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Abstract

Canfield and Mason have conjectured that for all subgroups G of the automor-
phism group of the Boolean lattice Bn (which can be regarded as the symmetric
group Sn) the quotient order Bn/G is a symmetric chain order. We provide a
straightforward proof of a generalization of a result of K. K. Jordan: namely, Bn/G
is an SCO whenever G is generated by powers of disjoint cycles. In addition, the
Boolean lattice Bn can be replaced by any product of finite chains. The symmetric
chain decompositions of Greene and Kleitman provide the basis for partitions of
these quotients.
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1 Introduction

There are several familiar notions of symmetry for the family of finite ranked partially
ordered sets. This family can be defined in more general ways (see [9]), but for our
purposes, all of our finite partially ordered sets P have a minimum element 0P and for all
x ∈ P , all saturated chains C ⊆ P with minimum element 0P and maximum x have the
same length rP (x) := |C|−1. Such P are called ranked posets, r = rP is the rank function
and r(P ), the maximum over all r(x), x ∈ P , is the rank of P . Note that a ranked ordered
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set satisfies the Jordan-Dedekind chain condition: for all x 6 y in P , all saturated chains
in the interval [x, y] have the same length.

In a ranked order P the chain x1 < x2 < · · · < xk is a symmetric chain if it is saturated
and if r(x1) + r(xk) = r(P ). A symmetric chain decomposition or SCD of P is a partition
of P into symmetric chains. If P has an SCD, call P a symmetric chain order, or an SCO.
Here, we are concerned with ordered sets based on the Boolean lattice, denoted Bn, which
is the power set of [n] = {1, 2, . . . , n} ordered by containment. Clearly Bn is a ranked
poset, with ∅ being the minimum element, and r(A) = |A| for all A ⊆ [n]. In fact, it is
an SCO [2].

We are interested in ordered sets defined by actions of the automorphism group of Bn.
It is well-known that this group is faithfully induced by the symmetric group Sn of all
permutations on the underlying set [n], so we will refer to Sn as the automorphism group
of Bn. Given any subgroup G of Sn, the quotient Bn/G has as its elements the orbits in
Bn under G

[A] = {B | B = σ(A), for some σ ∈ G},
A ∈ Bn, ordered by

[A] 6 [B] ⇐⇒ X ⊆ Y for some X ∈ [A] and Y ∈ [B].

In studying Venn diagrams, Griggs, Killian and Savage [12] explicitly constructed an SCD
of the quotient Bn/G for n prime and given that G is generated by a single n-cycle. They
asked if this necklace poset is an SCO for arbitrary n. Canfield and Mason [3] made a
much more general conjecture: for all subgroups G of Sn, Bn/G is a symmetric chain
order.

Jordan [14] gave a positive answer to the question of Griggs, Killian and Savage,
basing the SCD of the quotient on the explicit construction of an SCD in Bn by Greene
and Kleitman [10]. The construction in [14] requires an intermediate equivalence relation
and some careful analysis. Here we provide a more direct proof of a generalization of
Jordan’s theorem by “pruning” the Greene-Kleitman SCD. More generally, we show that
Bn/G is an SCO provided that G is generated by powers of disjoint cycles (see Theorem
1). We also provide a different proof that Bn/G is an SCO when G is a 2-element subgroup
generated by a reflection, based on an SCD of Bbn/2c.

The ordered sets Bn/G do share several forms of symmetry or regularity with the
Boolean lattice. An SCO P is necessarily rank-symmetric, rank-unimodal, and strongly
Sperner (see, for instance, [14] for definitions). A result of Stanley [17] shows that Bn/G
has these three properties for all subgroups G of Sn. However, these three conditions are
not sufficient to yield symmetric chain decompositions.

On the other hand, Griggs [11] showed that a ranked ordered set with the LYM
property, rank-symmetry and rank-unimodality is an SCO. It is not the case that all
SCOs have the LYM property (see [11] for examples), in fact, not all quotients Bn/G have
the LYM property. However, if n is prime and G is generated by an n-cycle, then Bn/G
does satisfy LYM, giving the Griggs, Killian and Savage result. Pouzet and Rosenberg
[16] obtain Stanley’s results and “local” families of symmetric chains for more general
structures than the quotients Bn/G, but their results do not show that Bn/G is an SCO.
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2 The Main Results

There are two results for quotients of Bn by groups generated by powers of disjoint cycles
and for a particular 2-element group. The third theorem concerns quotients of powers of
a finite chain, with a corollary for products of chains of differing length.

