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Abstract

Abstract. In this paper, we establish bijections between the set of 4123-avoiding
down-up alternating permutations of length 2n and the set of standard Young
tableaux of shape (n, n, n), and between the set of 4123-avoiding down-up alternat-
ing permutations of length 2n−1 and the set of shifted standard Young tableaux of
shape (n+1, n, n−1) via an intermediate structure of Yamanouchi words. Moreover,
we show that 4123-avoiding up-down alternating permutations of length 2n+1 are in
one-to-one correspondence with standard Young tableaux of shape (n+ 1, n, n− 1),
and 4123-avoiding up-down alternating permutations of length 2n are in bijection
with shifted standard Young tableaux of shape (n + 2, n, n− 2).

Keywords: alternating permutation; pattern avoiding; Yamanouchi word; stan-
dard Young tableau; shifted standard Young tableau.

1 Introduction

A permutation π = π1π2 . . . πn of length n on [n] = {1, 2, . . . , n} is said to be an up-down
alternating permutation if π1 < π2 > π3 < π4 > · · · . Similarly, π is said to be a down-up
alternating permutation if π1 > π2 < π3 > π4 < · · · . We denote by UDn and DUn the set
of up-down and down-up alternating permutations of length n, respectively. Note that
the complement map π = π1π2 . . . πn 7−→ (n + 1 − π1)(n + 1 − π2) . . . (n + 1 − πn) is a
bijection between the set UDn and the set DUn.

Denote by Sn the set of all permutations on [n]. Given a permutation π = π1π2 . . . πn ∈
Sn and a permutation τ = τ1τ2 . . . τk ∈ Sk, we say that π contains the pattern τ if there
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exists a subsequence πi1πi2 . . . πik of π that is order-isomorphic to τ . Otherwise, π is said
to avoid the pattern τ or be τ -avoiding.

Pattern avoiding permutations have been extensively studied over last decade. For
a thorough summary of the current status of research, see Bóna’s book [1] and Kitaev’s
book [5]. Analogous to the ordinary permutations, Mansour [8] initiated the study of
alternating permutations avoiding a given pattern. For any pattern of length 3, the
number of alternating permutations of a given length avoiding that pattern is given by
Catalan numbers, see [8, 10]. Recently, Lewis [6] considered the enumeration of alternating
permutations avoiding a given pattern of length 4. Let UDn(τ) and DUn(τ) be the set
of τ -avoiding up-down and down-up alternating permutations of length n, respectively.
Lewis [6] provided bijections between the set UD2n(1234) and the set of standard Young
tableaux of shape (n, n, n), and between the set UD2n+1(1234) and the set of standard
Young tableaux of shape (n+1, n, n−1). By applying the hook length formula for standard
Young tableaux [9], the number of 1234-avoiding up-down alternating permutations of

length 2n is given by 2(3n)!
n!(n+1)!(n+2)!

, and the number of 1234-avoiding up-down alternating

permutations of length 2n+1 is given by 16(3n)!
(n−1)!(n+1)!(n+3)!

. Using the method of generating

trees, Lewis [7] constructed recursive bijections between the set UD2n(2143) and the set of
standard Young tableaux of shape (n, n, n), and between the set UD2n+1(2143) and the set
of shifted standard Young tableaux of shape (n+2, n+1, n). Using computer simulations,
Lewis [7] came up with several conjectures on the enumeration of alternating permutations
avoiding a given pattern of length 4 and 5. Recently, Bóna [2] proved generalized versions
of some conjectures of Joel Lewis on the number of alternating permutations avoiding
certain patterns. He showed that |UDn(12 . . . k)| = |UDn(21 . . . k)| and |UD2n(12 . . . (k−
1)k)| = |UD2n(12 . . . k(k − 1))| for all n and all k.

In this paper, we are concerned with the enumeration of 4123-avoiding down-up and
up-down alternating permutations of even and odd length. We establish bijections be-
tween the set DU2n(4123) and the set of standard Young tableaux of shape (n, n, n),
and between the set DU2n−1(4123) and the set of shifted standard Young tableaux of
shape (n+ 1, n, n− 1) via an intermediate structure of Yamanouchi words. Consequently,
we prove the conjectures, posed by Lewis [7], that |UD2n(1432)| = |UD2n(1234)| and
|UD2n+1(1432)| = |UD2n+1(2143)| in the sense that |UDn(1432)| = |DUn(4123)| by the
operation of complement.

Applying the bijections between 4123-avoiding down-up alternating permutations and
standard Young tableaux, we show that 4123-avoiding up-down alternating permutations
of length 2n+ 1 are in one-to-one correspondence with standard Young tableaux of shape
(n+ 1, n, n− 1), and 4123-avoiding up-down alternating permutations of length 2n are in
bijection with shifted standard Young tableaux of shape (n + 2, n, n − 2). By the hook
length formula for shifted standard Young tableaux [4], we derive that the number of

shifted standard Young tableaux of shape (n+2, n, n−2) is equal to 2(3n)!
n!(n+1)!(n+2)!

. As a re-

sult, we deduce that |UD2n(4123)| = |UD2n(1234)| and |UD2n+1(4123)| = |UD2n+1(1234)|,
as conjectured by Lewis [7].

The paper is organized as follows. In Section 2, we introduce the bijections between the
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set DU2n(4123) and the set of standard Young tableaux of shape (n, n, n), and between the
set DU2n−1(4123) and the set of shifted standard Young tableaux of shape (n+1, n, n−1).
In Section 3, we construct bijections between the set UD2n+1(4123) and the set of standard
Young tableaux of shape (n + 1, n, n − 1), and between the set UD2n(4123) and the set
of shifted standard Young tableaux of shape (n+ 2, n, n− 2).

2 4123-avoiding down-up alternating permutations

In this section, we aim to establish bijections between the set DU2n(4123) and the set of
standard Young tableaux of shape (n, n, n), and between the set DU2n−1(4123) and the
set of shifted standard Young tableaux of shape (n+ 1, n, n− 1).

2.1 Preliminaries

In this subsection, we give some definitions and notations that will be used throughout
the rest of the paper. Moreover, we provide two lemmas that will be essential in the
construction of the bijections.

