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Abstract

We consider the family of graphs whose vertex set is Zk where two vertices are
connected by an edge when their `∞-distance is 1. We prove the optimal vertex
isoperimetric inequality for this family of graphs. That is, given a positive integer
n, we find a set A ⊂ Zk of size n such that the number of vertices who share an edge
with some vertex in A is minimized. These sets of minimal boundary are nested,
and the proof uses the technique of compression.

We also show a method of calculating the vertex boundary for certain subsets
in this family of graphs. This calculation and the isoperimetric inequality allow us
to indirectly find the sets which minimize the function calculating the boundary.

Keywords: discrete isoperimetric inequality

1 Introduction and Results

For a metric space (X, d) with a notion of volume and boundary, an isoperimetric inequal-
ity gives a lower bound on the boundary of a set of fixed volume. Ideally, for any fixed
volume, it produces a set of that volume with minimal boundary. The most well-known
isoperimetric inequality states that, in Euclidean space, the unique set of fixed volume
with minimal boundary is the Euclidean ball.

More recently, questions of isoperimetric inequalities have arisen within various kinds
of discrete spaces [12], [7], [9], [11], [10], [16], [20]. Not only are questions regarding
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isoperimetric inequalities natural geometric questions, but they are known to have many
implications in areas such as measure concentration [18], [15], [19], [17] and the theory of
random graphs [3], [6], [5], [4].

One of the more broadly known discrete isoperimetric inequalities is Harper’s Theorem.
Harper’s Theorem involves the discrete space {0, 1}n and the `1 metric; that is, the metric
defined by the norm

||(x1, x2, . . . , xn)||1 =
n∑
i=1

|xi|

A graph G = (V,E) is defined on the vertex set V = {0, 1}n where the edge set E consists
of points whose distance in the `1 metric is precisely 1:

E = {(u, v) : u ∈ {0, 1}n, v ∈ {0, 1}n, ||u− v||1 = 1}

Here, the vertex boundary of a set A ⊂ {0, 1}n consists of all points whose distance from
A in the graph metric is no more than 1:

∂A = {v ∈ V : d(v, A) 6 1}.

As usual, the distance between a point x and a set A is defined

d(x,A) = inf
a∈A

d(x, a) = inf
a∈A
{the length of the shortest path from x to a}

In other words, the vertex boundary consists of both A and all of the neighbors of A. In
[12] Harper shows that one can define an ordering on the 0-1 cube {0, 1}n such that a set
of smallest vertex boundary is achieved on an initial segment. Thus, the sets achieving
the minimal boundary are nested.

In [7], Bollobás and Leader found an isoperimetric inequality for a graph which is also
defined using the `1 metric. The vertices of this graph are the vertices of the discrete
torus Znm, where Zm denotes the integers modulo m and m is necessarily an even integer.
The edges of this graph are points whose distance using the `1 metric is precisely 1. In
[7], Bollobás and Leader use a tool called a fractional system to show that the sets of
minimal boundary of size |{x ∈ Znm : ||x − ~0||1 6 r}| (r = 0, 1, 2, . . . ) are precisely those
balls: {x ∈ Znm : ||x − ~0||1 6 r}. Thus, the sets of minimal vertex boundary of size
|{x ∈ Znm : ||x−~0||1 6 r}| (r = 0, 1, 2, . . . ) again are nested.

The fact that sets achieving optimality are nested is crucial in both [12] and [7], as they
use the technique of compression. Compression has been utilized in these and many other
discrete isoperimetric problems to inductively find sets of minimal boundary, and relies
heavily on the fact that the graph and its lower dimensional counterparts have sets of
minimal boundary that are nested. Discussions of compression as a technique in discrete
isoperimetric problems can be found in [8], [13], [1], and [2].

In the following we consider the vertex isoperimetric inequalities of a family of graphs
which was previously unstudied. Specifically, we consider the family of graphs whose
vertex set is Zk where two vertices are connected by an edge when their `∞-distance is
1. Specifically, for each n ∈ N, we produce a set in Zk of size n whose vertex boundary
is minimized. We do this by defining a well-ordering ≺ on Zk and showing that a set of
minimal boundary is an initial segment:
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Theorem 1. Let I be an initial segment in Zk, and A a finite, nonempty subset. If
|I| = |A| then |∂I| 6 |∂A|.

Thus, there exist sets of minimal boundary which are nested. (The sets of minimal
boundary are not unique, as we point out at the end of Section 2). To prove Theorem 1,
we use a version of compression which is similar to that used to prove Harper’s Theorem
in [14]. Compression alone is not enough to produce a set of minimal boundary; instead
we show that compressing a set and a particular type of “jostling” eventually results in
a set of minimal boundary. Our results are analogous to the results in [21] on the graph
whose vertex set is also Zk, but whose edges are given instead by `1. We prove Theorem
1 in Section 2.