Theorem 1. Let G be a subgroup of Sn generated by powers of disjoint cycles. Then the
partially ordered set Bn/G is a symmetric chain order.

The proof of Theorem 1 follows from this sequence of results. The new proof of Lemma
2, which is a modest generalization of Jordan’s result, is given in Section 3.

Lemma 2. Let σ be an n-cycle in Sn and let H be a subgroup of the group generated by
σ. Then Bn/H is a symmetric chain order.

The following fact is well-known and can be proved by an argument much like the
original proof in [2] that the divisor lattice of an integer is an SCO. (In [9], this is credited
to Alekseev [1].)

Lemma 3. Let P and Q be partially ordered sets. If P and Q are symmetric chain orders
then so is P ×Q.

In the following lemma, use this notation. Suppose that σj (j = 1, 2, . . . , t) are disjoint
cycles in Sn and that ρj = σ

rj
j , for integers r1, r2, . . . , rt. Let Xj be the subset of [n] of

elements moved by ρj (j = 1, 2, . . . , t), and let X0 be all elements of [n] fixed by all the
ρj’s. Let B(X) denote the Boolean lattice of all subsets of a set X.

Lemma 4. Let Hj be the subgroup of Sn generated by ρj (j = 1, 2, . . . , t) and let G be the
subgroup generated by {ρ1, ρ2, . . . , ρt}. Then

Bn/G ∼= B(X0)×B(X1)/H1 × · · · ×B(Xt)/Ht.

Proof. For any A ⊆ [n], let [A] denote its equivalence class in Bn/G, and let Aj = A∩Xj,
j = 0, 1, . . . , t. Define a map Φ on Bn/G by Φ([A]) = (A0, [A1], . . . [At]). From the
definition of the ordering of the quotient, [A] 6 [B] in Bn/G if and only if there is some
τ ∈ G such that A ⊆ τ(B). Then τ = ρi11 ρ

i2
2 · · · ρitt for nonnegative integers i1, i2, . . . , it.

The claimed isomorphism follows from this fact:

A ⊆ τ(B) if and only if A0 ⊆ B0 and Aj ⊆ σij(Bj) for j = 1, 2, . . . , t.

The following is actually a corollary of Theorem 1. Indeed, a proof based on an
approach like that used in the proof of Theorem 1 – a greedy pruning of a Greene-Kleitman
SCD – can be shown to provide a basis for the proof offered in Section 4. However, the
proof in Section 4 provides some insight into the Greene-Kleitman SCD and may be of
use for other choices for the group of permutations, such as the dihedral group, which is
an appealing next case for study.
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Theorem 5. Let G be a 2-element subgroup with non-unit element a product of disjoint
transpositions. Then the partially ordered set Bn/G is a symmetric chain order.

The last result concerns quotients defined by automorphism groups of products of
chains. Given any partially ordered set P and subgroup G of its automorphism group
Aut(P ), the quotient P/G has elements the orbits [x] on P defined by G with [x] 6 [y]
in P/G if there are x′ ∈ [x] and y′ ∈ [y] such that x′ 6 y′ in P . For any finite chain C,
positive integer m and α ∈ Aut(Cm), there is some φ ∈ Sm such that

α(c1, c2, . . . , cm) = (cφ−1(1), cφ−1(2), . . . , cφ−1(m)), for all (c1, c2, . . . , cm) ∈ Cm.

This follows easily from the action of the automorphisms on the covers of the minimum
element of the chain product. (It is also a consequence of a result of Chang, Jónsson
and Tarski [4], on the strict refinement property for product decompositions of partially
ordered sets.) In particular, automorphism groups of powers of chains behave as those of
the Boolean lattice and we can regard Aut(Cm) as the symmetric group Sm acting on the
coordinates of Cm.

Theorem 6. Let C be a chain and let K be a subgroup of Sm generated by powers of
disjoint cycles. Then Cm/K is an SCO.