Given a word w = w1w2 . . . wn on the alphabet {1, 2, . . .}, we define ci to be the
number of occurrences of the letter i in w and the type of the word w to be the sequence
(c1, c2, c3, . . .). The subword w1w2 . . . wj is said to be a left subword for 1 6 j 6 n.
Similarly, the subword wn+1−jwn+2−j . . . wn is said to be a right subword for 1 6 j 6 n.
The word w is said to be a Yamanouchi word if every left subword of w does not contain
more occurrences of the letter i + 1 than that of i for every i > 1. If every subword
of w contains more occurrences of the letter i than that of i + 1 for every i > 1, then
the word w is said to be a shifted Yamanouchi word. Similarly, the word w is said to
be a skew Yamanouchi word if every right subword of w contains more occurrences of
the letter i + 1 than that of i for every i > 1. For instance, it is easy to check that the
word w = 11231223 is a Yamanouchi word of type (3, 3, 2), the word u = 1121213123
is a shifted Yamanouchi word of type (5, 3, 2), and the word v = 1231323233 is a skew
Yamanouchi word of type (2, 3, 5).

A partition λ of a positive integer n is defined to be a sequence (λ1, λ2, . . . , λm) of
nonnegative integers such that λ1 + λ2 + . . . λm = n and λ1 > λ2 . . . > λm. Given
a partition λ = (λ1, λ2, . . . , λm), the (ordinary) Young diagram of shape λ is the left-
justified array of λ1 + λ2 + . . . + λm boxes with λ1 boxes in the first row, λ2 boxes in
the second row, and so on. If λ is a partition with distinct parts then the shifted Young
diagram of shape λ is an array of cells with m rows, each row indented by one cell to the
right with respect to the previous row, and λi cells in row i.

If λ is a Young diagram with n boxes, a standard Young tableau of shape λ is a filling
of the boxes of λ with [n] so that each element appears in exactly one box and entries
increase along rows and columns. We identify boxes in Young diagrams and tableaux
using matrix coordinates. For example, the box in the first row and second column is
numbered (1, 2).
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Let n1, n2, . . . , nk be positive integers with n1 > n2 . . . > nk. There exists a bijection
χ between the set of standard Young tableaux of shape (n1, n2, . . . , nk) and the set of
Yamanouchi words of type (n1, n2, . . . , nk) [3]. Given a standard Young tableau T , we
associate T with a word χ(T ) by letting the j-th letter be the row index of the box
of T containing the number j. On the other hand, given a Yamanouchi word w, it
is straightforward to recover the corresponding tableaux χ−1(w) by letting the i-th row
contain the indices of letters of w that are equal to i. For example, the associated standard
Young tableau of the Yamanouchi word 112311223 is illustrated as follows:

1 2 5 6
3 7 8
4 9

Clearly, for any shifted standard Young tableau T of shape (n1, n2, . . . , nk), where
n1 > n2 . . . > nk, the word χ(T ) is a shifted Yamanouchi word of type (n1, n2, . . . , nk).
More precisely, the map χ is a bijection between the set of shifted standard Young tableaux
of shape (n1, n2, . . . , nk) and the set of shifted Yamanouchi words of type (n1, n2, . . . , nk).
For example, let T be a shifted standard Young tableau shown in Figure 1. By applying
the map χ, we obtain the shifted Yamanouchi word χ(T ) = 1121213123 of type (5, 3, 2).
Note that the map χ is not a bijection between skew Yamanouchi words and skew standard
Young tableaux.

1 2 4 6 8
3 5 9

7 10

Figure 1: The shifted standard Young tableau T .

Let w = w1w2 . . . wn be a word on the alphabet {1, 2, 3}. The left subword w1w2 . . . wj
is called the initial run of w if wj+1 is the leftmost letter of w that is equal to 3. Similarly,
the right subword wn+1−jwn+2−j . . . wn is said to be the final run of w if wn−j is the
rightmost letter equal to 1. As usual, the length of any word v is defined to be the number
of entries of v. For instance, the word w = 121211231323233 has the initial run of length
7 and the final run of length 6. Denote by α(w) the length of the initial run of w.

In order to establish the bijections between 4123-avoiding down-up alternating per-
mutations and standard Young tableaux, we consider the following two sets. Given a
permutation π = π1π2 . . . πn ∈ Sn and a word w = w1w2 . . . wn on the alphabet {1, 2, 3},
let

A(π) = {0} ∪ {k | ∃i < j s.t. πi = k, πj = k + 1 and k 6 π1 − 2},

and
B(w) = {0} ∪ {k | wkwk+1 = 12 and k 6 α(w)− 2},
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respectively. For example, let π = 658397(10)142 and w = 121211231323233. We have
A(π) = {0, 1, 3} and B(w) = {0, 1, 3}.

Let π = π1π2 . . . πn be a permutation. Suppose that A(π) = {a0, a1, . . . , ap}, where
p > 0 and 0 = a0 < a1 . . . < ap. Define ap+1 to be π1. Similarly, given a word w, if
B(w) = {a0, a1, . . . , ap}, then we define ap+1 to be α(w). Obviously, according to the
definitions of A(π) and B(w), we have ap < ap+1.

Given a permutation σ ∈ Sn and an element a ∈ [n+1], there is a unique permutation
π = π1π2 . . . πn+1 ∈ Sn+1 such that π1 = a and the word π2π3 . . . πn+1 is order-isomorphic
to σ. We denote this permutation by a → σ. Let a, b ∈ [n + 2] with b < a. Denote by
(a, b) → σ the permutation π = π1π2 . . . πn+2 such that π1 = a, π2 = b and π3π4 . . . πn+2

is order-isomorphic to σ. More precisely, the permutation π is defined by

πi =


a, i = 1,
b, i = 2,
σi−2, σi−2 < b,
σi−2 + 1, b 6 σi−2 < a− 1,
σi−2 + 2, σi−2 > a− 1.

Note that the permutation (a, b)→ σ is identical with the permutation a→ (b→ σ).
We conclude this subsection with two lemmas that will be essential in the construction

of the bijections between 4123-avoiding down-up alternating permutations and standard
Young tableaux. First, we present the following simple observation that will be of use in
the subsequent proofs of lemmas.