In Section 3, we show how one can use a “1-dimensional compression” technique to
take a set A ⊂ Zk and produce a set of the same size whose boundary is no larger. We
call such a set centralized. Then we are able to compute the boundary of centralized
sets. This computation along with the isoperimetric inequality of Theorem 1 allows us
to deduce which sets achieve the minimum value of the function which computes the
boundary of centralized sets. This boundary computation technique may be useful in
finding isoperimetric inequalities for other related graphs.

In Section 4 we make some final comments on using the ideas in Section 3 for other
graphs.

2 The Proof of Theorem 1

We first consider the graph with vertex set Zk. Two vertices x, y ∈ Zk are joined by an
edge precisely when ‖x− y‖∞ = 1. That is, when

max
i=1,2,...,k

|xi − yi| = 1

where x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk).
We define a well-ordering ≺ on Zk inductively. For Z1, the well-ordering ≺ is:

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ 3 · · ·

For k > 1, the well-ordering ≺ on Zk is as follows: for u = (u1, u2, . . . , uk) ∈ Zk define

M(u) = max
≺
{ui : i = 1, 2, . . . , k}

where the maximum is according to the previously defined well-ordering on Z. Then for
u, v ∈ Zk with u 6= v, if M(u) ≺M(v), then u ≺ v. If M(u) = M(v), define

iu = min{i : ui = M(u) where u = (u1, u2, . . . uk)}
iv = min{i : vi = M(v) where v = (v1, v2, . . . vk)}
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If iv < iu then u ≺ v. Finally, if M(u) = M(v) and iu = iv, we define

u′ = (u1, u2, . . . , uiu−1, uiu+1, . . . uk) ∈ Zk−1

v′ = (v1, v2, . . . , viu−1, viu+1, . . . vk) ∈ Zk−1

and state that u ≺ v precisely when u′ ≺ v′.
For example, for k = 3, here are the first forty elements according to this well-ordering:

1.(0, 0, 0) 2.(0, 0, 1) 3.(0, 1, 0) 4.(0, 1, 1) 5.(1, 0, 0)
6.(1, 0, 1) 7.(1, 1, 0) 8.(1, 1, 1) 9.(0, 0,−1) 10.(0, 1,−1)
11.(1, 0,−1) 12.(1, 1,−1) 13.(0,−1, 0) 14.(0,−1, 1) 15.(1,−1, 0)
16.(1,−1, 1) 17.(0,−1,−1) 18.(1,−1,−1) 19.(−1, 0, 0) 20.(−1, 0, 1)
21.(−1, 1, 0) 22.(−1, 1, 1) 23.(−1, 0,−1) 24.(−1, 1,−1) 25.(−1,−1, 0)
26.(−1,−1, 1) 27.(−1,−1,−1) 28.(0, 0, 2) 29.(0, 1, 2) 30.(1, 0, 2)
31.(1, 1, 2) 32.(0,−1, 2) 33.(1,−1, 2) 34.(−1, 0, 2) 35.(−1, 1, 2)
36.(−1,−1, 2) 37.(0, 2, 0) 38.(0, 2, 1) 39.(1, 2, 0) 40.(1, 2, 1)

We use the notation u � v to mean that either u = v or u ≺ v. For a ∈ Z, we let as

denote its immediate successor in the well-ordering ≺. Thus, for example,

1s = −1

−1s = 2

0s = 1

Since it will be used later, we present the following remark on how to calculate imme-
diate successors using this well-ordering ≺ on Zk:
Remark 1 (Calculating Successors).

Consider x = (x1, x2, . . . , xk) ∈ Zk. Let m be the smallest entry of x according to the
well ordering ≺ of Z. Thus,

m = xi for some i

and
m � xi for each i

Define
im = max{i : xi = m}.

If im = k, then x1 = x2 = . . . = xk and the immediate successor of x is (0, 0, . . . , 0, xsk).
Otherwise, im < k. In this case, the immediate successor to x is the vector xs =

(y1, y2, . . . , yk) where xs has the same entries as x except that all entries xj which are
equal to xim with j < im change to 0 (or stay 0 if xim = 0), xim changes to xsim , and all
entries xj which are equal to xsim with j > im change to 0. That is,

yi =


0 if i < im and xi = xim or if i > im and xi = xsim
xsim if i = im

xi otherwise
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For a set A ⊂ Zk, we use the notation ∂A to denote

∂A = {x ∈ Zk : ‖x− a‖∞ 6 1 for some a ∈ A}.

Thus, A ⊂ ∂A. We note that this is the notation used in [14], [9], [10], and others. We
use |A| to denote the size of a finite set.

Our goal will be to prove that, for any A ⊂ Zk |∂A| > |∂I|A|| where I|A| is the initial
segment in Zk of length |A|, according to the well-ordering ≺. In order to prove this, we
will need some Lemmas about initial segments in Zk and their boundaries.

For a number a ∈ Z, we let a+ denote the element of {a, a+ 1, a− 1} which is largest
in the well-ordering ≺ and a− the element of {a, a+ 1, a− 1} which is the smallest. Thus,
for example,

1+ = 2 1− = 0

−1+ = −2 −1− = 0

0+ = −1 0− = 0

Lemma 1. If I ⊂ Zk is an initial segment, so is ∂I

Proof. By induction on |I|. If |I| = 1, then I = {(0, 0, . . . , 0)} and ∂I = {0, 1,−1}k which
is the initial segment of size 3k. Now let v ∈ Zk, and suppose that I = {x ∈ Zk : x � v}
and ∂I are initial segments. Let u be the successor of v. Note that u is not the zero
vector. We will show that ∂ (I ∪ {u}) is an initial segment.

