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Abstract

Abstract. In this paper, we establish bijections between the set of 4123-avoiding
down-up alternating permutations of length 2n and the set of standard Young
tableaux of shape (n,n,n), and between the set of 4123-avoiding down-up alternat-
ing permutations of length 2n — 1 and the set of shifted standard Young tableaux of
shape (n+1,n,n—1) via an intermediate structure of Yamanouchi words. Moreover,
we show that 4123-avoiding up-down alternating permutations of length 2n+1 are in
one-to-one correspondence with standard Young tableaux of shape (n+1,n,n—1),
and 4123-avoiding up-down alternating permutations of length 2n are in bijection
with shifted standard Young tableaux of shape (n + 2,n,n — 2).

Keywords: alternating permutation; pattern avoiding; Yamanouchi word; stan-
dard Young tableau; shifted standard Young tableau.

1 Introduction

A permutation 7 = mmy ... 7w, of length n on [n] = {1,2,...,n} is said to be an up-down
alternating permutation if m; < my > w3 < w4 > ---. Similarly, 7 is said to be a down-up
alternating permutation if m; > m < m3 > my < ---. We denote by UD,, and DU, the set

of up-down and down-up alternating permutations of length n, respectively. Note that
the complement map 7 = mmy...m, — (n+1—m)(n+1—m)...(n+1—m,) is a
bijection between the set UD,, and the set DU,,.

Denote by S, the set of all permutations on [n]. Given a permutation 7 = mmy ... 7T, €
S, and a permutation 7 = 77y ... 7 € S, we say that 7w contains the pattern 7 if there
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exists a subsequence ;, 7, ...m;, of m that is order-isomorphic to 7. Otherwise, 7 is said
to avoid the pattern 7 or be T-avoiding.

Pattern avoiding permutations have been extensively studied over last decade. For
a thorough summary of the current status of research, see Béna’s book [1] and Kitaev’s
book [5]. Analogous to the ordinary permutations, Mansour [8] initiated the study of
alternating permutations avoiding a given pattern. For any pattern of length 3, the
number of alternating permutations of a given length avoiding that pattern is given by
Catalan numbers, see [8, 10]. Recently, Lewis [6] considered the enumeration of alternating
permutations avoiding a given pattern of length 4. Let UD, (1) and DU, (T) be the set
of m-avoiding up-down and down-up alternating permutations of length n, respectively.
Lewis [6] provided bijections between the set UDs,,(1234) and the set of standard Young
tableaux of shape (n,n,n), and between the set UDy,1(1234) and the set of standard
Young tableaux of shape (n+1,n,n—1). By applying the hook length formula for standard
Young tableaux [9], the number of 1234-avoiding up-down alternating permutations of

%, and the number of 1234-avoiding up-down alternating
16(3n)!

permutations of length 2n+1 is given by D D3
trees, Lewis [7] constructed recursive bijections between the set D, (2143) and the set of
standard Young tableaux of shape (n,n,n), and between the set Dy, 1 1(2143) and the set
of shifted standard Young tableaux of shape (n+2,n+1,n). Using computer simulations,
Lewis [7] came up with several conjectures on the enumeration of alternating permutations
avoiding a given pattern of length 4 and 5. Recently, Béna [2] proved generalized versions
of some conjectures of Joel Lewis on the number of alternating permutations avoiding
certain patterns. He showed that |{UD,,(12...k)| = [UD,(21...k)| and |[UD5,(12...(k —
k)| = [UDs,(12. .. k(k — 1))| for all n and all k.

In this paper, we are concerned with the enumeration of 4123-avoiding down-up and
up-down alternating permutations of even and odd length. We establish bijections be-
tween the set DU2,(4123) and the set of standard Young tableaux of shape (n,n,n),
and between the set DUs,_1(4123) and the set of shifted standard Young tableaux of
shape (n+1,n,n — 1) via an intermediate structure of Yamanouchi words. Consequently,
we prove the conjectures, posed by Lewis [7], that [UDs,(1432)] = |[UDs,(1234)| and
UD4,11(1432)| = |UD2p41(2143)| in the sense that |UD,(1432)| = |DU,,(4123)| by the
operation of complement.

Applying the bijections between 4123-avoiding down-up alternating permutations and
standard Young tableaux, we show that 4123-avoiding up-down alternating permutations
of length 2n + 1 are in one-to-one correspondence with standard Young tableaux of shape
(n+1,n,n—1), and 4123-avoiding up-down alternating permutations of length 2n are in
bijection with shifted standard Young tableaux of shape (n + 2,n,n — 2). By the hook
length formula for shifted standard Young tableaux [4], we derive that the number of
shifted standard Young tableaux of shape (n+2,n,n—2) is equal to % As a re-
sult, we deduce that [UDs,(4123)| = |UD4,(1234)| and |UD4;,41(4123)| = |UD2,41(1234)],
as conjectured by Lewis [7].

The paper is organized as follows. In Section 2, we introduce the bijections between the

length 2n is given by

Using the method of generating
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set DU5, (4123) and the set of standard Young tableaux of shape (n,n,n), and between the
set DUs,—1(4123) and the set of shifted standard Young tableaux of shape (n+1,n,n—1).
In Section 3, we construct bijections between the set UDs,, 1 1(4123) and the set of standard
Young tableaux of shape (n + 1,n,n — 1), and between the set UDs,(4123) and the set
of shifted standard Young tableaux of shape (n 4+ 2,n,n — 2).

2 4123-avoiding down-up alternating permutations

In this section, we aim to establish bijections between the set Do, (4123) and the set of
standard Young tableaux of shape (n,n,n), and between the set DUs,_1(4123) and the
set of shifted standard Young tableaux of shape (n + 1,n,n — 1).

2.1 Preliminaries

In this subsection, we give some definitions and notations that will be used throughout
the rest of the paper. Moreover, we provide two lemmas that will be essential in the
construction of the bijections.