Observation 1. Let σ = σ1σ2 . . . σn ∈ Sn with A(σ) = {a0, a1, . . . , ap}, where p > 0 and
0 = a0 < a1 < a2 . . . < ap < ap+1 = σ1. For any integers r and s with aj < r < s 6 aj+1,
suppose that σ` = r and σm = s. Then we have ` > m.

Lemma 2. Let σ = σ1σ2 . . . σn ∈ DUn(4123) with A(σ) = {a0, a1, . . . , ap}, where p > 0
and 0 = a0 < a1 < a2 . . . < ap < ap+1 = σ1. If π = (a, b) → σ is a permutation in
DUn+2(4123), then b 6 σ1 and there exists an integer j such that aj+1+2 > a > b > aj+1.

Proof. Let π = π1π2 . . . πn+2. Recall that π1 = a and π2 = b. Since π is a down-up
alternating permutation and π = (a, b)→ σ, we have b 6 σ1 = ap+1. Choose the integer j
such that aj+1 > b > aj+1. We claim that a 6 aj+1+2. Suppose that a > aj+1+2. Then
we have two cases. If j = p, then the subsequence ab(ap+1+1)(ap+1+2) is order-isomorphic
to 4123 in π. If j < p, then according to the definition of A(σ), there exists integers l and
m with l < m such that σl = aj+1 and σm = aj+1 + 1. Note that πl+2 = σl + 1 = aj+1 + 1
and πm+2 = σm + 1 = aj+1 + 2. Then the subsequence π1π2πl+2πm+2 forms a 4123 pattern
in π. This yields a contradiction. Hence, we conclude that aj + 1 6 b < a 6 aj+1 + 2.
This completes the proof.

Lemma 3. Let σ = σ1σ2 . . . σn ∈ DUn(4123) with A(σ) = {a0, a1, . . . , ap}, where p > 0
and 0 = a0 < a1 < a2 . . . < ap < ap+1 = σ1. Let a, b be two integers such that aj+1 + 2 >
a > b > aj + 1 and b 6 σ1. Then π = (a, b) → σ is a permutation in DUn+2(4123)
satisfying that
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(i) if b = aj + 1 and j > 1, then we have A(π) = {a0, a1, . . . , aj−1, b} when a > b + 1
and A(π) = {a0, a1, . . . , aj−1} when a = b+ 1;

(ii) otherwise, we have A(π) = {a0, a1, . . . , aj, b} when a > b + 1 and A(π) =
{a0, a1, . . . , aj} when a = b+ 1.

Proof. Since b 6 σ1 and a > b, the permutation π is a down-up alternating permutation.
Now we proceed to show that π avoids the pattern 4123. Let π = π1π2 . . . πn+2. Suppose
that there is a subsequence πkπlπmπq with k < l < m < q which is order-isomorphic to
4123. Note that the subsequence π3 . . . πn+2 is order-isomorphic to σ. This implies that
the subsequence π3 . . . πn+2 avoids the pattern 4123. So we have either k = 1 or k = 2.
Suppose that k = 2. Since π2 < π3, the subsequence π3πlπmπq is order-isomorphic to the
pattern 4123. This contradicts with the fact that the subsequence π3 . . . πn+2 avoids the
pattern 4123. Hence, we must have k = 1. Suppose that k = 1 and l > 2. Since π3 > σ1+1
and π1 = a 6 aj+1 + 2 6 ap+1 + 2 = σ1 + 2, the subsequence π3πlπmπq is an instance of
4123, which contradicts with the fact that the subsequence π3 . . . πn+2 is 4123-avoiding.
Thus, it follows that k = 1 and l = 2. Recall that π1 = a, π2 = b, which implies that
b < πm < πq < a. From this, we deduce that aj 6 b−1 < πm−1 < πq−1 < a−1 6 aj+1+1.
Note that πm = σm−2 +1 and πq = σq−2 +1. So we have aj +1 6 σm−2 < σq−2 6 aj+1 and
m < q. This contradicts with Observation 1. Thus, the permutation π is in DUn+2(4123).

It remains to prove that the permutation π verifies the points (i) and (ii). We claim
that all the elements of the set A(π) are not larger than b. Suppose that k is a nonnegative
integer such that k ∈ A(π) and k > b + 1. It follows that k 6 π1 − 2 = a − 2 from the
definition of A(π). Moreover, there exists integers l and m with l < m such that πl = k
and πm = k+ 1. It is easy to check that the subsequence π1π2πlπm forms a pattern 4123.
This contradicts with the fact that π ∈ DUn+2(4123). Hence, we have completed the
proof of the claim.

If a > b+ 1, then we have b ∈ A(π) since b+ 1 appears right to b in π and b 6 a− 2 =
π1−2. If a = b+1, then b /∈ A(π) since b+1 appears left to b in π. Moreover, when b > 1,
since the entry b appears left to the entry b− 1 in π, we have b− 1 /∈ A(π). Finally, it’s
easy to check from the definitions of A(π) and A(σ) that for any integer k with k < b−1,
we have k ∈ A(π) if and only if k ∈ A(σ). This completes the proof.

2.2 The bijections

Denote by Pn and Qn the set of Yamanouchi words on the alphabet {1, 2, 3} of type
(n, n, n) and the set of skew Yamanouchi words on the alphabet {1, 2, 3} of type (n −
1, n, n + 1), respectively. Let P (resp. Q) be the union of Pn (resp. Qn) for all n > 1.
Similarly, denote by DU(4123) the union of DUn(4123) for all n > 1.

Now we proceed to construct a map φ from the set DU(4123) to the set P∪Q in terms
of a recursive procedure, such that for all m > 1, φ is a map from DUm(4123) to Qn when
m = 2n−1 and from DUm(4123) to Pn when m = 2n. Let π = π1π2 . . . πm ∈ DUm(4123).
For m = 1, we define φ(1) = 233. For m = 2, define φ(21) = 123. For m > 2, let
σ = σ1σ2 . . . σm−2 ∈ DUm−2(4123) such that π = (a, b) → σ where a = π1 and b = π2.
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Assume that we have obtained the word v = φ(σ) = v1v2 . . . v3n−3. Then we construct a
word w = φ(π) = w1w2 . . . w3n from v by inserting two consecutive letters 12 immediately
left to vb and one letter 3 immediately left to va−1. Namely, w is a word with wb = 1,
wb+1 = 2 and wa+1 = 3 such that we can recover the word v by removing the entries wb,
wb+1 and wa+1 from w.