The proof, presented in Section 5, is a consequence of the proof of Lemma 2 and some
observations on the Greene-Kleitman SCD. V. Dhand [5] has a new, very interesting result
that is more general than the essential part of Theorem 6: if P is any SCO then so is
P n/Zn. His arguments depend upon algebraic tools. P. Hersh and A. Schilling give a new
proof of Jordan’s result via an explicit combinatorial construction of an SCD in Bn/Zn
based on representation of the special linear group [13].

We note that Theorem 6 can be stated more generally for chain products. Let P =∏n
i=1C

mi
i where Cj � Ck for j 6= k. It is easy to see that each automorphism of P factors

into an n-tuple from
∏n

i=1 Aut(Cmi
i ) and that each Aut(Cmi

i ) ∼= Smi
. (For a much more

general result based [4], see [6].) Thus, if K is a subgroup of Aut(P ) which also factors
into a product of subgroups of Smi

of the form covered by Theorem 6 then, by Lemmas
3 and 4, P/K is an SCO. In particular, we have this consequence.

Corollary 7. Let P be a product of chains and let K be a subgroup of Aut(P ) that is
generated by powers of disjoint cycles. Then P/K is an SCO.

We use Corollary 7 to deal with some cases where K does not factor so nicely in [8].

3 The Proof of Lemma 2

We use the natural order 1 < 2 < . . . < n on [n] and may assume that the n-cycle σ is
(1 2 · · · n). This is valid because any n-cycle ρ is a conjugate of (1 2 · · · n) and for any
subgroup K of Sn and any π ∈ Sn, Bn/K ∼= Bn/π

−1Kπ via [A] 7→ [π(A)].

the electronic journal of combinatorics 19(2) (2012), #P46 4



We first describe the procedure for obaining an SCD of Bn/H based on the Greene-
Kleitman SCD of Bn then verify that the procedure yields the claimed SCD.

Let C1, C2, . . . , Ct, where t =
(

n
bn/2c

)
, be the symmetric chains in the Greene-Kleitman

decomposition, ordered by decreasing length. For all A ∈ Bn, [A] is the equivalence class
containing A in Bn/H where H is the subgroup of Sn generated by ρ = σs.

Claim 1: There is a family C = {C ′i1 , C
′
i2
, . . . C ′im}, with (i1, i2, . . . , im) a subsequence

of (1, 2, . . . , t), that satisfies these conditions:

(3.1) for all 1 6 j 6 m, C ′ij ⊆ Cij and is a symmetric chain in Bn;

(3.2) for all 1 6 r < s 6 m and for all A ∈ C ′ir , B ∈ C
′
is , A /∈ [B]; and,

(3.3) for all [X] there is some Y ∈ [X] such that Y ∈ C ′ij for some j.

For j = 1, 2, . . . ,m, let Ĉj = {[A] | A ∈ C ′ij}. Then the chains Ĉ1, Ĉ2, . . . , Ĉm cover
Bn/H (by (3.3)), the sets are disjoint (by (3.2)), and form symmetric chains (by (3.1)).
Thus, it is enough to verify Claim 1 in order to prove Lemma 2.

Several properties of the Greene-Kleitman SCD of Bn are needed. For the most part,
these are well-known – see, for instance, the descriptions in [9] and [14]. It is useful to
regard members of Bn both as subsets of [n] and as binary sequences of length n, defined
with respect to the natural order. (Indeed, one needs to fix an order to speak of the
Greene-Kleitman SCD.) The SCD is obtained by a bracketing or pairing procedure that
has several equivalent descriptions. Here are two that are useful to us. Let A ⊆ [n].

(3.4) If 1 /∈ A and 2 ∈ A, pair 1 and 2; define pA(2) = 1. Suppose that we have considered
1, 2, . . . , k − 1. If k ∈ A and there is some j < k, j /∈ A such that j is unpaired,
then let pA(k) be the maximum such j and say pA(k) and k are paired. Continue
for all k in [n].

(3.5) For all x ∈ A such that precisely half of the elements of the interval [y, x] are
members of A, for some 1 6 y < x, let pA(x) be the maximum such y.

Let R(A) be the set of all x for which pA(x) is defined, let L(A) = {pA(x) | x ∈ R(A)},
and let P (A) = L(A) ∪R(A). Now set

f(A) = A ∪ {z}, z = min([n]− (A ∪ L(A))),

if [n]− (A ∪ P (A)) 6= ∅; otherwise f(A) is undefined. Then this rule inverts f :

f−1(B) = B − {z}, z = max(B −R(B)).