Given a word w = wyws...w, on the alphabet {1,2,...}, we define ¢; to be the
number of occurrences of the letter ¢ in w and the type of the word w to be the sequence
(c1,¢,¢3,...). The subword wjws ... w; is said to be a left subword for 1 < j < n.
Similarly, the subword w;,41—jw,42-; ... w, is said to be a right subword for 1 < j < n.
The word w is said to be a Yamanouchi word if every left subword of w does not contain
more occurrences of the letter ¢ + 1 than that of ¢ for every ¢ > 1. If every subword
of w contains more occurrences of the letter ¢ than that of i + 1 for every ¢ > 1, then
the word w is said to be a shifted Yamanouchi word. Similarly, the word w is said to
be a skew Yamanouchi word if every right subword of w contains more occurrences of
the letter ¢ + 1 than that of ¢ for every ¢« > 1. For instance, it is easy to check that the
word w = 11231223 is a Yamanouchi word of type (3,3,2), the word v = 1121213123
is a shifted Yamanouchi word of type (5,3,2), and the word v = 1231323233 is a skew
Yamanouchi word of type (2,3,5).

A partition X of a positive integer n is defined to be a sequence (A1, Ag, ..., \y,) of
nonnegative integers such that A\y + o + ... A, = nand \y > Xo... > A\,. Given
a partition A\ = (Aq, Ao, ..., A\y), the (ordinary) Young diagram of shape A is the left-
justified array of A\ + XAy + ... 4+ A\, boxes with A; boxes in the first row, Ay boxes in
the second row, and so on. If A is a partition with distinct parts then the shifted Young
diagram of shape A is an array of cells with m rows, each row indented by one cell to the
right with respect to the previous row, and A; cells in row 1.

If X is a Young diagram with n boxes, a standard Young tableau of shape X is a filling
of the boxes of A with [n] so that each element appears in exactly one box and entries
increase along rows and columns. We identify boxes in Young diagrams and tableaux
using matrix coordinates. For example, the box in the first row and second column is
numbered (1, 2).

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(2) (2012), #P49 3



Let nq,no,...,ni be positive integers with ny > nsy ... > n,. There exists a bijection
X between the set of standard Young tableaux of shape (ni,ns,...,n;) and the set of
Yamanouchi words of type (ny,ng,...,ng) [3]. Given a standard Young tableau 7', we
associate T with a word x(T') by letting the j-th letter be the row index of the box
of T' containing the number j. On the other hand, given a Yamanouchi word w, it
is straightforward to recover the corresponding tableaux x~!(w) by letting the i-th row
contain the indices of letters of w that are equal to i. For example, the associated standard
Young tableau of the Yamanouchi word 112311223 is illustrated as follows:

112]5]6]
31718
419
Clearly, for any shifted standard Young tableau T' of shape (ni,ns,...,ny), where
ny > ng... > ny, the word x(7') is a shifted Yamanouchi word of type (nq,na,...,ng).
More precisely, the map x is a bijection between the set of shifted standard Young tableaux
of shape (n1,ns,...,n;) and the set of shifted Yamanouchi words of type (nq,no, ..., ng).

For example, let T" be a shifted standard Young tableau shown in Figure 1. By applying
the map x, we obtain the shifted Yamanouchi word x(7") = 1121213123 of type (5, 3, 2).
Note that the map x is not a bijection between skew Yamanouchi words and skew standard
Young tableaux.

[1]2]4]6]8

Figure 1: The shifted standard Young tableau T

Let w = wywy ... w, be a word on the alphabet {1, 2,3}. The left subword wyws ... w;
is called the initial run of w if wj; is the leftmost letter of w that is equal to 3. Similarly,
the right subword wy4i_;wp49—;...w, is said to be the final run of w if w,_; is the
rightmost letter equal to 1. As usual, the length of any word v is defined to be the number
of entries of v. For instance, the word w = 121211231323233 has the initial run of length
7 and the final run of length 6. Denote by a(w) the length of the initial run of w.

In order to establish the bijections between 4123-avoiding down-up alternating per-
mutations and standard Young tableaux, we consider the following two sets. Given a
permutation 7 = mme ... 7, € S, and a word w = wywy ... w, on the alphabet {1,2,3},
let

A(m)={0}U{k|Ji<j st.m=km=k+land k <m — 2},

and
B(w) = {0} U{k | wpwgy1 = 12 and k < a(w) — 2},
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respectively. For example, let 7 = 658397(10)142 and w = 121211231323233. We have
A(m) ={0,1,3} and B(w) = {0, 1, 3}.

Let m = mmy...m, be a permutation. Suppose that A(r) = {ao, a1,...,a,}, where
p>=>0and 0 =ay < a... < a, Define a,1; to be . Similarly, given a word w, if
B(w) = {ag,a1,...,a,}, then we define a,.; to be a(w). Obviously, according to the

definitions of A(7) and B(w), we have a, < a,1.

Given a permutation o € §,, and an element a € [n+ 1], there is a unique permutation
T =mT...Tns1 € Spa1 such that 7 = a and the word moms ... 7,1 is order-isomorphic
to 0. We denote this permutation by a — 0. Let a,b € [n + 2] with b < a. Denote by
(a,b) — o the permutation m = m 7y ... T, 9 such that m = a, m = b and w37y ... T2
is order-isomorphic to . More precisely, the permutation 7 is defined by

a, 1 =1,
b, 1 =2,
Ty = 0i—2, Oi—2 < b7

ogiot1l, b<oio<a-—1,
Oio+2, 0 9=2a—1.

Note that the permutation (a,b) — o is identical with the permutation a — (b — o).

We conclude this subsection with two lemmas that will be essential in the construction
of the bijections between 4123-avoiding down-up alternating permutations and standard
Young tableaux. First, we present the following simple observation that will be of use in
the subsequent proofs of lemmas.