Let v = (v1, v2, . . . , vk). Note that the vector in Zk which is an element of ∂I and the
latest in the well-ordering ≺ is (v+

1 , v
+
2 , . . . , v

+
k ). Thus, by our inductive assumption,

∂I = {x ∈ Zk : x � (v+
1 , v

+
2 , . . . , v

+
k )}.

Note that

∂(I ∪ {u}) = ∂I ∪ {(u1 + δ1, u2 + δ2, . . . , uk + δk) : (δ1, δ2, . . . , δk) ∈ {0, 1,−1}k}.

Let i ∈ {1, 2, . . . , k} and suppose that ui 6= 0. Then

(u1, u2, . . . , ui−1, u
−
i , ui+1, . . . , un) ≺ (u1, u2, . . . , un)

and for (δ1, δ2, . . . , δk−1) ∈ {0, 1,−1}k−1 each of

(u1 + δ1, u2 + δ2, . . . , ui−1 + δi−1, u
−
i , ui+1 + δi, . . . , uk + δk−1)

(u1 + δ1, u2 + δ2, . . . , ui−1 + δi−1, ui, ui+1 + δi, . . . , uk + δk−1)

are adjacent to (u1, u2, . . . , ui−1, u
−
i , ui+1, . . . , un).

Thus, the elements (x1, x2, . . . , xn) of ∂(I ∪ {u}) which are not in ∂I are precisely
those of the form:

xi =

{
u+
i if ui 6= 0

0, 1, or − 1 if ui = 0
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Note that if ui 6= 0 then u+
i is at least as large as 2 in the well-ordering ≺ on Z. Finally,

recall that u is the immediate successor to v = (v1, v2, . . . , vk) and that every entry of
(v+

1 , v
+
2 , . . . , v

+
k ) is at least as large as −1 in the well-ordering on Z. Thus, by Remark

1, we can see that the elements of ∂(I ∪ {u}) which are not in ∂I are the 3` immediate
successors of (v+

1 , v
+
2 , . . . , v

+
k ) where ` is the number of 0 entries of u.

We note that we have also proved the following:

Lemma 2. If I is an initial segment in Zk and v is the first element not in I, then

|∂(I ∪ {v})| = |∂I|+ 3`

where ` is the number of coordinates equal to 0 in v.

The following technical Lemma will be used in the proof of Theorem 1

Lemma 3. Suppose k > 2 and consider a segment in Zk:

S = {v ∈ Zk : v0 6 v 6 v1}, k > 2.

Let v0 = (v0,1, v0,2, . . . , v0,k) and suppose that v0,j = 0 for all j 6= j∗ and v0,j∗ 6= 0. Suppose
that the last t vectors in S all do not have a 0 entry. Then for any j ∈ {1, 2, . . . , k}, j 6= j∗

and for any

s ∈
{

1,−1, 2,−2, . . . (−1)t+1
⌈
t
2

⌉}
there is a vector in S whose jth entry is s.

Proof. Note that the numbers in the set
{

1,−1, 2,−2, . . . (−1)t+1
⌈
t
2

⌉}
are the first t

elements in the list 1,−1, 2,−2, 3,−3, . . . .
Recall from Remark 1 how immediate successors in Zk are calculated. The only way

that t successive vectors all do not have a 0 entry is if a single coordinate is increasing
(according to ≺) in those successive vectors.

Suppose it is the ith coordinate which is increasing in the final t vectors of S. This
implies that, in each of the t successive vectors that have no 0 coordinate, the ith co-
ordinate is smaller than any of the other coordinates (in the ≺ ordering on Z). Thus,
for any ` 6= i, the `th coordinate must be at least as large as the tth element in the list
1,−1, 2,−2, . . . . Hence we can see that every coordinate of v1 has a value at least as large
as the tth element in the list 1,−1, 2,−2, 3, . . . .

Consider any j 6= j∗. By assumption, the jth coordinate v0 is 0. Recall that every
coordinate of v1 has a value at least as large as the tth element in the list 1,−1, 2,−2, 3, . . .
and S is the segment between v0 and v1. Thus, by the definition of the ordering ≺ on
Zk, for the 1st through tth elements in the list 1,−1, 2,−2, . . . , there must be an element
between v0 and v1 whose jth coordinate is equal to that element.