Let C(A) = {fk(A) | k ∈ Z}. As A runs over all of Bn, the distinct C(A)’s provide the
Greene-Kleitman SCD of Bn.

The following hold for all A ∈ Bn.

(3.6) For all x ∈ R(A), [pA(x), x] ⊆ P (A).
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(3.7) C(A) = {X ∈ Bn | R(X) = R(A)} and pX(a) = pA(a) for all X ∈ C(A) and for all
a ∈ R(A).

(3.8) min(C(A)) = R(A), max(C(A)) = [n]− L(A); in fact, C(A) is the chain

R(A) ⊂ R(A)∪{a1} ⊂ R(A)∪{a1, a2} ⊂ . . . ⊂ R(A)∪{a1, a2, . . . at} = [n]−L(A),

where [n]− (R(A) ∪ L(A)) = {a1 < a2 < . . . < at}.

The following two lemmas provide properties of this SCD that substantiate Claim 1.
Given a symmetric chain C in Bn and X ∈ C with |X| 6 bn/2c, let X∗ be the member
of C with |X∗| = n− |X|.

Lemma 8. For i = 1, 2, . . . , t and for all X ∈ Ci with |X| 6 bn/2c, (σ(X))∗ = σ(X∗).
Thus (σj(X))∗ = σj(X∗) for all integers j, so (ρ(X))∗ = ρ(X∗) for all ρ ∈ H.

A special case of the preceding lemma is in [7]. Since this reference is a technical report
and the result does not appear to be available in the literature, we prove this below. (We
note that for n odd, the middle edges of the Greene-Kleitman SCD are the edges of the
well-known lexicographic matching in the middle two levels graph. The invariance of this
matching under rotation is a special case of a result of Kierstead and Trotter [15] on what
they call i-lexical matchings.)

Here is the second property of the Greene-Kleitman SCD that we require.

Lemma 9. Let w ∈ {1, 2, . . . , t}, and let A ∈ Cw with |A| 6 bn/2c. Suppose that there is
some B ∈ [A] such that B ∈ Cj for some j < w. Then there is some k < w and D ∈ Ck
such that D ∈ [f−1(A)], provided that f−1(A) is defined.

To prove Claim 1 from these facts, define C inductively.
First, let i1 = 1 and C ′i1 = C1. Suppose that C ′i1 , C

′
i2
, . . . , C ′ik are defined. If there

exists i ∈ {ik + 1, . . . , t} such that for some X ∈ Ci,

[X] ∩ (
k⋃
j=1

C ′ij) = ∅ (1)

let ik+1 be the least such i and let

C ′ik+1
=
{
Y ∈ Cik+1

∣∣ [Y ] ∩ (
k⋃
j=1

C ′ij) = ∅
}
. (2)

If there is no such i then m = k, that is, C ′im is the last chain required by Claim 1 and
the procedure is complete.

If Y ∈ C ′ik+1
, with |Y | 6 bn/2c then Y ∗ ∈ C ′ik+1

, by the dual of Lemma 8. Also, if
Z ∈ Cik+1

and Y ⊆ Z ⊆ Y ∗ where Y ∈ C ′ik+1
then Z ∈ C ′ik+1

by Lemma 9 and Lemma
8. Thus, C ′ik+1

is symmetric in Bn and (3.1) holds. Equation (2) verifies (3.2); (3.3)
follows from (1) and (2).
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Proof of Lemma 8. The proof is divided into cases depending upon which of R(X) ⊆
X ⊆ X∗ contain n. It is not possible that n ∈ X − R(X), because |X| 6 bn/2c means
that for some y < n precisely half the elements of [y, n] are in X, and, hence, n ∈ R(X)
by (3.5). Consequently, there are three cases. In each case, we show that

R(σ(X∗)) = R(σ(X)),

apply (3.7) to see that σ(X∗) and (σ(X))∗ are both members of C(σ(X)), and conclude
that σ(X∗) = (σ(X))∗ since these sets both have cardinality n− |σ(X)|.