Observation 1. Let 0 = 0103...0, € S, with A(c) = {aop,a1,...,a,}, where p >0 and
O=ap<a; <ay...<a,<ap =o1. For any integers r and s with a; <r < s < ajy1,
suppose that oy = r and o,, = s. Then we have { > m.

Lemma 2. Let 0 = 0103 ...0, € DU,(4123) with A(c) = {ag,a1,...,a,}, wherep > 0
and 0 = ap < a1 < az... < ap < apy1 = oy. If 7 = (a,b) — o is a permutation in
DU,,+2(4123), then b < o1 and there exists an integer j such that aj11+2 > a > b > a;+1.

Proof. Let m = mmy...m12. Recall that m; = a and my = b. Since 7 is a down-up
alternating permutation and = = (a,b) — o, we have b < 01 = a,+1. Choose the integer j
such that a; 1, > b > a;+1. We claim that a < aj41+2. Suppose that a > a;1; +2. Then
we have two cases. If j = p, then the subsequence ab(a,11+1)(a,+1+2) is order-isomorphic
to 4123 in 7. If j < p, then according to the definition of A(c), there exists integers [ and
m with [ < m such that o; = a;4; and 0, = a;41 + 1. Note that m 0 =0y +1 =a;1; +1
and 7,49 = 0, +1 = aj41 +2. Then the subsequence 77797, 12 forms a 4123 pattern
in 7. This yields a contradiction. Hence, we conclude that a; +1 < b < a < a1 + 2.
This completes the proof. n

Lemma 3. Let 0 = 0103 ...0, € DU,(4123) with A(c) = {ag,a1,...,a,}, wherep > 0
and 0 =ap < a1 < as...<a, < app1 = o1. Let a,b be two integers such that a1 +2 >
a>b>a;+1andb < o0r. Then m = (a,b) — o is a permutation in DU, 1(4123)
satisfying that
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(i) ifb=a;+1 and j > 1, then we have A(r) = {agp,a1,...,a;_1,b} when a > b+ 1
and A(r) ={ap,a1,...,a;_1} whena=>b+1;

(i) otherwise, we have A(m) = {ao,a1,...,a5,b} when a > b+ 1 and A(r) =
{aog,a1,...,a;} when a=>b+ 1.

Proof. Since b < o1 and a > b, the permutation 7 is a down-up alternating permutation.
Now we proceed to show that m avoids the pattern 4123. Let m = mymy ... T,40. Suppose
that there is a subsequence mmm,,m, with & <! < m < ¢ which is order-isomorphic to
4123. Note that the subsequence 73 ... 7, 9 is order-isomorphic to ¢. This implies that
the subsequence 73 ... 7,2 avoids the pattern 4123. So we have either Kk = 1 or k = 2.
Suppose that k = 2. Since my < 73, the subsequence m3m;m,, 7, is order-isomorphic to the
pattern 4123. This contradicts with the fact that the subsequence 73 ... 7,2 avoids the
pattern 4123. Hence, we must have k = 1. Suppose that k = 1 and [ > 2. Since 73 > 01+1
and m = a < aj41 + 2 < apy + 2 = 01 + 2, the subsequence m3mm,, T, is an instance of
4123, which contradicts with the fact that the subsequence ms... 7w, o is 4123-avoiding.
Thus, it follows that £ = 1 and [ = 2. Recall that m; = a, mo = b, which implies that
b < m, < my < a. From this, we deduce that a; < 0—1 < m,,—1 < 7,—1 <a—1 < a;;1+1.
Note that 7, = 0p,—2+1 and m; = 0,9 +1. So we have a; +1 < 0,2 < 0g—2 < @41 and
m < q. This contradicts with Observation 1. Thus, the permutation 7 is in DU,,;2(4123).

It remains to prove that the permutation 7 verifies the points (i) and (ii). We claim
that all the elements of the set A(7) are not larger than b. Suppose that & is a nonnegative
integer such that k£ € A(r) and k > b+ 1. It follows that £ < m — 2 = a — 2 from the
definition of A(7m). Moreover, there exists integers [ and m with [ < m such that m, = k
and m,, = k+ 1. It is easy to check that the subsequence mmom 7, forms a pattern 4123.
This contradicts with the fact that 7 € DU,,,2(4123). Hence, we have completed the
proof of the claim.

If a > b+ 1, then we have b € A(r) since b+ 1 appears right tobin T and b < a—2 =
m—2. If a =0b+1, then b ¢ A(7) since b+ 1 appears left to b in 7. Moreover, when b > 1,
since the entry b appears left to the entry b — 1 in m, we have b — 1 ¢ A(7). Finally, it’s
easy to check from the definitions of A(7) and A(o) that for any integer k with k < b—1,
we have k € A(m) if and only if & € A(c). This completes the proof. O

2.2 The bijections

Denote by P,, and Q,, the set of Yamanouchi words on the alphabet {1,2,3} of type
(n,n,n) and the set of skew Yamanouchi words on the alphabet {1,2,3} of type (n —
1,m,n + 1), respectively. Let P (resp. Q) be the union of P, (resp. Q,) for all n > 1.
Similarly, denote by DU (4123) the union of DU,,(4123) for all n > 1.

Now we proceed to construct a map ¢ from the set DU (4123) to the set PUQ in terms
of a recursive procedure, such that for all m > 1, ¢ is a map from DU,,,(4123) to Q,, when
m = 2n—1 and from DU,,(4123) to P, when m = 2n. Let 71 = mymy ... 1, € DU,,(4123).
For m = 1, we define ¢(1) = 233. For m = 2, define ¢(21) = 123. For m > 2, let
0 = 0103...0m 2 € DU, 2(4123) such that 7 = (a,b) — o where a = m; and b = .

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(2) (2012), #P49 6



Assume that we have obtained the word v = ¢(0) = vivy...v3,_3. Then we construct a
word w = ¢(m) = wiws . . . ws, from v by inserting two consecutive letters 12 immediately
left to v, and one letter 3 immediately left to v,_;. Namely, w is a word with w, = 1,
wpy1 = 2 and wyy1 = 3 such that we can recover the word v by removing the entries wy,
W1 and wyyq from w.