For example, consider the 4123-avoiding down-up alternating permutation π =
63758142. Let σ = 546132, σ′ = 4132 and σ′′ = 21. Clearly, we have π = (6, 3) → σ,
σ = (5, 4) → σ′ and σ′ = (4, 1) → σ′′. Applying the map φ recursively, we can obtain
φ(σ′′) = 123, φ(σ′) = 121233, φ(σ) = 121123233, and φ(π) = 121211323233.

Conversely, we define a map ψ from the set P ∪Q to the set DU(4123), such that for
all n > 1, ψ is a map from Pn to DU2n(4123) and from Qn to DU2n−1(4123). Given a
word w = w1w2 . . . w3n ∈ P ∪Q, we wish to recover a 4123-avoiding down-up alternating
permutation ψ(w) in terms of a recursive procedure. If w = 233, we define ψ(w) = 1. If
w = 123, then define ψ(w) = 21. For n > 2, let a = α(w). Now we proceed to construct
an ordered pair (v, b) from w by the following procedure.

• If wa+2 = 3, then let b be the largest element of B(w) and v be a word obtained
from w by removing wb, wb+1 and wa+1 from w. For example, let w = 121233. It is
easy to check that a = α(w) = 4, w6 = 3 and B(w) = {0, 1}. Thus we have b = 1
and v = 123.

• If wa+2 6= 3, then find the largest integer q such that q 6 a − 1 and wqwq+1 = 12.
Let b = q and v be a word obtained from w by removing wb, wb+1 and wa+1 from
w. For example, let w = 121211323233. It is easy to check that a = α(w) = 6 and
w8 = 2 6= 3. Thus we have b = 3 and v = 121123233.

Finally, we define ψ(w) = (a, b)→ ψ(v).
For instance, let w = 121211323233. By applying the map ψ recursively, we construct

a permutation π as follows:

w = 121211323233 =⇒ 121123233 =⇒ 121233 =⇒ 123,
π = 63758142 ⇐= 546132 ⇐= 4132 ⇐= 21.

Our next goal is to show that the map φ is a bijection between the set DU2n(4123)
and the set Pn. Analogously, the map φ induces a bijection between the set DU2n−1(4123)
and the set Qn.

Proposition 4. For any permutation π = π1π2 . . . π2n ∈ DU2n(4123), the word φ(π) is a
Yamanouchi word on the alphabet {1, 2, 3} of type (n, n, n) satisfying π1 = α(φ(π)) and
A(π) = B(φ(π)).

Proof. We proceed by induction on n. For n = 1, we have φ(21) = 123, which is a
Yamanouchi word of type (1, 1, 1) with the property that α(φ(21)) = 2 and A(21) =
B(123) = {0}. For n > 2, choose σ = σ1σ2 . . . σ2n−2 ∈ DU2n−2(4123) such that π =
(a, b) → σ where a = π1 and b = π2. Suppose that A(σ) = {a0, a1, . . . , ap}, where p > 0
and 0 = a0 < a1 < a2 < . . . < ap < ap+1 = σ1. Assume that v = v1v2 . . . v3n−3 = φ(σ)
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is a Yamanouchi word on the alphabet {1, 2, 3} of type (n − 1, n − 1, n − 1) such that
α(v) = σ1 and B(v) = A(σ). We aim to show that w = φ(π) is a Yamanouchi word
on the alphabet {1, 2, 3} of type (n, n, n) satisfying α(w) = π1 and B(w) = A(π). By
the construction of the word w, it is easy to check that each left subword of w does not
contain more occurrences of the letter i + 1 than that of i for i = 1, 2. This implies that
w is a Yamanouchi word of length 3n. Let w = w1w2 . . . w3n.

By Lemma 2, since π = (a, b)→ σ, we can choose the integer j such that aj+1 + 2 >
a > b > aj+1. Since a 6 aj+1+2 6 ap+1+2 = σ1+2 = α(v)+2, there is no occurrence of
the letter 3 in the subword v1v2 . . . va−2 according to the definition of α(v). This implies
that there is no occurrence of the letter 3 in the subword w1w2 . . . wa according to the
construction of the word w. Meanwhile, we have wa+1 = 3. So the obtained word w has
the initial run of length a, that is, α(w) = a = π1. It remains to show that A(π) = B(w).
Recall that π = (a, b)→ σ and A(σ) = B(v) = {a0, a1, . . . , ap}. By Lemma 3, in order to
verify B(w) = A(π), it suffices to show that

(i)
′

if b = aj + 1 and j > 1, then we have B(w) = {a0, a1, . . . , aj−1, b} when a > b + 1
and B(w) = {a0, a1, . . . , aj−1} when a = b+ 1;

(ii)
′

otherwise, we have B(w) = {a0, a1, . . . , aj, b} when a > b + 1 and B(w) =
{a0, a1, . . . , aj} when a = b+ 1.

We claim that all the elements of the set B(w) are not larger than b. Suppose that k
is a nonnegative integer such that k ∈ B(w) and k > b+ 1. According to the definition of
the set B(w), we have wkwk+1 = 12 and k 6 α(w)− 2 = a− 2. Since wb+1 = 2, we have
k 6= b+ 1. Now suppose that b+ 2 6 k 6 a−2. Clearly, we have vk−2vk−1 = wkwk+1 = 12
by the construction of w. Since k−2 6 a−4 6 aj+1−2 6 α(v)−2, we have k−2 ∈ B(v).
However, we have aj + 1 6 b 6 k− 2 6 aj+1− 2, which implies that k− 2 /∈ B(v). Hence,
the claim is proved.

If a = b + 1, then we have b /∈ B(w) since b = a − 1 = α(w) − 1. If a > b + 1, then
we have b ∈ B(w) since wbwb+1 = 12 and b < a − 1 6 α(w) − 1. Since wb = 1, we have
b− 1 /∈ B(w) when b > 1.

In order to verify (i)
′

and (ii)
′
, it remains to show that for any nonnegative integer k

with k < b− 1, we have k ∈ B(w) if and only if k ∈ B(v). According to the construction
of the word w, we have wkwk+1 = vkvk+1. By Lemma 2, we have b 6 σ1. Note that
k < b− 1 6 σ1− 1 = α(v)− 1 and k < b− 1 < a− 1 6 α(w)− 1. Thus, we have k ∈ B(w)
if and only if k ∈ B(v) by the definitions of B(w) and B(v). This completes the proof.