Case 1: n /∈ X∗
Since n ∈ [n] − L(X) = max(C(X)) and n /∈ X∗, X 6= min(C(X)) = R(X). Thus,

there exists y = min(X − R(X)). If y = 1 then pσ(X)(2) = 1 = pσ(X∗)(2). For each
z ∈ R(X), σ(z) = z + 1 ∈ R(σ(X)) and each z + 1 ∈ R(σ(X)) has z ∈ R(X) apart from
z + 1 = 2. Thus,

R(σ(X)) = σ(R(X) ∪ {2} since pσ(X)(2) = 1,

= σ(R(X∗)) ∪ {2} by (3.7),

= R(σ(X∗)) since pσ(X∗)(2) = 1.

If y > 1 we claim that [1, y−1] ⊆ P (X). Note that y−1 ∈ X as otherwise y ∈ R(X) with
pX(y) = y − 1, contradicting the choice of y. By the minimality of y, y − 1 ∈ R(X) and,
by (3.7), [pX(y − 1), y − 1] ⊆ P (X). Continue in the same manner, with pX(y − 1) − 1
in place of y, and thereby verify the claim that [1, y − 1] ⊆ P (X). The argument is just
about the same as when y = 1 except we use the fact that [1, y − 1] ⊆ P (X) and 1 /∈ X,
so, pσ(X)(y + 1) = 1:

R(σ(X∗)) = σ(R(X∗)) ∪ {y + 1} = σ(R(X)) ∪ {y + 1} = R(σ(X)).

Case 2: n ∈ R(X)
Every element of R(σ(X)) is in σ(R(X)) and every element of σ(R(X)), except for 1,

is in R(σ(X). Thus,

R(σ(X)) = σ(R(X))− {1} = σ(R(X∗))− {1} = R(σ(X∗)).

Case 3: n ∈ X∗ −X
Since n ∈ X∗ − X, (3.8) shows that X∗ = max(C(X)) = [n] − L(X) and, thus,

X = min(C(X)) = R(X).
If z + 1 ∈ R(σ(X)) then z ∈ X = R(X), so R(σ(X)) ⊆ σ(R(X)). Conversely,

1 /∈ σ(R(X)), and any z + 1 ∈ σ(R(X)) is obviously a member of R(σ(X)). Thus,
R(σ(X)) = σ(R(X)). Similarly, since n /∈ R(X), it follows that R(σ(X∗)) = σ(R(X∗)).
Hence, R(σ(X∗)) = R(σ(X)).

Since (σ(X))∗ = σ(X∗) for all X with |X| 6 bn/2c, we can apply induction on j to
conclude that (σj(X))∗ = σj(X∗):

(σj(X))∗ = (σ(σj−1(X)))∗ = σ((σj−1(X))∗) = σ(σj−1(X∗)) = σj(X∗). �
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Proof of Lemma 9. As before, let C1, C2, . . . , Ct, where t =
(

n
bn/2c

)
, be the symmetric

chains in the Greene-Kleitman decomposition, ordered by decreasing length, and let σ =
(1 2 · · · n). Let A ∈ Cw with |A| 6

⌊
n
2

⌋
. Suppose that there exists a j < w such that

B ∈ Cj and B ∈ [A]. Hence there is an integer r such that B = σr(A).
Assume that f−1(A) is defined. We show that there is a k < w such that D ∈ Ck and

D ∈ [f−1(A)]. Since f−1(A) is defined, A−R(A) 6= ∅. Let y = max(A−R(A)). We may
assume that −(y − 1) 6 r 6 n− y, r 6= 0. We consider two cases:

Case 1: y + r ∈ R(B)
Then r > 0 since otherwise y would also be paired in A, contrary to its choice. Each

z ∈ B with y+r < z must be in R(B) since y < z−r so, by the choice of y, z−r ∈ R(A).
Now consider the binary sequence σr(f−1(A)) contained in some chain Ck. Recall that
f−1(A) = A − {y} and note that σr(f−1(A)) = B − {y + r}. It follows from this that
σr(f−1(A)) must have one fewer pairs than B, since y+ r will be unpaired in σr(f−1(A))
while y + r is paired in B, and there are no other differences in the pairings. By (3.8),
|Ck| > |Cj|, so k < j < w, as desired.

Case 2: y + r ∈ B −R(B)
If y+r = max(B−R(B)) then we are done, since then we have f−1(B) = σr(f−1(A)).