For example, consider the 4123-avoiding down-up alternating permutation © =
63758142. Let o = 546132, ¢/ = 4132 and ¢” = 21. Clearly, we have 7 = (6,3) — o,
o= (54) —- ¢ and ¢’ = (4,1) — ¢”. Applying the map ¢ recursively, we can obtain
6(0") = 123, d(o”) = 121233, ¢(o) = 121123233, and ¢(7) = 121211323233.

Conversely, we define a map v from the set P U Q to the set DU(4123), such that for
all n > 1, ¢ is a map from P,, to DU5,(4123) and from Q,, to DUs,_1(4123). Given a
word w = wywsy ... ws, € PUQ, we wish to recover a 4123-avoiding down-up alternating
permutation ¥ (w) in terms of a recursive procedure. If w = 233, we define ¥(w) = 1. If
w = 123, then define (w) = 21. For n > 2, let a = a(w). Now we proceed to construct
an ordered pair (v,b) from w by the following procedure.

o If w,1o = 3, then let b be the largest element of B(w) and v be a word obtained
from w by removing wy, wyy1 and wyyq from w. For example, let w = 121233. It is
easy to check that a = a(w) = 4, wg = 3 and B(w) = {0,1}. Thus we have b = 1
and v = 123.

o If w,io # 3, then find the largest integer ¢ such that ¢ < a — 1 and wwg41 = 12.
Let b = ¢ and v be a word obtained from w by removing wy, wy+1 and wyyq from
w. For example, let w = 121211323233. It is easy to check that a« = a(w) = 6 and
wg = 2 # 3. Thus we have b = 3 and v = 121123233.

Finally, we define ¢(w) = (a,b) — ¥ (v).
For instance, let w = 121211323233. By applying the map ¢ recursively, we construct
a permutation m as follows:

w= 121211323233 = 121123233 = 121233 =— 123,
™= 63758142 <= 546132 — 4132 — 21.

Our next goal is to show that the map ¢ is a bijection between the set DUy, (4123)
and the set P,,. Analogously, the map ¢ induces a bijection between the set DU, _1(4123)
and the set 9,,.

Proposition 4. For any permutation m = mymy . .. o, € DU2,(4123), the word ¢(m) is a
Yamanouchi word on the alphabet {1,2,3} of type (n,n,n) satisfying m1 = a(p(m)) and
A(m) = B(o(m)).

Proof. We proceed by induction on n. For n = 1, we have ¢(21) = 123, which is a
Yamanouchi word of type (1,1,1) with the property that a(¢(21)) = 2 and A(21) =
B(123) = {0}. For n > 2, choose 0 = 0103...09, 2 € DUs, 2(4123) such that = =
(a,b) — o where a = m; and b = m. Suppose that A(o) = {ag,a1,...,a,}, where p > 0
and 0 = ap < a1 < ay < ... < a, < apr1 = 0y. Assume that v = v1vy... V3,3 = ¢(0)
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is a Yamanouchi word on the alphabet {1,2,3} of type (n — 1,n — 1,n — 1) such that
a(v) = o1 and B(v) = A(o). We aim to show that w = ¢(7) is a Yamanouchi word
on the alphabet {1,2,3} of type (n,n,n) satisfying a(w) = m and B(w) = A(w). By
the construction of the word w, it is easy to check that each left subword of w does not
contain more occurrences of the letter ¢ + 1 than that of ¢ for « = 1,2. This implies that
w is a Yamanouchi word of length 3n. Let w = wiws . .. ws,.

By Lemma 2, since 7 = (a,b) — o, we can choose the integer j such that a;41 +2 >
a>b>aj+1 Sincea < aj1+2< ap1+2=01+2= a(v)+2, there is no occurrence of
the letter 3 in the subword vyv; ... v, 5 according to the definition of a(v). This implies
that there is no occurrence of the letter 3 in the subword wjws...w, according to the
construction of the word w. Meanwhile, we have w,; = 3. So the obtained word w has
the initial run of length a, that is, a(w) = a = 7. It remains to show that A(7) = B(w).
Recall that m = (a,b) — o and A(c) = B(v) = {ao, a1, ..,a,}. By Lemma 3, in order to
verify B(w) = A(r), it suffices to show that

(i) if b=a; + 1 and j > 1, then we have B(w) = {ag,ay,...,a; 1,b} when a > b+ 1
and B(w) = {agp,a1,...,a;_1} when a =b+1;

(i)’ otherwise, we have B(w) = {ag,a1,...,a;b} when a > b+ 1 and B(w) =
{ao,al,...,aj} Whena:b+1.

We claim that all the elements of the set B(w) are not larger than b. Suppose that k
is a nonnegative integer such that k£ € B(w) and k > b+ 1. According to the definition of
the set B(w), we have wywg, 1 = 12 and k < a(w) — 2 = a — 2. Since wy,; = 2, we have
k # b+ 1. Now suppose that b+2 < k < a — 2. Clearly, we have vy_ovp_1 = wpwy1 = 12
by the construction of w. Since k—2 < a—4 < a;41 —2 < a(v) —2, we have k—2 € B(v).
However, we have a; +1 < b < k —2 < a;41 — 2, which implies that k —2 ¢ B(v). Hence,
the claim is proved.

If @ = b+ 1, then we have b ¢ B(w) since b =a—1 = a(w) — 1. If a > b+ 1, then
we have b € B(w) since wpwp1 = 12 and b < a — 1 < a(w) — 1. Since wy, = 1, we have
b—1¢ B(w) when b > 1.

