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Abstract

We characterize all graphs whose binomial edge ideals have a linear resolution.
Indeed, we show that complete graphs are the only graphs with this property. We
also compute some graded components of the first Betti number of the binomial
edge ideal of a graph with respect to the graphical terms. Finally, we give an upper
bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of a closed
graph.

1 Introduction

Binomial edge ideals of graphs were introduced in [4]. Let G be a finite simple graph with
vertex set V (G) = {v1, . . . , vn} and edge set E(G). Also, let S = k[x1, . . . , xn, y1, . . . , yn]
be the polynomial ring over a field k. Then the binomial edge ideal of G in S, denoted
by JG, is generated by binomials of the form fij = xiyj−xjyi, where i < j and {vi, vj} is an
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edge of G. This ideal also could be seen as the ideal generated by a collection of 2-minors
of a (2× n)-matrix whose entries are all indeterminates. In [4], the authors characterized
those graphs, which, for certain labeling of their edges, have a quadratic Gröbner basis
with respect to the lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn.
These graphs are called closed graphs. In [1], the authors studied the depth of classes
of binomial edge ideals and classified all closed graphs whose binomial edge ideals are
Cohen-Macaulay.

Associated to the graph G is a monomial ideal I(G) = (xixj : {vi, vj} ∈ E(G)), in
the polynomial ring R = k[x1, . . . , xn] over a field k, called the edge ideal of G. In [2],
Fröberg characterized all graphs whose edge ideals have a linear resolution. He showed
that I(G) has a linear resolution if and only if the complementary graph G is chordal.
It is natural to ask a similar question about the binomial edge ideal of a graph. More
precisely, one could ask wether there is a graphical characterization for binomial edge
ideals to have a linear resolution or not. In this paper, we give the positive answer to this
question. Actually, in Section 1, we prove that JG has a linear resolution if and only if
JG has linear relations if and only if G is a complete graph. Moreover, it is well-known
that if in<(JG) has a linear resolution, then JG does too. Here, we show that the converse
is also true. In addition, we show that these conditions are equivalent to the condition
that in<(JG) is generated in degree 2 and has linear quotients. Also, in this section, we
determine some Betti numbers of the binomial edge ideal of a graph. Precisely, we show
that β1,3(JG) = 2k3(G), where k3(G) is the number of triangles of G. Moreover, we show
that if G is a non-complete connected graph, then β1,4(JG) 6= 0.

In Section 2 of this paper, we give an upper bound for the Castelnuovo-Mumford
regularity of the binomial edge ideal of a closed graph, by using corresponding results for
edge ideals. Indeed, we show that the regularity of the binomial edge ideal of a closed
graph G is less than or equal to c(G) + 1, where c(G) is the number of maximal cliques
of G.

Throughout the paper, we mean by a graph G, a simple graph with the vertex set
V (G) and edge set E(G), with no isolated vertices. Also, by <, we mean the lexicographic
order induced by x1 > · · · > xn > y1 > · · · > yn.

2 Binomial edge ideals with linear resolutions

In this section, we study the graded Betti numbers β1,3(JG) and β1,4(JG), and we char-
acterize all graphs whose binomial edge ideals have a linear resolution. The following
theorem is the main theorem of this section.

Theorem 2.1. Let G be a graph. Then the following conditions are equivalent:
(a) JG has a linear resolution.
(b) JG has linear relations.
(c) in<(JG) is generated in degree 2 and has linear quotients.
(d) in<(JG) has a linear resolution.
(e) G is a complete graph.
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To prove this theorem, we need some facts that we will mention in the sequel. We
denote the number of triangles (i.e. 3-cycles) of a graph G, by k3(G). In the next result,
we determine the first initial Betti number of the binomial edge ideal of a graph:

Theorem 2.2. Let G be a graph. Then we have
(a) β1,3(JG) = 2k3(G).
(b) β1,4(JG) 6= 0, if G is non-complete and connected.
(c) βi,j(JG) = 0, for j > 2i, if G is closed. In particular, β1,j(JG) = 0, for j 6= 3, 4, if G
is closed.
(d) βi,j(JG) = 0, for j > 2n.

Proof. (a) Suppose that

· · · −→ S|E(G)|(−2)
ψ−→ S −→ S/JG −→ 0

is the minimal graded free resolution of S/JG, in which ψ(eij) = fij. We first observe
that JG is Zn-graded, if we set deg(xi) =deg(yi) = εi, where εi denotes the i-th canonical
basis vector of Zn. Thus, degeij =degfij. Let Z1 be the relation module of JG, and con-
sider a relation r =

∑
gijeij of degree 3 (in the standard grading), that is, an element in

Z ′1 = (Z1)3. Since JG is Zn-graded, it follows that Z ′1 is also Zn-graded, and hence is gen-
erated by multihomogeous elements. Thus we may assume that r is multihomogeneous,
say of degree a ∈ Zn. Then all nonzero summands gijeij are of degree a, in which |a| = 3
(here |a| is the sum of the components of a). Let gijeij 6= 0. Then a =deg(gij) + εi + εj.
Therefore, deg(gij) = εk for some k. If k = i or k = j, then there is only one summand
in r with this multidregree and r can not be a relation. If k 6= i, j, then r has exactly
three summands and hence r = gijeij + gikeik + gjkejk. Thus r is a relation of the ideal

(fij, fik, fjk), which is the ideal of 2-minors of the matrix

[
xi xj xk
yi yj yk

]
. So, the generating

relations are xkeij − xjeik − xiejk and ykeij − yjeik − yiejk, by Hilbert-Burch theorem.