So suppose instead z = max(B−R(B)) where y+r < z. If r > 0 then z−r ∈ (A−R(A)),
contrary to the choice of y. Thus r < 0. If z − r 6 n then z − r would be an unpaired
element of A, since y < z− r remains unpaired in A. This would contradict the choice of
y. Thus n < z − r.

We now prove that for some p, σp(B) is the maximum element of its chain, and its
chain is not a singleton. This will contradict the fact that |A| 6

⌈
n
2

⌉
, since |σp(B)| = |A|.

Since σ−r(B) = A, −r > 0, we obtain A from B by applying σ −r times. Since
n < z− r there is some p such that σp(z) = n. Let X = σp(B). Then, σp(z) ∈ X−R(X).
Because n ∈ X − R(X), X = [n] − L(X). By (3.8), X is the maximum element of its
chain. The chain containing X is not a singleton, since X −R(X) 6= ∅. �

4 The proof of Theorem 5

Let ρ = (i1ji)(i2j2) · · · (ikjk), where the transpositions are pairwise disjoint, let X =⋃k
r=1{ir, jr}, and let G = {1, ρ}. Then

Bn/G ∼= B(X)/G×B([n]−X)

via the mapping [A] 7→ ([A ∩X], A −X) for all A ⊆ [n]. By Lemma 3, we may assume
that n is even and that n = 2k. Using the remark about conjugation at the beginning
of Section 3, we may assume that ρ = (1 2k)(2 2k − 1) · · · (k k + 1). As noted in the
introduction, G can be generated by a power of a 2k-cycle, so Theorem 1 applies. (In
fact, ρ = τ−1στ where σ = (1 2 · · · 2k) and τ = (k+ 1 2k)(k+ 2 2k− 1) · · · . ) And, as we
shall see, its proof method can be adapted to give the proof we offer here. However, the
argument below might help with the most interesting open case, namely, showing that
Bn/D2n is an SCO for the dihedral group D2n.
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Regard each A ∈ B2k as a concatenated pair of binary strings of length k. That is,
A = b1b

r
2, where b1,b2 ∈ {0, 1}k and br is the reverse of the binary k-sequence b. Then

the equivalence classes in Bn/G are the sets {b1b
r
2,b2b

r
1}; these sets have 2 elements

except in the case that b1 = b2.
Let C1, C2, . . . , Ct, where t =

(
k
bk/2c

)
, be any symmetric chain decomposition of Bk,

ordered by decreasing length. We define a total ordering 4 on Bk = {0, 1}k as follows:

br 4 bs if br ∈ Ci,bs ∈ Cj, i < j, or if br ⊆ bs in Ci for some i. (3)

For 1 6 i < j 6 t, let Pij = Ci × Cj, with the coordinate-wise ordering induced by the
containment order on Bk, for each i = 1, 2, . . . , t, let

Pii = {(br,bs) ∈ Ci × Ci | br ⊆ bs},

ordered coordinate-wise, and let

P =
⋃

16i6j6t

Pij,

again, ordered coordinate-wise. Thus, P is a subset of B2k with the exactly the ordering
inherited from the Boolean lattice.

In fact, with rP and rBk
as the rank functions in P and Bk, respectively, then for

1 6 i 6 j 6 t and with rBk
(minCi) = ri, and rBk

(maxCi) = k − ri,

rP (minPij) = ri + rj, rP (maxPij) = 2k − (ri + rj), and l(Pij) = 2k − 2(ri + rj).

We see that each Pij is a symmetric subset of B2k in which the covering relation is
preserved, that is, (bp,bq) is covered by (bu,bv) in some Pij if and only if bpb

r
q is covered

by bub
r
v in B2k.

Consider the map φ of P to B2k/G defined by φ((b1,b2)) = {b1b
r
2,b2b

r
1}. Since

b1 4 b2 for all (b1,b2) ∈ P , φ is injective. It is obviously a surjection. It is also
order-preserving: if (bp,bq) 6 (bu,bv) in P then bpb

r
q 6 bub

r
v in B2k.

Since the rank of an equivalence class in B2k/G is the rank of its members in B2k, it
follows that a symmetric chain in P is a symmetric chain in B2k/G. Thus, it is enough
to proof the following.