In order to verify (i) and (ii)’, it remains to show that for any nonnegative integer k
with k < b — 1, we have k € B(w) if and only if k£ € B(v). According to the construction
of the word w, we have wpwiy1 = vivr11. By Lemma 2, we have b < o;. Note that
k<b—1<o,—1=av)—landk<b—1<a—1< a(w)—1. Thus, we have k € B(w)
if and only if £ € B(v) by the definitions of B(w) and B(v). This completes the proof. [

Proposition 5. For any Yamanouchi word w = wiws ... ws, on the alphabet {1,2,3}
of type (n,n,n), the permutation ¥ (w) is in DUs,(4123) such that the first entry of the
permutation (w) is equal to a(w) and A(Y(w)) = B(w).

Proof. We proceed by induction on n. For the case n = 1, we have 1(123) = 21. For
n > 2, let a = a(w). According to the definition of 1, we can construct an ordered pair
(v,b) from w.

First, we shall show that the word v is a Yamanouchi word on the alphabet {1,2,3}
of type (n — 1,n — 1,n — 1). Suppose that B(w) = {agp,a1,...,a,}, where p > 0 and
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0=a <a <...<a, < apy1 = a(w). For the case w42 = 3, we have b = q,
by the definition of . Since w is a Yamanouchi word with a(w) = a, w,y; = 3 and
Wa1o = 3, there are at least two occurrences of 2’s left to w,; and the first occurrence of
2 is preceded immediately by 1. This guarantees that there exists at least one subword
wpwi+1 = 12 with £ < a — 2 = a(w) — 2. This yields that B(w) # {0} according to
the definition of B(w). Hence we have b = a, > 0. Moreover, by definition we have
b=a, < a(w)—2=a—2. For the case w,12 # 3, the property of the Yamanouchi word
guarantees that there exists at least one subword wiwy; = 12 with £ < a — 1. Thus, in
either case, we have a > b > 0. Note that w, = 1,wpy; = 2 and w,,; = 3. According
to the definition of v, v is obtained from w by removing wy, wyy1 and w,,1. It is easy
to check that any left subword of v does not contain more occurrences of the letter 7 + 1
than that of ¢ for ¢« = 1,2. Thus the obtained word v is a Yamanouchi word of type
(n—1,n—1,n—1). Let v = vjvy...v3,_3. Suppose that B(v) = {co,c1,...,cn}, where
m>=0and 0=cy<c; <...<¢p < Cmp1 = av).

We claim that a(v) > a—2. According to the definition of o/(w), there is no occurrence
of the letter 3 in the subword wjws...w,. Thus, by the construction of v, there is no
occurrence of the letter 3 in the subword vyvs...v,_5. This implies that the word v has
the initial run of length at least a — 2, that is, a(v) > a — 2.

Assume that the permutation ¥ (v) is in DUs,_2(4123) such that the first element of
1 (v) equals a(v) and A(¢(v)) = B(v). Now we proceed to show that ¢ (w) is a down-up
alternating permutation in DUs,(4123) such that the first element of 1 (w) is equal to
a(w) and A(Y(w)) = B(w). Recall that ¢¥(w) = (a,b) — ¥(v) and a = a(w). This
yields that the first element of ¥ (w) is equal to a(w). Now we proceed to show that
(w) € DU5,(4123) such that B(w) = A(¢¥(w)). We have two cases: wg4o = 3 or
Wa+2 # 3.

If wyyo = 3, then we have a(v) = a — 2 since v,_; = 3. By the definition of ¢, we have
b = a,. By the definition of B(w), this ensures that there is no subword wywg1q = 12
in the subword wy,o...w,_1. Thus there is no subword vivi; = 12 in the subword
Uy ... VUe_3 by the construction of v. Thus we have ¢,, < b — 1 according to the definition
of B(v). Since ¢;p1+2=a(v)+2=a>b=>cp+landb=aq, < a(w)—2 =a—2 = a(v),
by Lemma 3, we can verify that ¢ (w) = (a,b) — 1(v) is in DU4, (4123).

We next prove that A(¢(w)) = B(w) for the case w,12 = 3. Let k be a nonnegative
integer with £ < b— 1. From the construction of v, we have vvi41 = wWrwi41. Since a, <
a(w)—2and b=a,, wehave k <b—1=a,—1 < a(w)—3 and k < a(w) —4 = a(v) — 2.
By the definitions of B(w) and B(v), it follows that £ € B(w) if and only if £ € B(v).
Observe that w, = 1. This ensures that b — 1 ¢ B(w) when b > 2 by the definition of
B(w). Hence we deduce that if ¢, = b —1 and m > 1 then we have {ag,a1,...,a,-1} =
{co,c1, ..., cmo1}; otherwise, we have {ag,a1,...,a,-1} = {co,c1,...,¢n}. Note that
Y(w) = (a,b) = Y(v), A(Y(v)) = B(v) = {co,c1,...,¢m}, and a —2 > b > ¢, + 1. By
Lemma 3, we can verify that if ¢,, = b—1 and m > 1, then A(¢(w)) = {co, c1,. .., Cm_1,b};
otherwise, A(¢(w)) = {co,c1, ..., cm, b}. Since b = a,, we deduce that A(¢(w)) = B(w).

If w,yo # 3, then we have a(v) > a — 1 since v,_1 # 3. By the definition of ¢, we
have b < a — 1. This yields that b < a(v) = ¢;,41. Choose the integer j such that ¢ >
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b > ¢; + 1. According to the definition of B(w), there is no subword wywy1 = 12 in the
subword wpyo ... w,_1. This implies that there is no subword vxvg; = 12 in the subword
Up...Uq—3. Thus we have ¢;1 > a—2, that is, a < ¢j41+2. Since cj1+22=2a>b > ¢;j+1
and b < ¢j41 < Gpp1 = a(v), it follows that ¢ (w) = (a,b) = ¥ (v) is in DU, (4123) from
Lemma 3.