Specifically, let v0 = (v0,1, v0,2, . . . , v0,k) and s ∈ {1,−1, 2, . . . , (−1)t+1
⌈
t
2

⌉
}. Then the

vector x = (x1, x2, . . . , xk) where

x` =

{
v0,` if ` 6= j

s if ` = j

has an entry equal to s and v0 ≺ x � v1. Thus, we have proven the Lemma.
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The notation we use (and the technique used) in proving Theorem 1 is similar to that
in that in the proof of Harper’s Theorem in [14]. For A ⊂ Zk, i ∈ {1, 2, . . . , k}, and j ∈ Z
we define Aij to be the set of vectors in Zk−1 such that, when a j is inserted in between
the i− 1th and ith entries, the resulting vector is in A. That is,

Aij = {x ∈ Zk−1 : (x1, x2, . . . , xi−1, j, xi, xi+1, . . . , xk−1) ∈ A}

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let A ⊂ Zk be finite and nonempty. We proceed by induction on k.
For k = 1, one can easily see that

|∂A| = |A|+ 2

if A is a segment: A = {j ∈ Z : a 6 j 6 b for some a, b ∈ Z} and

|∂A| > |A|+ 2

if A is not a segment. Since every initial segment in Z according to the well-ordering ≺
is a segment, the Theorem is proved for k = 1.

Now suppose A ⊂ Zk is finite and nonempty, k > 1, and the theorem is proven for all
smaller positive k. Let i ∈ {1, 2, . . . , k}. Note that there are only finitely many j ∈ Z for
which the set

Aij

is nonempty, and that ∑
j∈Z

|Aij | = |A|

We define a set Ci which is the “i-compression” of A by specifying its k−1-dimensional
sections fixing the ith coordinate. Specifically, for j ∈ Z, we define (Ci)ij to be the initial
segment in Zk−1 of size |Aij |. This gives |(Ci)ij | = |Aij | for each j. Thus, since∑

j∈Z

|Aij | = |A|

and∑
j∈Z

|(Ci)ij | = |Ci|

we have |Ci| = |A|. Now note that

(∂A)ij = ∂(Aij) ∪ ∂(Aij−1) ∪ ∂(Aij+1)

(∂Ci)ij = ∂((Ci)ij) ∪ ∂((Ci)ij−1) ∪ ∂((Ci)ij+1)

By definition, we know that |(Ci)ij | = |Aij |, |(Ci)ij−1| = |Aij−1|, and |(Ci)ij+1 | = |Aij+1 |.
Also, (Ci)ij is an initial segment, so by induction we have |∂((Ci)ij)| 6 |∂(Aij)|. Similarly
for j + 1 and j − 1.
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If the union above were necessarily disjoint, we would be done. Since it’s not, we note
the following: all of ∂((Ci)ij), ∂((Ci)ij−1) and ∂((Ci)ij+1) are initial segments. Thus, they
are ordered by containment. Thus, either the inequality |∂((Ci)ij)| 6 |∂(Aij)| or one of
the equalities |∂((Ci)ij−1)| 6 |∂(Aij−1)|, |∂((Ci)ij+1)| 6 |∂(Aij+1)| is enough to give us that
|(∂Ci)ij | 6 |(∂A)ij |.

Note that j ∈ Z was arbitrary. Thus, since∑
j∈Z

|(∂A)ij | = |∂A|∑
j∈Z

|(∂Ci)ij | = |∂Ci|

we have |∂Ci| 6 |∂A|.
Hence, we have shown that, for i ∈ {1, 2, . . . , k}, the ith-compression of A is a set of

the same size with no larger boundary. We note that a set which is compressed in every
coordinate need not be an initial segment. For example, for k = 3, the set

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}

is i-compressed, but not an initial segment.
Finally, we note that we can continue compressing A with respect to different coor-

dinates (perhaps compressing more than once on some coordinates) and arrive at a set
which is compressed in every coordinate after finitely many compressions. Indeed, define
a function

r : Zk → N

by letting r(x) be the rank of x according to the well-ordering ≺ on Zk. That is, if r(x)
is 5, then x is the fifth element of Zk according to the well-ordering ≺. Then if Ci is the
ith compression of A and Ci 6= A, we must have∑

x∈Ci

r(x) <
∑
y∈A

r(y)

by the definition of ≺. Since
∑

x∈Ci
r(x) is bounded below (by (n+1)n

2
, if |A| = n), we

must eventually reach a set which is compressed in every coordinate.
Let X ⊂ Zk be a set of size |A| which has the following properties:

1. |∂X| 6 |∂A|

2. X is compressed in every coordinate i ∈ {1, 2, . . . , k}.

3. If Z is any other set of size |A| satisfying the above properties 1 and 2, let `(X) and
`(Z) be the last elements of X and Z in the well-ordering ≺ respectively. Then we
must have

`(X) � `(Z)
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In words: X is a set of size |A| with boundary no larger than the boundary of A which
is compressed in every coordinate (the previous arguments show that such an X exists).
We also choose X such that it is “as close as possible to an initial segment” as described
in property 3: its last element is as small as possible. We will show that X must be an
initial segment by contradiction.

Suppose that X is not an initial segment. Then there exists x 6∈ X, y ∈ X, such that
x ≺ y. We note that, if xi = yi for some i ∈ {1, 2, . . . , k}, then defining

x∗ = (x1, . . . , xi−1, xi+1, . . . , xk)

y∗ = (y1, . . . , yi−1, yi+1, . . . , yk)

we have x∗ ≺ y∗ in Zk−1, contradicting the fact that X is i-compressed. Thus, each of
the coordinates of x and y must be different.