Proposition 5. For any Yamanouchi word w = w1w2 . . . w3n on the alphabet {1, 2, 3}
of type (n, n, n), the permutation ψ(w) is in DU2n(4123) such that the first entry of the
permutation ψ(w) is equal to α(w) and A(ψ(w)) = B(w).

Proof. We proceed by induction on n. For the case n = 1, we have ψ(123) = 21. For
n > 2, let a = α(w). According to the definition of ψ, we can construct an ordered pair
(v, b) from w.

First, we shall show that the word v is a Yamanouchi word on the alphabet {1, 2, 3}
of type (n − 1, n − 1, n − 1). Suppose that B(w) = {a0, a1, . . . , ap}, where p > 0 and
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0 = a0 < a1 < . . . < ap < ap+1 = α(w). For the case wa+2 = 3, we have b = ap
by the definition of ψ. Since w is a Yamanouchi word with α(w) = a, wa+1 = 3 and
wa+2 = 3, there are at least two occurrences of 2’s left to wa+1 and the first occurrence of
2 is preceded immediately by 1. This guarantees that there exists at least one subword
wkwk+1 = 12 with k 6 a − 2 = α(w) − 2. This yields that B(w) 6= {0} according to
the definition of B(w). Hence we have b = ap > 0. Moreover, by definition we have
b = ap 6 α(w)− 2 = a− 2. For the case wa+2 6= 3, the property of the Yamanouchi word
guarantees that there exists at least one subword wkwk+1 = 12 with k 6 a− 1. Thus, in
either case, we have a > b > 0. Note that wb = 1, wb+1 = 2 and wa+1 = 3. According
to the definition of ψ, v is obtained from w by removing wb, wb+1 and wa+1. It is easy
to check that any left subword of v does not contain more occurrences of the letter i+ 1
than that of i for i = 1, 2. Thus the obtained word v is a Yamanouchi word of type
(n− 1, n− 1, n− 1). Let v = v1v2 . . . v3n−3. Suppose that B(v) = {c0, c1, . . . , cm}, where
m > 0 and 0 = c0 < c1 < . . . < cm < cm+1 = α(v).

We claim that α(v) > a−2. According to the definition of α(w), there is no occurrence
of the letter 3 in the subword w1w2 . . . wa. Thus, by the construction of v, there is no
occurrence of the letter 3 in the subword v1v2 . . . va−2. This implies that the word v has
the initial run of length at least a− 2, that is, α(v) > a− 2.

Assume that the permutation ψ(v) is in DU2n−2(4123) such that the first element of
ψ(v) equals α(v) and A(ψ(v)) = B(v). Now we proceed to show that ψ(w) is a down-up
alternating permutation in DU2n(4123) such that the first element of ψ(w) is equal to
α(w) and A(ψ(w)) = B(w). Recall that ψ(w) = (a, b) → ψ(v) and a = α(w). This
yields that the first element of ψ(w) is equal to α(w). Now we proceed to show that
ψ(w) ∈ DU2n(4123) such that B(w) = A(ψ(w)). We have two cases: wa+2 = 3 or
wa+2 6= 3.

If wa+2 = 3, then we have α(v) = a−2 since va−1 = 3. By the definition of ψ, we have
b = ap. By the definition of B(w), this ensures that there is no subword wkwk+1 = 12
in the subword wb+2 . . . wa−1. Thus there is no subword vkvk+1 = 12 in the subword
vb . . . va−3 by the construction of v. Thus we have cm 6 b− 1 according to the definition
of B(v). Since cm+1+2 = α(v)+2 = a > b > cm+1 and b = ap 6 α(w)−2 = a−2 = α(v),
by Lemma 3, we can verify that ψ(w) = (a, b)→ ψ(v) is in DU2n(4123).

We next prove that A(ψ(w)) = B(w) for the case wa+2 = 3. Let k be a nonnegative
integer with k < b− 1. From the construction of v, we have vkvk+1 = wkwk+1. Since ap 6
α(w)−2 and b = ap, we have k < b−1 = ap−1 6 α(w)−3 and k 6 α(w)−4 = α(v)−2.
By the definitions of B(w) and B(v), it follows that k ∈ B(w) if and only if k ∈ B(v).
Observe that wb = 1. This ensures that b − 1 /∈ B(w) when b > 2 by the definition of
B(w). Hence we deduce that if cm = b − 1 and m > 1 then we have {a0, a1, . . . , ap−1} =
{c0, c1, . . . , cm−1}; otherwise, we have {a0, a1, . . . , ap−1} = {c0, c1, . . . , cm}. Note that
ψ(w) = (a, b) → ψ(v), A(ψ(v)) = B(v) = {c0, c1, . . . , cm}, and a − 2 > b > cm + 1. By
Lemma 3, we can verify that if cm = b−1 and m > 1, thenA(ψ(w)) = {c0, c1, . . . , cm−1, b};
otherwise, A(ψ(w)) = {c0, c1, . . . , cm, b}. Since b = ap, we deduce that A(ψ(w)) = B(w).

If wa+2 6= 3, then we have α(v) > a − 1 since va−1 6= 3. By the definition of ψ, we
have b 6 a− 1. This yields that b 6 α(v) = cm+1. Choose the integer j such that cj+1 >
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b > cj + 1. According to the definition of B(w), there is no subword wkwk+1 = 12 in the
subword wb+2 . . . wa−1. This implies that there is no subword vkvk+1 = 12 in the subword
vb . . . va−3. Thus we have cj+1 > a−2, that is, a 6 cj+1+2. Since cj+1+2 > a > b > cj+1
and b 6 cj+1 6 cm+1 = α(v), it follows that ψ(w) = (a, b)→ ψ(v) is in DU2n(4123) from
Lemma 3.

