Opteron processor, Table 1 compares the running time of our algorithm
GenMeander(t,X,w) for open meanders with the fastest previously known algorithm from
[1]. Observe that for n = 29 that our new algorithm finds all open meander in about 31.8 hours
compared to 46.1 hours for the algorithm in [1].

n GenMeander(t,X,w) Algorithm from [1]
20 4 5
21 14 20
22 35 43
23 127 186
24 325 430
25 1214 1877
26 3139 4022
27 11700 16575
28 30480 38358
29 114414 165987

Table 1: Comparison of running time in seconds for two open meander generation algorithms.

3.2.1 Symmetric Open Meanders

Recall from Section 1 that if we consider the equivalence classes of open meanders under the
operations of relabeling and reversal, we obtain symmetric meanders. If we let the lexico-
graphically smallest element be the canonical representative of each equivalence class then the
following tests can be performed on each generated open meander to determine if it corresponds
to its canonical representative:

the electronic journal of combinatorics 19(2) (2012), #P43 14



• make sure that 1 appears before n in the permutation, and
• test that the permutation is lexicographically smaller than its relabeled reversal: each

value i from the original permutation is replaced with n−i+1 and the result is considered
in reverse.

These tests can easily be performed in O(n) time after each open meander has been generated.
Thus from Theorem 7 we obtain the following result.

Corollary 8. Symmetric open meanders of order n can be generated in O(n) amortized time.

4 Summary

In this paper we have constructed a new data structure representation for semi-meanders, me-
anders and stamp foldings and applied the data structure to develop efficient algorithms to ex-
haustively list:

• semi-meanders and symmetric semi-meanders in O(1) amortized time,
• stamp foldings in O(1) amortized time,
• unlabeled stamp foldings in O(n) amortized time.
• open meanders in O(n) amortized time, and
• symmetric open meanders in O(n) amortized time,

The algorithms have been implemented in C and are available for download at:
http://www.socs.uoguelph.ca/˜sawada/programs.html.

It remains an open problem to determine whether or not the meander algorithm provided in
this paper runs in constant amortized time. This can be answered if the right recursive bounds
can placed on semi-meanders with a given wind-factor. Another open problem is to improve
the running time for unlabeled stamp foldings. Finally, does there exist a Gray code for any of
these objects?

References

[1] B. Bobier, J. Sawada, A fast algorithm to generate open meandric sequences and mean-
ders, Transactions on Algorithms, Vol. 6 No. 2 (2010) 12 pages.

[2] P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach,
Nuc. Phys. B 482, (1996), pp. 497-535.

[3] R. Franz and B. Earnshaw, A constructive enumeration of meanders, Annals of Combina-
torics 6:(1) (2002), pp. 7-17.

the electronic journal of combinatorics 19(2) (2012), #P43 15

http://www.socs.uoguelph.ca/~sawada/programs.html


[4] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. Tarjan, Sorting Jordan sequences in
linear time using level-linked search trees, Information and Control, 68 (1986), pp. 170-
184.

[5] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating All Trees; His-
tory of Combinationatorial Generation,, Fascicle 4, Addison-Wesley, February 2006, 150
pages.

[6] K.H. Ko and L. Smolisky, A combinatorial matrix in 3-manifold theory, Pacific J. Math.
149 (1991) pp. 3190336.

[7] J. E. Koehler, Folding a strip of stamps, Journal of Combinatorial Theory, 5 (1968), pp.
135-152.

[8] S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer
Science 11:(2) (1993), pp. 117-144.

[9] S. Lausch, Generating Some Restricted Classes of Permutations, Master’s Thesis, Univer-
sity of Victoria, Canada, 1999.

[10] N. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/, IDs:
A000136, A001011, A000682, A000560, A005316, A077055, (2009).

[11] J. Touchard, Contributions à l’étude du problème des timbres postes, Canad. J. Math., 2
(1950), pp. 385-398.

the electronic journal of combinatorics 19(2) (2012), #P43 16

http://oeis.org/