Let Sα be the first segment in X. That is, Sα ⊂ X, Sα is a segment according to
the ordering ≺, and the immediate successor to the last element in Sα is not in X. Note
that, since X is compressed in every coordinate, this implies that (0, 0, . . . , 0) ∈ Sα. Let
y be the first element in X\Sα, and let x be its immediate predecessor. From the above
comments, we know that either

x = (0, 1, 1, . . . , 1) y = (1, 0, 0, . . . , 0)

or x1 6= 0 and

x = (x1, x1, . . . , x1︸ ︷︷ ︸
`

, xs1, x
s
1, . . . , x

s
1︸ ︷︷ ︸

n−`

) y = (0, 0, . . . , 0︸ ︷︷ ︸
`−1

, xs1, 0, 0, . . . , 0︸ ︷︷ ︸
k−`

)

Case 1:
x = (0, 1, 1, . . . , 1) y = (1, 0, 0, . . . , 0)

Let SΩ be the last segment in X. That is, SΩ = {w ∈ Zk : u � w � v}, SΩ ⊂ X, v is
the last element in X, and the immediate predecessor to u is not in X. Since x 6∈ X and
u ∈ X, by the above arguments we must have u1 6= 0 and

u = (u1, 0, 0, . . . , 0︸ ︷︷ ︸
k−1

)

for some u1 6= 0. Additionally, we note that the successor to u is (u1, 0, . . . , 0, 1) which
must have a coordinate in common with x. Thus, by the above arguments, we must have
u = v. We note that by Lemma 2, there are at least 3k−1 elements which adjacent to u
and are not adjacent to any other element in X. There are 3 elements which are adjacent
to x and not adjacent to any element of Sα ⊂ X. Thus, we can see that

∂((X ∪ {x})\{u}) 6 ∂(X)− 3k−1 + 3 6 ∂(X), |(X ∪ {x})\{u}| = |X|

and the set (X∪{x})\{u} is closer to an initial segment with respect to property 3 above.
Thus, we have reached a contradiction in Case 1.
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Case 2: x1 6= 0 and

x = (x1, x1, . . . , x1︸ ︷︷ ︸
`

, xs1, x
s
1, . . . , x

s
1︸ ︷︷ ︸

k−`

) y = (0, 0, . . . , 0︸ ︷︷ ︸
`−1

, xs1, 0, 0, . . . , 0︸ ︷︷ ︸
k−`

)

Let SΩ be the last segment in X. That is, SΩ = {w ∈ Zk : u � w � v}, SΩ ⊂ X, v is the
last element in X, and the immediate predecessor to u is not in X.

Let Sβ be the first segment not in X. That is, Sβ = {z ∈ Zk : q � z � x} and the
immediate predecessor of q is the last element of Sα. Note that, by the above arguments,
since q 6∈ X and y ∈ X all of the entries of q and y must be different. Thus, the vector q
is somewhere in between

(x1, . . . , x1︸ ︷︷ ︸
`−2

, 1, x1, x
s
1, . . . , x

s
1︸ ︷︷ ︸

k−`

) and x = (x1, . . . , x1︸ ︷︷ ︸
`

, xs1, . . . , x
s
1︸ ︷︷ ︸

k−`

) if 1 < ` < k

(x1, x
s
1, . . . , x

s
1, 1) and x = (x1, x

s
1, x

s
1, . . . , x

s
1) if ` = 1

(x1, . . . , x1, 1) and x = (x1, x1, . . . , x1) if ` = k

If q has no 0 entries, then we know that there is no more than 30 = 1 element in Zk
adjacent to q which is not adjacent to any other element of Sα ⊂ X. Also there are
3t > 1 elements in Zk larger than v which are adjacent to v and not adjacent to any other
element in X, where t is equal to the number of 0 entries of v. Thus, we have

∂((X ∪ {q}})\{v}) 6 ∂(X)− 3t + 1 6 ∂(X), |(X ∪ {q}})\{v}| = |X|

and (X ∪ {q}})\{v} is closer to an initial segment with respect to property 3 above.
It is possible for q to have a 0 entry. Specifically, we could have

q = (x1, . . . , x1︸ ︷︷ ︸
`−1

, 0, xs1, . . . , x
s
1︸ ︷︷ ︸

k−`

) if 1 < ` < k

or we could have
q = (0, xs1, . . . , x

s
1) if ` = 1

If q does have a 0 entry, then we exchange for q instead of v, we exchange for the immediate
successor of q instead of the immediate predecessor of v, and so on until either we have
exchanged out all of SΩ or filled all of Sβ. This creates a new X ′ of the same size as X.
Note that q is the only element of Sβ which has a 0 entry. We claim that at least one of
the elements of SΩ that we exchanged for an element of Sβ had a 0 entry. Indeed, if all of
SΩ is exchanged, we know that u has a 0 entry. Otherwise, only the last t entries of SΩ

were exchanged, where x1 is the tth entry in the list 0, 1,−1, 2,−2, . . . . If none of them
had a 0 entry, then Lemma 3 would imply that one of the vectors in SΩ has an entry
equal to xs1 and another vector in SΩ has that same entry equal to x1. This contradicts
the fact that no element of SΩ can share any entries with x.