Now we turn to the proof of A(ψ(w)) = B(w) for the case wa+3 6= 3. Let k be a
nonnegative integer k with k < b − 1. From the construction of v, we have vkvk+1 =
wkwk+1. Since k < b − 1 6 a − 2 = α(w) − 2 and k < b − 1 6 α(v) − 1, we derive that
k ∈ B(w) if and only if k ∈ B(v). Observe that wb = 1. This ensures that b − 1 /∈ B(w)
when b > 2 by the definition of the set B(w). Recall that b > cj + 1. According to the
definitions of ψ and B(w), we have b > ap. So, we derive that

• if b = ap, then {a0, a1, . . . , ap−1} = {c0, c1, . . . , cj−1} when b = cj + 1 with j > 1;
otherwise, {a0, a1, . . . , ap−1} = {c0, c1, . . . , cj};

• if b > ap, then {a0, a1, . . . , ap} = {c0, c1, . . . , cj−1} when b = cj + 1 and j > 1;
otherwise, {a0, a1, . . . , ap} = {c0, c1, . . . , cj}.

According to the definition of B(w) and the construction of (v, b), it is easy to check that
if b = ap, then we have b 6 α(w) − 2 = a − 2; otherwise, we have b = a − 1. Note that
ψ(w) = (a, b)→ ψ(v), A(ψ(v)) = B(v) and cj+1 > b > cj + 1. By Lemma 3, we can verify
that

• if b = ap, then A(ψ(w)) = {c0, c1, . . . , cj−1, b} when b = cj +1 with j > 1; otherwise,
A(ψ(w)) = {c0, c1, . . . , cj, b};

• if b > ap, then A(ψ(w)) = {c0, c1, . . . , cj−1} when b = cj + 1 and j > 1; otherwise,
A(ψ(w)) = {c0, c1, . . . , cj}.

Thus, we derive that A(ψ(w)) = B(w). This completes the proof.

Now we aim to prove that the map φ is a bijection by showing that the maps φ and
ψ are inverses of each other. First, we need to introduce the following definition. Let
w = w1w2 . . . wn be a word. The entry wi is said to be positioned at i.

Theorem 6. The map φ is a bijection between the set DU2n(4123) and the set of Ya-
manouchi words on the alphabet {1, 2, 3} of type (n, n, n) such that for any permutation
π = π1π2 . . . π2n ∈ DU2n(4123), we have π1 = α(φ(π)) and A(π) = B(φ(π))

Proof. It is sufficient to show that the maps φ and ψ are inverses of each other. First
we need to show that ψ(φ(π)) = π for any permutation π ∈ DU2n(4123). We proceed
by induction on n. Obviously, for n = 1, we have ψ(φ(21)) = ψ(123) = 21. For n > 2,
choose σ = σ1σ2 . . . σ2n−2 such that π = (a, b) → σ where a = π1 and b = π2. Assume
that ψ(φ(σ)) = σ.

For convenience, let u = u1u2 . . . u3n−3 = φ(σ) and w = w1w2 . . . w3n = φ(π). By
Proposition 4, u and w are Yamanouchi words on the alphabet {1, 2, 3} satisfying α(u) =
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σ1, α(w) = π1 = a, B(u) = A(σ) and B(w) = A(π). Suppose thatA(σ) = {a0, a1, . . . , ap},
where p > 0 and 0 = a0 < a1 < a2 < . . . < ap < ap+1 = σ1. By Lemma 2, we have
aj+1 + 2 > a > b > aj + 1 for some integer j and b 6 σ1.

When we apply the map ψ to the word w = φ(π), we construct an ordered pair
from w. Denote by (v, t) the obtained ordered pair. By the definition of ψ, we have
ψ(φ(π)) = ψ(w) = (a, t) → ψ(v). Since π = (a, b) → σ and ψ(φ(σ)) = σ, in order
to prove ψ(φ(π)) = π, it is sufficient to show that t = b and v = φ(σ). According to
the definition of φ, the word u can be obtained from w by removing wb, wb+1 and wa+1.
Meanwhile, by the construction of the ordered pair (v, t), the word v is obtained from
w by removing wt, wt+1 and wa+1. Thus, it is sufficient to show that t = b to prove
ψ(φ(π)) = π. We shall consider two cases.

If a = ap+1 + 2, then we have b > ap + 1. Recall that b 6 σ1 = ap+1. This yields
that a > b + 1. By Lemma 3, we deduce that if b = ap + 1 and p > 1, then A(π) =
{a0, . . . , ap−1, b}; otherwise, A(π) = {a0, . . . , ap, b}. Since ap+1 = σ1 = α(u), we have
ua−1 = uα(u)+1 = 3 according to the definition of α(u). According to the definition of φ,
the word u can be obtained from w by removing wb, wb+1 and wa+1. This implies that
wa+2 = ua−1 = 3. By the construction of the ordered pair (v, t), it is easily seen that
t = b.

If a < ap+1 + 2, then we have a− 1 < ap+1 + 1 = α(u) + 1. According to the definition
of α(u), we have ua−1 6= 3. This implies that wa+2 = ua−1 6= 3. Since aj + 1 6 b < a 6
aj+1 + 2, there is no subword ukuk+1 = 12 for b 6 k 6 a − 3 according to the definition
of B(u). By the construction of w, we see that there is no subword wkwk+1 = 12 for
b + 2 6 k 6 a − 1. On the other hand, according to the definition of φ, we have
wbwb+1 = 12 and b 6 a − 1. From the construction of the ordered pair (v, t), it follows
that t = b. Hence, we have ψ(φ(π)) = π.

Next we turn to the proof of the equality φ(ψ(w′)) = w′ for any Yamanouchi word
w′ on the alphabet {1, 2, 3} of type (n, n, n). We proceed by induction on n. Obviously,
for n = 1, we have φ(ψ(123)) = φ(21) = 123. For n > 2, let a′ = α(w′). According to
the definition of ψ, we obtain an ordered pair (v′, b′) from w′. By the construction of the
ordered pair (v′, b′), the word v′ is obtained from w′ by removing the entries positioned at
b′, b′ + 1 and a′ + 1. From the proof of Proposition 5, it follows that v′ is a Yamanouchi
word of type (n−1, n−1, n−1). By Proposition 5, the permutations ψ(w′) and ψ(v′) are
in DU2n(4123) and DU2n−2(4123), respectively. Assume that φ(ψ(v′)) = v′. According
to the definition of ψ, we have ψ(w′) = (a′, b′) → ψ(v′). When we apply the map φ to
the permutation ψ(w′), we get a a Yamanouchi word φ(ψ(w′)) of type (n, n, n). By the
definition of φ, we can recover the word φ(ψ(v′)) form φ(ψ(w′)) by removing the entries
positioned at b′, b′ + 1 and a′ + 1. Recall that φ(ψ(v′)) = v′ and v′ is obtained from w′

by removing the entries positioned at b′, b′ + 1 and a′ + 1. Thus we have φ(ψ(w′)) = w′.
This completes the proof.