(b) Since G is not complete, it contains a path over three vertices, as an induced sub-
graph. Let {vi, vj, vk} be the vertices of this induced subgraph of G with edges {vi, vj}
and {vj, vk}. We may assume that i < j < k. We show that the degree 4 element
r = fijejk−fjkeij of Z1 can not be reduced by elements of Z ′1. Then we have β1,4(JG) > 0.
Note that the relation r has multidegree εi + 2εj + εk. If it is not a minimal relation,
it must be reduced by generating relations of degree 3. Since their multidegree is of the
form εs + εt + εl, only relations of multidegree εi + εj + εk can be in expression of r. But,
this is impossible, since the path with edges {vi, vj} and {vj, vk} is an induced subgraph
of G, so that {vi, vk} is not an edge of G.

(c) Notice that if G is a closed graph, then we have in<(JG) = (xiyj : i < j, {vi, vj} ∈
E(G)). Thus, it can be seen as the edge ideal of a bipartite graph over the vertex set
V = {x1, . . . , xn, y1, . . . , yn}. We denote this bipartite graph by in<(G). So, we have
in<(JG) = I(in<(G)). On the other hand, we have βi,j(JG) 6 βi,j(in<(JG)), for all i, j,
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by [3, Corollary 3.3.3]. So, if G is a closed graph, then βi,j(JG) = 0, for all j > 2i, by [5,
Lemma 2.2].

(d) By [4, Theorem 2.1], in<(JG) is a squarefree monomial ideal in S. Thus, the result
follows by Hochster’s formula, since βi,j(JG) 6 βi,j(in<(JG)).

Corollary 2.3. If k3(G) = 0, then βi,i+2(JG) = 0, for all i. In particular, for any bipartite
graph G, one has βi,i+2(JG) = 0, for all i.

Remark 2.4. Whenever G is a closed graph, we use consecutive cancellations to show
that β1,3(JG) = β1,3(in<(JG)) = 2k3(G). Actually, we have β0,3(JG) = β0,3(in<(JG)) = 0
and β2,3(JG) = β2,3(in<(JG)) = 0, by minimality of the free resolutions. On the other
hand, by [6, Theorem 22.12], the sequence of graded Betti numbers of JG is obtained
from the sequence of graded Betti numbers of in<(JG) by consecutive cancellations.
So, we have β1,3(JG) = β1,3(in<(JG)). A sequence qi,j of numbers is said to be obtained
from a sequence pi,j by a consecutive cancellation if there exist indices s and r such that
qs,r = ps,r− 1, qs+1,r = ps+1,r− 1 and qi,j = pi,j for all other values of i, j. Note that, more
generally, in [1], the authors conjectured that for a closed graph G, all the graded Betti
numbers of JG and in<(JG) coincide.

Remark 2.5. The third part of Theorem 1.2 may not be true without the assumption
that G is closed. For example, consider the cycle over five vertices, C5, which is not closed.
One can see by CoCoA that β1,5(JC5) = 4. More generally, according to our computations
by CoCoA, it seems that r =

∑n
i=1(

y1···yn
yiyi+1

)ei,i+1 is a minimal relation of degree n of JCn ,

for all n. So that β1,n(JCn) 6= 0, for all n.

Now, recall that a homogeneous ideal I whose generators all have degree d is said to
have a d-linear resolution (or simply linear resolution) if for all i > 0, βi,j(I) = 0 for
all j 6= i+ d.

Also, a graded ideal I is said to have linear quotients, if there exists a minimal system
of homogeneous generators g1, g2, . . . , gm of I such that the colon ideal (g1, . . . , gi−1) : gi
is generated by linear forms for all i.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. (a) ⇒ (b) is trivial, (c) ⇒ (d) follows by [3, Proposition 8.2.1],
and (d) ⇒ (a) follows by [3, Corollary 3.3.3].