Now we turn to the proof of A(¢(w)) = B(w) for the case w,13 # 3. Let k be a
nonnegative integer k with & < b — 1. From the construction of v, we have vpvp, =
WrWgy1. Since k <b—1<a—-2=a(w)—2and k <b—1< a(v) — 1, we derive that
k € B(w) if and only if k € B(v). Observe that w, = 1. This ensures that b — 1 ¢ B(w)
when b > 2 by the definition of the set B(w). Recall that b > ¢; + 1. According to the
definitions of ¢ and B(w), we have b > a,. So, we derive that

o if b = ap, then {ag,a1,...,ap-1} = {co,c1,...,¢j—1} when b = ¢; + 1 with j > 1;

otherwise, {ag,a1,...,ap_1} = {co,c1,...,¢};
o if b > a,, then {ag,a1,...,a,} = {co,c1,...,¢j_1} when b = ¢; +1 and j > 1;
otherwise, {ag,a1,...,a,} = {co,c1,...,¢}.

According to the definition of B(w) and the construction of (v, b), it is easy to check that
if b = a,, then we have b < a(w) — 2 = a — 2; otherwise, we have b = a — 1. Note that
P(w) = (a,b) = ¥(v), A(Y(v)) = B(v) and ¢j41 = b > ¢; +1. By Lemma 3, we can verify
that

e if b = q,, then A(¢(w)) = {co,c1,...,¢j—1,b} when b = ¢;+1 with j > 1; otherwise,
A((w)) = {co, c1, ..., ¢j, b}

o if b > a,, then A(Y(w)) = {co,c1,...,¢j—1} when b =¢; + 1 and j > 1; otherwise,
A(1/1<UJ)) = {607 Ciy - - 7cj}'

Thus, we derive that A(¢(w)) = B(w). This completes the proof. O

Now we aim to prove that the map ¢ is a bijection by showing that the maps ¢ and
1) are inverses of each other. First, we need to introduce the following definition. Let
w = wiws . ..w, be a word. The entry w; is said to be positioned at 1.

Theorem 6. The map ¢ is a bijection between the set DU5,(4123) and the set of Ya-
manouchi words on the alphabet {1,2,3} of type (n,n,n) such that for any permutation
T = mTy... T, € DU, (4123), we have m = a(d(w)) and A(m) = B(o())

Proof. 1t is sufficient to show that the maps ¢ and ¢ are inverses of each other. First
we need to show that ¢ (¢(7)) = 7 for any permutation = € DU,,(4123). We proceed
by induction on n. Obviously, for n = 1, we have ¥(¢(21)) = ¥(123) = 21. For n > 2,
choose 0 = 0109 ...09, o such that 7 = (a,b) — o where a = m; and b = 7. Assume
that ¥ (¢(0)) = o.

For convenience, let u = wjus...us,—3 = ¢(0) and w = wyws ... w3, = ¢(7). By
Proposition 4, v and w are Yamanouchi words on the alphabet {1,2,3} satisfying a(u) =
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o1, a(w) = m = a, B(u) = A(o) and B(w) = A(r). Suppose that A(c) = {ag, a1, ...,a,},
where p 2 0and 0 = ap < a1 < az < ... < a, < apy1 = 01. By Lemma 2, we have
ajy1 +2 2= a>0b>a;+ 1 for some integer j and b < 0.

When we apply the map ¢ to the word w = ¢(m), we construct an ordered pair
from w. Denote by (v,t) the obtained ordered pair. By the definition of ¢, we have
U(op(m)) = Y(w) = (a,t) — Y(v). Since 7 = (a,b) — o and ¢¥(¢(c)) = o, in order
to prove ¥ (¢(m)) = m, it is sufficient to show that ¢ = b and v = ¢(o). According to
the definition of ¢, the word u can be obtained from w by removing wy, w1 and wqy;.
Meanwhile, by the construction of the ordered pair (v,t), the word v is obtained from
w by removing wy, wy,1 and w,y1. Thus, it is sufficient to show that ¢ = b to prove
Y(¢(m)) = m. We shall consider two cases.

If a = apq1 + 2, then we have b > a, + 1. Recall that b < 01 = a,4;. This yields
that @ > b+ 1. By Lemma 3, we deduce that if b = a, + 1 and p > 1, then A(n) =
{ag, ..., a,-1,b}; otherwise, A(m) = {ao,...,a,,b}. Since ay.; = 01 = «a(u), we have
Ug—1 = Uqa(u)+1 = 3 according to the definition of a(u). According to the definition of ¢,
the word u can be obtained from w by removing wy, wyy1 and w,1. This implies that
Watr2 = Ug—1 = 3. By the construction of the ordered pair (v,t), it is easily seen that
t=0b.

If a < ap41 +2, then we have a — 1 < ap1 +1 = a(u) + 1. According to the definition
of a(u), we have u,_1 # 3. This implies that w,42 = ue—1 # 3. Since a; +1 < b < a <
a;+1 + 2, there is no subword wpuy1 = 12 for b < k < a — 3 according to the definition
of B(u). By the construction of w, we see that there is no subword wywyy1 = 12 for
b+2 < k < a—1. On the other hand, according to the definition of ¢, we have
wpwpr1 = 12 and b < a — 1. From the construction of the ordered pair (v,t), it follows
that ¢ = b. Hence, we have 1(¢p(m)) = 7.

Next we turn to the proof of the equality ¢(i)(w’)) = w' for any Yamanouchi word
w’ on the alphabet {1,2,3} of type (n,n,n). We proceed by induction on n. Obviously,
for n = 1, we have ¢(1(123)) = ¢(21) = 123. For n > 2, let a’ = a(w’). According to
the definition of 1, we obtain an ordered pair (¢v/,8") from w’. By the construction of the
ordered pair (v, V'), the word v’ is obtained from w’ by removing the entries positioned at
b, b +1 and o’ + 1. From the proof of Proposition 5, it follows that v is a Yamanouchi
word of type (n —1,n—1,n—1). By Proposition 5, the permutations ¢ (w’) and ¥ (v’) are
in DU,,(4123) and DU5,2(4123), respectively. Assume that ¢(i(v')) = ¢'. According
to the definition of ¢, we have ¢ (w') = (a’,b') — ¥ (v'). When we apply the map ¢ to
the permutation ¥ (w’), we get a a Yamanouchi word ¢(¢(w')) of type (n,n,n). By the
definition of ¢, we can recover the word ¢(¢(v)) form ¢(¢)(w')) by removing the entries
positioned at ¢/, b’ + 1 and o’ + 1. Recall that ¢(¢(v')) = ¢' and v’ is obtained from w’
by removing the entries positioned at ¥, b’ + 1 and @’ + 1. Thus we have ¢(¢(w')) = w'.
This completes the proof. O