By the same reasoning as in the proofs of Propositions 4 and 5 and Theorem 6, we can
obtain the following analogous results for 4123-avoiding down-up alternating permutations
of odd length.
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Proposition 7. For any permutation π = π1π2 . . . π2n−1 ∈ DU2n−1(4123), the word φ(π)
is a skew Yamanouchi word on the alphabet {1, 2, 3} of type (n − 1, n, n + 1) satisfying
π1 = α(φ(π)) and A(π) = B(φ(π)).

Proposition 8. For any skew Yamanouchi word w = w1w2 . . . w3n on the alphabet
{1, 2, 3} of type (n − 1, n, n + 1), the permutation ψ(w) is in DU2n−1(4123) such that
the first entry of the permutation ψ(w) is equal to α(w) and A(ψ(w)) = B(w).

Theorem 9. The map φ is a bijection between the set DU2n−1(4123) and the set of skew
Yamanouchi words on the alphabet {1, 2, 3} of type (n − 1, n, n + 1) such that for any
permutation π = π1π2 . . . π2n−1 ∈ DU2n−1(4123), we have π1 = α(φ(π)) and A(π) =
B(φ(π)).

So far, we have established bijections between the set DU2n(4123) and the set of
Yamanouchi words on the alphabet {1, 2, 3} of type (n, n, n), and between the set of
DU2n−1(4123) and the set of skew Yamanouchi words on the alphabet {1, 2, 3} of type
(n − 1, n, n + 1). Now we proceed to present the desired bijections between the set
DU2n(4123) and the set of standard Young tableaux of shape (n, n, n), and between the
set DU2n−1(4123) and the set of shifted standard Young tableaux of shape (n+1, n, n−1).

Denote by Wn the set of words w = w1w2 . . . wn on the alphabet {1, 2, 3}. Now we
define a map β: Wn → Wn as follows. Let w = w1w2 . . . w3n be a word on the alphabet
{1, 2, 3}. Define β(w) = (4−wn)(4−wn−1) . . . (4−w1). Obviously, the map β is essentially
an involution on the set Wn, that is, for any word w ∈ Wn, we have β(β(w)) = w. Note
that the map β can also be called the reverse-complement operation.

According to the definitions of skew Yamanouchi words and shifted Yamanouchi words,
it is easy to verify that the map β induces a bijection between the set of skew Yamanouchi
words of type (n−1, n, n+1) and the set of shifted Yamanouchi words of type (n+1, n, n−
1). Similarly, the map β is an involution on the set of Yamanouchi words of type (n, n, n).
Moreover, the map β transforms the initial run of a word to the final run. Recall that the
map χ is a bijection between the set of Yamanouchi words of type (n, n, n) and standard
Young tableaux of shape (n, n, n). Moreover, the map χ is a bijection between the set of
shifted Yamanouchi words of type (n+ 1, n, n− 1) and shifted standard Young tableaux
of shape (n + 1, n, n − 1). Observe that given any ordinary or shifted standard Young
tableau T of shape (a, b, c) with the (1, a)-entry equal to k, its corresponding word χ(T )
has the final run of length a+ b+ c− k. Therefore, we derive the following results.

Proposition 10. The map χ−1 ◦ β is a bijection between the set of Yamanouchi words
of type (n, n, n) with the initial run of length k and the set of standard Young tableaux of
shape (n, n, n) with the (1, n)-entry equal to 3n− k.

Proposition 11. The map χ−1◦β induces a bijection between the set of skew Yamanouchi
words of type (n−1, n, n+1) with the initial run of length k and the set of shifted standard
Young tableaux of shape (n+ 1, n, n− 1) with the (1, n+ 1)-entry equal to 3n− k.

For example, consider a skew Yamanouchi word w = 112123231323233 of type (4, 5, 6)
with the initial run of length 5. By applying the map β, we obtain a shifted Yamanouchi

the electronic journal of combinatorics 19(2) (2012), #P49 12



word β(w) = 112121312123233 of type (6, 5, 4) with the final run of length 5. Applying
the inverse map χ−1 to β(w) gives a shifted standard Young tableaux χ−1(β(w)) with the
(1,6)-entry equal to 10, as illustrated in Figure 2.

1 2 4 6 8 10
3 5 9 11 13

7 12 14 15

Figure 2: The shifted standard Young tableau χ−1(β(w)).

Combining Theorems 6 and 9 and Propositions 10 and 11, we deduce the following
theorems.

Theorem 12. The map Φ = χ−1 ◦ β ◦ φ is a bijection between the set DU2n(4123)
and the set of standard Young tableaux of shape (n, n, n) such that for any permutation
π = π1π2 . . . π2n ∈ DU2n(4123), the (1, n)-entry of the corresponding tableau is equal to
3n− π1.

Theorem 13. The map Φ = χ−1 ◦ β ◦ φ is a bijection between the set DU2n−1(4123)
and the set of shifted standard Young tableaux of shape (n+ 1, n, n− 1) such that for any
permutation π = π1π2 . . . π2n ∈ DU2n−1(4123), the (1, n + 1)-entry of the corresponding
tableau is equal to 3n− π1.

Recall that there are bijections between the set UD2n(1234) and the standard Young
tableaux of shape (n, n, n), and between the set UD2n+1(2143) and shifted standard Young
tableaux of shape (n + 2, n + 1, n). By the operation of complement, the set DUn(4123)
is in bijection with the set UDn(1432). Thus, by Theorems 12 and 13, we derive that
|UD2n(1432)| = |UD2n(1234)| and |UD2n+1(1432)| = |UD2n+1(2143)|, as conjectured by
Lewis [7].