Claim 2: P has a symmetric chain decomposition.
Since P is partitioned by Pij, 1 6 i 6 j 6 t, each of which preserve the covering

relation in P , it is enough to prove that each Pij has a partition into chains, each of which
is symmetric in P .

For 1 6 i < j 6 t, Pij = Ci × Cj is a cover-preserving subset of P , with minimum
element at level ri + rj and maximum element at level 2k − (ri + rl) in P , a partially
ordered set of length 2k. Then the “standard” symmetric partition of a product of two
chains (the original partition in [2]) provides symmetric chains in P .

For i = 1, 2, . . . , t, Pii = {(br,bs) ∈ Ci×Ci | br ⊆ bs}, where Ci is the chain of binary
strings bri ⊂ bri+1 ⊂ · · · ⊂ bk−ri , where rBk

(bs) = s in Bk, that is, is an s-element set,
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for s = ri, ri + 1, . . . , k − ri. Then Pii is an interval in P with minimum element at level
2ri and maximum element at level 2k − 2ri in P . Also,

(bri ,bri) < (bri ,bri+1) < · · · < (bri ,bk−ri) < (bri+1,bk−ri) < · · · < (bk−ri ,bk−ri)

is a symmetric chain in P and Pii−C is a cover-preserving subset of P , isomorphic to the
product of two chains, with minimum element (bri+1,bri+1) at level 2ri+2 and maximum
element (bk−ri−1,bk−ri−1) at level 2k − 2ri − 2. By induction, we have a decomposition
of Pii by chains symmetric in P . This verifies Claim 2 and completes the proof of
Theorem 5.

5 The proof of Theorem 6

With Lemmas 3 and 4, it is enough to prove the result for K generated by a single m-
cycle. We assume that C is the k-element chain 00 . . . 0, 10 . . . 0, 11 . . . 0, 111 . . . 1 in the
Boolean lattice Bk−1. Let n = (k − 1)m. Then Cm is the sublattice of Bn consisting of
all binary sequences of length n of the form

b = b1b2 . . .bm, where each bi ∈ C.

That is, the elements of Cm are exactly those n-sequences which are m (k− 1)-sequences,
each comprised of 1’s followed by 0’s.

Let C1, C2, . . . , Ct, where t =
(

n
bn/2c

)
, be the symmetric chains in the Greene-Kleitman

SCD of Bn, ordered by decreasing length, as in Section 3. We claim that for each j,
Cj ⊆ Cm or Cj ∩ Cm = ∅.

Suppose that b = b1b2 . . .bm ∈ Cj ∩ Cm. With the notation in (3.6) - (3.8), and
applying these to A = b, we can see that ith entry bi of b is determined as follows:

bi =

{
0 i ∈ L(b) ∪ {ar, ar+1, . . . , at}
1 i ∈ R(b) ∪ {a1, a2, . . . , ar−1}.

for some r.
If b is not the maximum element of Cj then its successor b′ is obtained by changing

the 0 in position ar to a 1. Either ar = 1 or the entry in b in position ar − 1 is a 1, by
(3.6). Thus, b′ consists of m (k − 1)-sequences of 1’s followed by 0’s and, so, belongs
to Cj ∩ Cm. If b is not the minimum element of Cj then its predecessor b′′ is obtained
by changing the 1 in position ar−1 to a 0. Either ar−1 = n or the entry in b in position
ar−1 + 1 is a 0, by (3.6). Again b′′ consists of m (k − 1)-sequences of 1’s followed by 0’s
and, so, belongs to Cj ∩ Cm. Hence, if Cj ∩ Cm 6= ∅ then Cj ⊆ Cm.

Let K = 〈φr〉 where we may assume that φ = (12 · · ·m). We need an SCD for Cm/K.
We know that Cm is a sublattice of Bn, as noted above, and that φr = σ(k−1)r

|Cm where

σ = (12 · · ·n) ∈ Sn. As in the proof of Lemma 2, Claim 1 gives an SCD Ĉj = C ′ij ,

j = 1, 2, . . . ,m, of Bn/H where H = 〈σ(k−1)r〉. Thus, the subfamily of those Ĉj, j =

1, 2, . . . ,m, such that Ĉj ⊆ Cm is an SCD for Cm/K.
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