By the same reasoning as in the proofs of Propositions 4 and 5 and Theorem 6, we can
obtain the following analogous results for 4123-avoiding down-up alternating permutations

of odd length.
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Proposition 7. For any permutation m = mmy ... To,—1 € DUs,—1(4123), the word ¢(m)
is a skew Yamanouchi word on the alphabet {1,2,3} of type (n — 1,n,n + 1) satisfying
m = a(6(r)) and A(x) = B(6(r)).

Proposition 8. For any skew Yamanouchi word w = wiws...ws, on the alphabet
{1,2,3} of type (n — 1,n,n + 1), the permutation ¥(w) is in DUs,_1(4123) such that
the first entry of the permutation ¥ (w) is equal to a(w) and A(p(w)) = B(w).

Theorem 9. The map ¢ is a bijection between the set DUs,_1(4123) and the set of skew
Yamanouchi words on the alphabet {1,2,3} of type (n — 1,n,n + 1) such that for any
permutation T = T Ty ... Top_1 € DU3,—1(4123), we have m; = a(p(w)) and A(m) =
B(g(r)).

So far, we have established bijections between the set DUs,(4123) and the set of
Yamanouchi words on the alphabet {1,2,3} of type (n,n,n), and between the set of
DU5,—1(4123) and the set of skew Yamanouchi words on the alphabet {1,2,3} of type
(n — 1,n,n + 1). Now we proceed to present the desired bijections between the set
DU, (4123) and the set of standard Young tableaux of shape (n,n,n), and between the
set DUs,—1(4123) and the set of shifted standard Young tableaux of shape (n+1,n,n—1).

Denote by W, the set of words w = wyws...w, on the alphabet {1,2,3}. Now we
define a map 5: W,, = W, as follows. Let w = wjw,...ws, be a word on the alphabet
{1,2,3}. Define f(w) = (4—w,)(4—wp_1) ... (4—w). Obviously, the map S is essentially
an involution on the set W,, that is, for any word w € W, we have 5(f(w)) = w. Note
that the map 3 can also be called the reverse-complement operation.

According to the definitions of skew Yamanouchi words and shifted Yamanouchi words,
it is easy to verify that the map S induces a bijection between the set of skew Yamanouchi
words of type (n—1,n,n+1) and the set of shifted Yamanouchi words of type (n+1,n,n—
1). Similarly, the map [ is an involution on the set of Yamanouchi words of type (n,n,n).
Moreover, the map ( transforms the initial run of a word to the final run. Recall that the
map X is a bijection between the set of Yamanouchi words of type (n,n,n) and standard
Young tableaux of shape (n,n,n). Moreover, the map y is a bijection between the set of
shifted Yamanouchi words of type (n + 1,n,n — 1) and shifted standard Young tableaux
of shape (n + 1,n,n — 1). Observe that given any ordinary or shifted standard Young
tableau T" of shape (a,b,c) with the (1, a)-entry equal to k, its corresponding word x(7')
has the final run of length a + b + ¢ — k. Therefore, we derive the following results.

Proposition 10. The map x ! o 8 is a bijection between the set of Yamanouchi words

of type (n,n,n) with the initial run of length k and the set of standard Young tableauz of
shape (n,n,n) with the (1,n)-entry equal to 3n — k.

Proposition 11. The map x o3 induces a bijection between the set of skew Yamanouchi
words of type (n—1,n,n+1) with the initial run of length k and the set of shifted standard
Young tableauzx of shape (n+ 1,n,n — 1) with the (1,n + 1)-entry equal to 3n — k.

For example, consider a skew Yamanouchi word w = 112123231323233 of type (4, 5, 6)
with the initial run of length 5. By applying the map [, we obtain a shifted Yamanouchi
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word f(w) = 112121312123233 of type (6,5,4) with the final run of length 5. Applying
the inverse map x ! to 3(w) gives a shifted standard Young tableaux x~'(8(w)) with the
(1,6)-entry equal to 10, as illustrated in Figure 2.

[1]2]4][6]8]10
3[5]911[13
7 [12[14]15

Figure 2: The shifted standard Young tableau x~!(3(w)).

Combining Theorems 6 and 9 and Propositions 10 and 11, we deduce the following
theorems.

Theorem 12. The map ® = x~' o B o ¢ is a bijection between the set DUs,(4123)
and the set of standard Young tableauz of shape (n,m,n) such that for any permutation
T = MMy... Ty € DU2,(4123), the (1,n)-entry of the corresponding tableau is equal to
3n — my.

Theorem 13. The map ® = x~' o S0 ¢ is a bijection between the set DUy, 1(4123)
and the set of shifted standard Young tableauz of shape (n+1,n,n — 1) such that for any
permutation m = m Ty ... To, € DUs,—1(4123), the (1,n + 1)-entry of the corresponding
tableau is equal to 3n — .

Recall that there are bijections between the set UD5, (1234) and the standard Young
tableaux of shape (n,n,n), and between the set UDs,, +1(2143) and shifted standard Young
tableaux of shape (n + 2,n + 1,n). By the operation of complement, the set DU,,(4123)
is in bijection with the set UD,,(1432). Thus, by Theorems 12 and 13, we derive that
UD,,(1432)| = [UD5,(1234)] and [UD2,+1(1432)] = |UDs,11(2143)|, as conjectured by
Lewis [7].