(b) ⇒ (e) Note that G is a connected graph, since JG has linear relations. Now, sup-
pose on the contrary that G is not complete. Assume that H is a maximal clique of G.
So, G has a vertex vk which is not in H and is adjacent to a vertex vj of H, since G is
connected. Moreover, there is a vertex of H, say vi, which is non-adjacent to vk, because
H is a maximal clique. So, the induced subgraph of G on {vi, vj, vk} is a path over 3
vertices. Thus, by Theorem 1.2, we have β1,4(JG) > 0, which is a contradiction, since JG
has linear relations. Therefore, G is a complete graph.
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(e) ⇒ (c) Suppose that G is complete. Then in<(JG) has
(
n
2

)
quadratic square-free

minimal generators, more precisely, we have

in<(JG) = (xsyms : 1 6 s 6 n− 1 , s+ 1 6 ms 6 n),

since G is closed. We order the generators by the lexicographic order with x1 > x2 >
· · · > xn > y1 > y2 > · · · > yn. So, we have

x1y2 > x1y3 > · · · > x1yn > x2y3 > x2y4 > · · · > x2yn > · · · > xn−1yn.

We consider u1, . . . , u(n
2)

, the generators of in<(JG), as above, that is u1 > . . . > u(n
2)

.

We should show that for each i, the ideal (u1, . . . , ui−1) : ui is generated by a set of
variables. Note that the set { uj

gcd(uj ,ui)
: 1 6 j 6 i − 1} is a set of monomial gen-

erators of (u1 . . . , ui−1) : ui. It is enough to consider two following cases. For each
1 6 l 6 n − 2, the ideal (x1y2, . . . , x1yn, x2y3 . . . , x2yn, . . . , xlyl+1, . . . , xlyn) : xl+1yl+2 is
generated by the set {x1, . . . , xl}. Also, for each 1 < l 6 n − 2 and l 6 t 6 n, the
ideal (x1y2, . . . , x1yn, x2y3 . . . , x2yn, . . . , xlyl+1, . . . , xlyt) : xlyt+1 is generated by the set
{x1, . . . , xl−1, yl+1, . . . , yt}. Thus, JG has linear quotients. �

3 The castelnuovo-mumford regularity of binomial

edge ideals

In this section, we focus on the Castelnuovo-Mumford regularity of the binomial edge
ideals of graphs. Actually, we give an upper bound for the regularity of the binomial edge
ideal of a connected closed graph. In order to prove the main theorem of this section, we
need some facts which we will mention in the following.

A graph G is chordal if every induced cycle in G has length 3, and G is co-chordal
if the complement graph G is chordal. The co-chordal cover number of a graph G,
denoted by cochord(G), is the minimum number of subgraphs H1, . . . , Hs of G such that
every Hi is cochordal and

⋃s
i=1E(Hi) = E(G).

In [7], Woodroofe gave an upper bound for the regularity of the edge ideal of a graph.
Indeed, he showed:

Theorem 3.1. [7, Theorem 11] For any graph G, we have reg(I(G)) 6 cochord(G) + 1.

We denote by c(G), the number of maximal cliques of the graph G. We mean by a
maximal clique of G, an induced subgraph of G which is a complete graph and is also
maximal with this property. Now, we are ready for the main theorem of this section:

Theorem 3.2. For any closed graph G, we have reg(JG) 6 c(G) + 1.

Proof. By [3, Corollary 3.3.4], we have reg(JG) 6 reg(in<(JG)) = reg(I(in<(G))). There-
fore, it is enough to show that reg(I(in<(G))) 6 c(G) + 1. By Theorem 2.1, we have
reg(I(in<(G))) 6 cochord(in<(G)) + 1. Now, we show that cochord(in<(G)) 6 c(G). Let
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H be a maximal clique of G. Then in<(H) is an induced subgraph of in<(G). By Theorem
1.1, I(in<(H)) has a linear resolution. Hence, by Fröberg’s theorem, [2, Theorem 1], the
complement graph of in<(H) is chordal. On the other hand, all maximal cliques of G, say
H1, . . . , Hc(G), cover all edges of G. So, clearly, in<(H1), . . . , in<(Hc(G)) cover all edges of
in<(G). Thus, by definition, we have cochord(in<(G)) 6 c(G).

Remark 3.3. Theorem 2.2 could be seen as a generalization of the fact that if G is a
complete graph, then it has a linear resolution. In this case, we have c(G) = 1 and hence
reg(JG) = 2. So, clearly, in Theorem 2.2, equality holds for complete graphs. There are
some other classes of closed graphs with equality in Theorem 2.2. For example, let Pn be
the path over n vertices. Then we have reg(JPn) = reg(in<(JPn)) = c(Pn) + 1 = n, since
S/JPn is Cohen-Macaulay and in<(JPn) is the edge ideal of n − 1 disjoint edges, (see [1,
Corollary 1.2] and [1, Proposition 3.2]). As an other example with this property, consider
any closed graph G which has exactly two maximal cliques. Then we have reg(JG) = 3.

Remark 3.4. The inequality of Theorem 2.2 might be strict. For example, consider the
graph G with vertex set V = {v1, . . . , v6} and edges {v1, v2}, {v1, v3}, {v2, v3}, {v2, v4},
{v3, v4}, {v3, v5}, {v4, v5}, {v4, v6}, {v5, v6}. We have G is closed and c(G) = 4. But, one
can see, by CoCoA, that reg(JG) = 4.
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