Thus, at least one of the elements of SΩ that we exchanged for an element of Sβ had a 0
entry. Thus, by Lemma 2, we know that the boundary of the new set X ′ is no larger than
the boundary of X and that X ′ is closer to an initial segment with respect to property 3
above. Thus, we have reached a contradiction in Case 2.

Hence, X must indeed be an initial segment, and we have proved our Theorem.
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We note that the sets that we found here of minimum boundary are not unique. For
example, the sets in Figure 2 are both sets in Z2 of size 10 of minimal boundary, but
they are not isomorphic. The blue dots represent the set, while the red dots represent the
additional vertices which are in the boundary of the set.

Figure 1: The set on the left is an initial segment, while the set on the right is not.

Finally, we note that the same arguments utilized above can also be used to prove a
similar isoperimetric inequality for Nk. That is, we consider the graph whose vertex set is
Nk such that there is an edge between x ∈ Nk and y ∈ Nk precisely when ‖x− y‖∞ = 1.
A well-ordering ≺N is defined on Nk inductively just as it is for Zk, but with the base case
of N1 being the standard ordering of N:

0 < 1 < 2 < 3 < · · ·

All of the Lemmas and the Theorem are proven similarly. In the case of Nk, the
equation of Lemma 2 would instead conclude that

|∂(I ∪ {v})| = |∂I|+ 2`

where ` is the number of coordinates equal to 0 in v. With this well-ordering ≺N, we have
the following:

Corollary 1. Let I be an initial segment in Nk, and A a finite, nonempty subset. If
|I| = |A| then |∂I| 6 |∂A|.

3 Boundary Computations

We define a graph on the vertex set Zk × Nd, where k and d are non-negative integers
(not both 0). We use N to denote the set of non-negative integers:

N = {x ∈ Z : x > 0}

As usual, we say that two vertices x, y ∈ Zk × Nd are joined by an edge precisely when
their `∞-distance is 1. That is, when

‖x− y‖∞ = max
i=1,2,...,k+d

{|xi − yi|} = 1.
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For simplicity, we introduce the following notation: for a real-valued vector p =
(p1, p2, . . . , pn) ∈ Rn, and x ∈ R, we define

(p, x→ i) = (p1, p2, . . . , pi−1, x, pi, pi+1, . . . , pn) ∈ Rn+1

In words, (p, x → i) is the vector that results when placing x in the ith coordinate of p
and shifting the ith through nth coordinates of p to the right.

There are two types of 1-dimensional compression which we will utilize.

Definition 1. We say that a set S ⊂ Zk×Nd is centrally compressed in the i-th coordinate
(1 6 i 6 k) with respect to p ∈ Zk−1 × Nd if the set

{x ∈ Z : (p, x→ i) ∈ S}

is either empty or of one of the following two forms:

{x : −a 6 x 6 a for a ∈ N}
OR

{x : −a 6 x 6 a+ 1 for a ∈ N}

Definition 2. We say that S ⊂ Zk × Nd is downward compressed in the j-th coordinate
(k + 1 6 j 6 k + d) with respect to p ∈ Zk × Nd−1 if the set

{x ∈ N : (p, x→ j) ∈ S}

is either empty or of the form:

{x : 0 6 x 6 a for a ∈ N}

For certain subsets S ⊂ Zk × Nd, we will calculate the boundary

∂S = {x ∈ Zk × Nd : ‖y − x‖∞ 6 1 for some y ∈ S}
=
{
x ∈ Zk × Nd : ∃ s ∈ S such that x = s+ ε for some ε ∈ {−1, 0, 1}k+d

}
Specifically, we will calculate the boundary of sets which are centrally compressed in the
ith coordinate with respect to any p ∈ Zk−1×Nd for 1 6 i 6 k, and which are downward
compressed in the jth coordinates with respect to any p ∈ Zk×Nd−1 for k+1 6 j 6 k+d.
We will say that such sets are “compressed in every coordinate.” Before completing the
calculations, we shall see that a set of minimum boundary must be compressed in every
coordinate.