3 4123-avoiding up-down alternating permutations

In this section, we show that 4123-avoiding up-down alternating permutations of length
2n + 1 are in one-to-one correspondence with standard Young tableaux of shape (n +
1, n, n− 1). Moreover, for n > 2, there is a bijection between the set of 4123-avoiding up-
down permutations of length 2n and the set of shifted standard Young tableaux of shape
(n+ 2, n, n− 2). The following Lemma will be essential in establishing the bijections.

Lemma 14. Let σ = σ1σ2 . . . σn be a permutation in DUn(4123) and let a be a positive
integer. If a 6 σ1, then π = a→ σ is in UDn+1(4123).

Proof. Let π = π1π2 . . . πn+1. In order to prove π ∈ UDn+1(4123), it is sufficient to prove
that there exists no subsequence π1πiπjπk with i < j < k in π. Assume that π1πiπjπk is a
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subsequence order-isomorphic to 4123. Since π1 < π2, we deduce that π2πiπjπk is also a
subsequence order-isomorphic to 4123, which implies that σ1σi−1σj−1σk−1 is a subsequence
order-isomorphic to 4123. This contradicts with the fact that σ is a 4123-avoiding down-
up alternating permutation. This completes the proof.

Now we proceed to construct a map γ from the set UD2n+1(4123) to the set of standard
Young tableaux of shape (n + 1, n, n − 1). Given a permutation π = π1π2 . . . π2n+1 ∈
UD2n+1(4123), let σ = σ1σ2 . . . σ2n be the permutation such that π = π1 → σ. Obviously,
the permutation σ is in DU2n(4123). By Theorem 12, the tableau Φ(σ) is a standard
Young tableau of shape (n, n, n) with the (1, n)-entry equal to 3n− σ1. Delete the (3, n)-
entry of Φ(σ), insert a (1, n+ 1)-entry equal to 3n+ 1− π1, and increase each entry that
is larger than 3n−π1 by one. Define T = γ(π) to be the resulting tableau. Since π1 6 σ1,
the obtained tableau T is a standard Young tableau of shape (n+ 1, n, n− 1). Therefore,
the map γ is well defined.

For example, consider a 4123-avoiding up-down alternating permutation π = 4657132.
We get σ = 546132 such that π = 4→ σ. By applying the bijection Φ, we get a standard
Young tableau Φ(σ):

1 2 4
3 5 8
6 7 9

Removing the (3, 3)-entry of Φ(σ) and inserting a (1, 4)-entry equal to 6, we get the
tableau γ(π):

1 2 4 6
3 5 9
7 8

Theorem 15. For n > 1, the map γ is a bijection between the set UD2n+1(4123) and the
set of standard Young tableaux of shape (n+ 1, n, n− 1).

Proof. We proceed to construct a map γ̄ from the set of standard Young tableaux of shape
(n + 1, n, n − 1) to the set UD2n+1(4123). Given a standard Young tableau T of shape
(n + 1, n, n − 1), we wish to recover a permutation γ̄(T ) ∈ UD2n+1(4123). Suppose that
the (1, n+ 1)-entry and (1, n)-entry of T are equal to 3n+ 1− a and 3n− b, respectively.
Then we construct a permutation γ̄(T ) as follows.

• Remove the (1, n + 1)-entry from the tableau T and decrease each entry that is
larger than 3n+ 1− a by one;

• Insert a (3, n)-entry which is equal to 3n. Denote by T ′ the obtained standard
Young tableaux;

• Finally, set γ̄(T ) = a→ Φ−1(T ′).
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Note that T ′ is a standard Young tableau of shape (n, n, n) such that the (1, n)-entry
equals 3n − b. Let σ = Φ−1(T ′) = σ1σ2 . . . σ2n. By Theorem 12, we deduce that σ is
a down-up alternating permutation in DU2n(4123) with σ1 = b. Since T is a standard
Young tableau, we have a 6 b. By Lemma 14, the obtained permutation γ̄(T ) is in
UD2n+1(4123). It is straightforward to check that the construction of the map γ̄ reverses
each step of the construction of the map δ. Thus the maps γ and γ̄ are inverses of each
other. This completes the proof.

Recall that there is a bijection between the set UD2n+1(1234) and the set of standard
Young tableaux of shape (n+ 1, n, n− 1) [6]. From Theorem 15, we deduce the following
result.

Theorem 16. For n > 0, we have

|UD2n+1(4123)| = |UD2n+1(1234)|.

Our next goal is to establish an analogous bijection between the set UD2n(4123) and
the set of shifted standard Young tableaux of shape (n + 2, n, n − 2). We define a map
δ from the set of the set of 4123-avoiding up-down alternating permutations of length 2n
to the set of shifted standard Young tableaux of shape (n+ 2, n, n− 2). For n > 2, given
a permutation π = π1π2 . . . π2n ∈ UD2n(4123), let σ = σ1σ2 . . . σ2n−1 be the permutation
satisfying π = π1 → σ. Clearly, the permutation σ is in DU2n−1(4123). By Theorem 13,
the tableau Φ(σ) is a shifted standard Young tableau of shape (n + 1, n, n− 1) with the
(1, n+ 1)-entry equal to 3n− σ1. Finally we obtain a tableau from Φ(σ) by deleting the
(3, n−1)-entry, inserting a (1, n+2)-entry equal to (3n+1−π1) and increasing each entry
larger than 3n − π1 by one. Since π1 6 σ1, the obtained tableau is a shifted standard
Young tableau of shape (n+ 2, n, n− 2). As in the case for the map γ, we can define the
inverse map of δ by reversing each step of the map δ. By Lemma 14 and Theorem 13, we
can verify that δ is a bijection.

Theorem 17. For n > 2, the map δ described above is a bijection between the set
UD2n(4123) and the set of shifted standard Young tableaux of shape (n+ 2, n, n− 2).

As in the case for standard Young tableaux, there is a simple hook length formula for
shifted standard Young tableaux [4]. By simple computation, we derive that the number

of shifted standard Young tableaux of shape (n + 2, n, n − 2) is equal to 2(3n)!
n!(n+1)!(n+2)!

.
Recall that the number of 1234-avoiding up-down alternating permutations of length 2n
is given by 2(3n)!

n!(n+1)!(n+2)!
. Hence, we obtain the following result.

Theorem 18. For n > 0, we have

|UD2n(4123)| = |UD2n(1234)| = 2(3n)!

n!(n+ 1)!(n+ 2)!
.
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