3 4123-avoiding up-down alternating permutations

In this section, we show that 4123-avoiding up-down alternating permutations of length
2n 4 1 are in one-to-one correspondence with standard Young tableaux of shape (n +
1,n,n —1). Moreover, for n > 2, there is a bijection between the set of 4123-avoiding up-
down permutations of length 2n and the set of shifted standard Young tableaux of shape
(n+2,n,n —2). The following Lemma will be essential in establishing the bijections.

Lemma 14. Let 0 = 0105 ...0, be a permutation in DU, (4123) and let a be a positive
integer. If a < o1, then m = a — o is in UD,,;1(4123).

Proof. Let m = mymy ... mpe1. In order to prove m € UD,,+1(4123), it is sufficient to prove
that there exists no subsequence mm;7;m;, with ¢ < j < k in m. Assume that mm7;m; is a
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subsequence order-isomorphic to 4123. Since m; < mg, we deduce that mom;m;m;, is also a
subsequence order-isomorphic to 4123, which implies that 010;,_10;_10%_1 is a subsequence
order-isomorphic to 4123. This contradicts with the fact that o is a 4123-avoiding down-
up alternating permutation. This completes the proof. O

Now we proceed to construct a map - from the set Dy, 1(4123) to the set of standard
Young tableaux of shape (n + 1,n,n — 1). Given a permutation m = mmy...Top41 €
UDs,11(4123), let 0 = 0105 . .. 09, be the permutation such that 7 = m; — o. Obviously,
the permutation o is in DU, (4123). By Theorem 12, the tableau ®(¢) is a standard
Young tableau of shape (n,n,n) with the (1,n)-entry equal to 3n — o;. Delete the (3, n)-
entry of ®(o), insert a (1,n + 1)-entry equal to 3n 4+ 1 — 71, and increase each entry that
is larger than 3n — m; by one. Define T' = ~(7) to be the resulting tableau. Since m < o7,
the obtained tableau T is a standard Young tableau of shape (n+ 1,n,n — 1). Therefore,
the map v is well defined.

For example, consider a 4123-avoiding up-down alternating permutation = = 4657132.
We get 0 = 546132 such that 7 = 4 — o. By applying the bijection ®, we get a standard
Young tableau ®(o):

[\

\]
A oloo|we

DW=
ot

Removing the (3,3)-entry of ®(o
tableau 7(7):

~—

and inserting a (1,4)-entry equal to 6, we get the

112
31519
7.8

W

G

Theorem 15. Forn > 1, the map vy is a bijection between the set UDs,11(4123) and the
set of standard Young tableauz of shape (n+ 1,n,n —1).

Proof. We proceed to construct a map 7 from the set of standard Young tableaux of shape
(n+ 1,n,n — 1) to the set UDy,+1(4123). Given a standard Young tableau 7' of shape
(n+1,n,n — 1), we wish to recover a permutation ¥(7T') € UD3,,1(4123). Suppose that
the (1,n + 1)-entry and (1, n)-entry of T" are equal to 3n+ 1 — a and 3n — b, respectively.
Then we construct a permutation J(7") as follows.

e Remove the (1,n + 1)-entry from the tableau 7" and decrease each entry that is
larger than 3n + 1 — a by one;

e Insert a (3,n)-entry which is equal to 3n. Denote by 7" the obtained standard
Young tableaux;

e Finally, set ¥(T) =a — & 1(T").
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Note that 7" is a standard Young tableau of shape (n,n,n) such that the (1,n)-entry
equals 3n — b. Let 0 = ®1(T") = 0,05...09,. By Theorem 12, we deduce that o is
a down-up alternating permutation in DUs,(4123) with o; = b. Since T is a standard
Young tableau, we have a < b. By Lemma 14, the obtained permutation ¥(7") is in
UDsy, . 1(4123). Tt is straightforward to check that the construction of the map 7 reverses
each step of the construction of the map §. Thus the maps v and 74 are inverses of each
other. This completes the proof. O

Recall that there is a bijection between the set UDy,41(1234) and the set of standard
Young tableaux of shape (n+ 1,n,n — 1) [6]. From Theorem 15, we deduce the following
result.

Theorem 16. Forn > 0, we have
UDs,11(4123)] = [UD2,1(1234)].

Our next goal is to establish an analogous bijection between the set UD,,(4123) and
the set of shifted standard Young tableaux of shape (n + 2,n,n — 2). We define a map
0 from the set of the set of 4123-avoiding up-down alternating permutations of length 2n
to the set of shifted standard Young tableaux of shape (n+2,n,n —2). For n > 2, given
a permutation m = mmy ... Ty, € UD9,(4123), let 0 = 0105...09,-1 be the permutation
satisfying m = m; — o. Clearly, the permutation o is in DUs,_1(4123). By Theorem 13,
the tableau ® (o) is a shifted standard Young tableau of shape (n + 1,n,n — 1) with the
(1,n + 1)-entry equal to 3n — ;. Finally we obtain a tableau from ®(¢) by deleting the
(3,n—1)-entry, inserting a (1, n+ 2)-entry equal to (3n+1—m;) and increasing each entry
larger than 3n — 7 by one. Since m; < oy, the obtained tableau is a shifted standard
Young tableau of shape (n+2,n,n —2). As in the case for the map ~, we can define the
inverse map of § by reversing each step of the map 6. By Lemma 14 and Theorem 13, we
can verify that § is a bijection.

Theorem 17. For n > 2, the map 0 described above is a bijection between the set
UD,,(4123) and the set of shifted standard Young tableauz of shape (n + 2,n,n — 2).

As in the case for standard Young tableaux, there is a simple hook length formula for
shifted standard Young tableaux [4]. By simple computation, we derive that the number
of shifted standard Young tableaux of shape (n + 2,n,n — 2) is equal to %
Recall that the number of 1234-avoiding up-down alternating permutations of length 2n

is given by % Hence, we obtain the following result.
Theorem 18. Forn > 0, we have

2(3n)!
nl(n+ 1)l(n+2)!
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