3.1 Effect of Compression

Definition 3. Let S ⊂ Zk × Nd. For 1 6 i 6 k, we define Si to be the ith central
compression of S by specifying its 1-dimensional sections in the ith coordinate. Specifically,
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1. For each p ∈ Zk−1 × Nd,

|{x ∈ Z : (p, x→ i) ∈ Si}| = |{x ∈ Z : (p, x→ i) ∈ S}|

2. Si is centrally compressed in the ith coordinate with respect to p for each p ∈ Zk−1×
Nd.

For k + 1 6 j 6 k + d, we define Sj to be the jth central compression of S by specifying
its 1-dimensional sections in the jth coordinate. Specifically,

1. For each p ∈ Zk × Nd−1,

|{x ∈ N : (p, x→ j) ∈ Sj}| = |{x ∈ N : (p, x→ j) ∈ S}|

2. Sj is downward compressed in the jth coordinate with respect to p for each p ∈
Zk × Nd−1.

In words: after fixing a coordinate i ∈ {1, 2, . . . , k}, we consider all lines in Zk × Nd

where only the ith coordinate varies, and we intersect those lines with S. Eeach of the
points in those intersections are moved along the line so that they are a segment centered
around 0. The result is Si. Similarly, after choosing j ∈ {k + 1, . . . , k + d}, we again
consider lines in Zk × Nd where the jth coordinate varies, and intersect those lines with
S. We now move the points along the line so that they are a segment starting from 0.
The result is Sj.

Proposition 1. Suppose that S ⊂ Zk × Nd. For 1 6 i 6 k, let Si be the ith central
compression of S. Then

∂Si 6 ∂S

Similarly, for k + 1 6 j 6 k + d, let Sj be the jth downward compression of S. Then

∂Sj 6 ∂S

Proof. Let 1 6 i 6 k and fix p ∈ Zk−1 × Nd. Consider any ε ∈ {−1, 0, 1}k+d−1 for which

p+ ε ∈ Zk−1 × Nd.

Let
I = {ε ∈ {−1, 0, 1}k+d−1 : ∃ x ∈ Z : (p+ ε, x→ i) ∈ S}.

Note that, by the definition of Si, for p ∈ Zk−1 × Nd, we have

{x ∈ Z : (p+ ε, x→ i) ∈ S} 6= ∅

if and only if
{x ∈ Z : (p+ ε, x→ i) ∈ Si} 6= ∅
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We have

{(p, x→ i) : x ∈ Z} ∩ ∂S

=
⋃
ε∈I

{(p, x→ i) : ∃ y ∈ {x− 1, x, x+ 1}such that (p+ ε, y → i) ∈ S}

Thus, we have

|{(p, x→ i) : x ∈ Z} ∩ ∂S|
> max

ε∈I
| {(p, x→ i) : ∃ y ∈ {x− 1, x, x+ 1}such that (p+ ε, y → i) ∈ S} |

> max
ε∈I
|{x ∈ Z : (p+ ε, x→ i) ∈ S}|+ 2

where the last inequality is achieved if and only if, for the ε achieving the maximum,

{x ∈ Z : (p+ ε, x→ i) ∈ S} = {x ∈ Z : a 6 x 6 b}

for some a, b ∈ Z.
Additionally, we note that

{(p, x→ i) : x ∈ Z} ∩ ∂Si
=
⋃
ε∈I

{(p, x→ i) : ∃ y ∈ {x− 1, x, x+ 1} such that (p+ ε, y → i) ∈ Si} .

so that now, by the definition of Si,

|{(p, x→ i) : x ∈ Z} ∩ ∂Si|
= max

ε∈I
| {(p, x→ i) : ∃ y ∈ {x− 1, x, x+ 1} such that (p+ ε, y → i) ∈ Si} |

= max
ε∈I
|{x ∈ Z : (p+ ε, x→ i) ∈ Si}|+ 2

By the definition of Si, for each ε ∈ I, we have

|{x ∈ Z : (p+ ε, x→ i) ∈ S}| = |{x ∈ Z : (p+ ε, x→ i) ∈ Si}|.

Finally, we note that both ∂S and ∂Si are the disjoint unions of those 1-dimensional
sections:

∂S =
⋃

p∈Zk−1×Nd

{(p, x→ i) : x ∈ Z} ∩ ∂S

∂Si =
⋃

p∈Zk−1×Nd

{(p, x→ i) : x ∈ Z} ∩ ∂Si

Thus, we can conclude that
∂S > ∂Si.

The proof in the case of downward compression in coordinate j ∈ {k + 1, . . . , k + d}
is similar.
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3.2 Boundaries of Compressed Subsets of Zk × Nd

We have the following definitions: For fixed k, d ∈ N (not both 0), let

K = {1, 2, . . . , k}
D = {k + 1, k + 2, . . . , k + d}

In addition, for I ⊂ {1, 2, . . . , k+d} and S ⊂ Zk×Nd, let PI(S) denote the k+d−|I|-
dimensional projection of S which results from deletion of the coordinates in I.

Theorem 2. Let S ⊂ Zk×Nd be a finite set which is centrally compressed in coordinate i
for each 1 6 i 6 k and downward compressed in each coordinate j where k+1 6 j 6 k+d.
Then

∂S =
∑

I⊂{1,2,...,k+d}

2|I∩K||PI(S)|.

Proof. We proceed by induction on |S|. If |S| = 1, then S = {(0, 0, 0, . . . , 0)} and

∂S = {(x1, x2, . . . , xk+d) : xi ∈ {−1, 0, 1} for 1 6 i 6 k,

xj ∈ {0, 1} for k + 1 6 j 6 k + d}

so that
|∂S| = 3k2d

We note that in this case, |PI(S)| = 1 for any I ⊂ {1, 2, . . . , k + d} so that∑
I⊂{1,2,...,k+d}

2|I∩K||PI(S)| =
∑

I⊂{1,2,...,k+d}

2|I∩K|

=
d∑
i=0

k∑
j=0

(
k

j

)(
d

i

)
2j

= 3k2d

Now suppose that |S| > 1. We consider the same well-ordering ≺ on Z as considered
in Section 2:

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ 3 · · ·
and we denote by < the regular ordering on either Z or N. As in Section 2, for a ∈ Z, we
let a+ denote the element of {a, a+ 1, a− 1} which is largest in the well-ordering ≺ and
a− the element of {a, a+ 1, a− 1} which is the smallest.

Let z = (z1, z2, . . . , zk+d) ∈ S be a point which is a “corner point” of S. That is, for
any i ∈ {1, 2, . . . , k}, the point

(z1, . . . , zi−1, z
+
i , zi+1, . . . , zk+d)

is not in S and for any j ∈ {k + 1, k2, . . . , k + d}, the point

(z1, . . . , zj−1, zj + 1, zj+1, . . . , zk+d)

the electronic journal of combinatorics 19(2) (2012), #P45 15



is not in S. We note that z exists because S is finite. Also note that, since S is compressed
in every coordinate, for any i ∈ {1, 2, . . . , k} where zi 6= 0,

(z1, . . . , zi−1, z
−
i , zi+1, . . . , zk+d) ∈ S

and
(z1, . . . , zi−1, z

−
i , zi+1, . . . , zk+d) 6= (z1, . . . , zi−1, zi, zi+1, . . . , zk+d)

Additionally, for any j ∈ {k + 1, k + 2, . . . , d+ k} where zj 6= 0,

(z1, . . . , zj−1, zj − 1, zj+1, . . . , zk+d) ∈ S
and

(z1, . . . , zj−1, zj − 1, zj+1, . . . , zk+d) 6= (z1, . . . , zj−1, zj, zj+1, . . . , zk+d)

By induction,

∂ (S\{z}) =
∑

I⊂{1,2,...,k+d}

2|I∩K||PI(S\{z})|.

Define
ZK = {i ∈ {1, 2, . . . , k} : zi = 0}

and
ZD = {j ∈ {k + 1, k + 2, . . . , k + d} : zj = 0}

Then we note that the only points (y1, y2, . . . , yk+d) which are in ∂S but not in ∂ (S\{z})
are of the form

yi =


−1, 0, or 1 if i ∈ ZK
y+
i if i ∈ {1, 2, . . . , k}\ZK

0 or 1 if i ∈ ZD
yi + 1 if i ∈ {k + 1, k + 2, . . . , k + d}\ZD

Thus, we can see that there are a total of

3|ZK |2|ZD|

points in ∂S which are not in ∂ (S\{z}) so that

|∂S| = |∂S\{z}|+ 3|ZK |2|ZD|

We also note that since S is compressed in every coordinate, the only I ⊂ {1, 2, . . . , k+
d} for which |PI(S)| is larger than |PI(S\{z})| must be of the form I ⊂ ZK ∪ ZD. If I ⊂
ZK ∪ZD, then |PI(S)| = |PI(S\{z})|+1 and if I 6⊂ ZK ∪ZD, then |PI(S)| = |PI(S\{z})|.
Thus, we see that∑

I⊂{1,2,...,k+d}

2|I∩K||PI(S)| =
∑

I⊂{1,2,...,k+d}

2|I∩K||PI(S\{z})|+
∑

I⊂ZK∪ZD

2|I\ZD|

= ∂ (S\{z}) +

|ZK |∑
j=0

|ZD|∑
i=0

(
|ZD|
i

)(
|ZK |
j

)
2j

= ∂ (S\{z}) + 3|ZK |2|ZD|

and hence our Theorem is proven.
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We note that, in light of Theorem 1 and Theorem 2, we have the following Corollary:

Corollary 2. Let Xn denote the set of all subsets X ⊂ Zk of size n. Define the function
f : Xn → R as follows: for X ∈ Xn,

f(X) =
∑

I⊂{1,2,...,k}

2|I||PI(X)|.

The minimum value of this function is achieved at an initial segment of Zk of size n,
according to the well-ordering ≺

Additionally, in light of Corollary 1 and Theorem 2, we have the following Corollary:

Corollary 3. Let Yn denote the set of all subsets Y ⊂ Nk of size n. Define the function
f : Yn → R as follows: for Y ∈ Yn,

f(Y ) =
∑

I⊂{1,2,...,k}

|PI(Y )|.

The minimum value of this function is achieved at an initial segment of Nk of size n,
according to the well-ordering ≺N

4 Final Remarks

The calculations in Section 3 allow us to understand some of the behavior of the boundaries
of sets in our graph. These calculations rely on the technique which we call centralization.
While compression is a more powerful technique, it requires that sets of minimal boundary
be nested. The process of centralizing and computing boundaries does not require that
sets of minimal boundary have any particular form. Perhaps these ideas can be used in
other situations where the sets of minimal boundary are more complicated.
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