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Abstract

Recently, Jeĺınek derived that the number of self-dual interval orders of reduced
size n is twice the number of row-Fishburn matrices of size n by using generating
functions. In this paper, we present a bijective proof of this relation by establish-
ing a bijection between two variations of upper-triangular matrices of nonnegative
integers. Using the bijection, we provide a combinatorial proof of the refined rela-
tions between self-dual Fishburn matrices and row-Fishburn matrices in answer to
a problem proposed by Jeĺınek.

Keywords: self-dual interval order; self-dual Fishburn matrix; row-Fishburn ma-
trix.

1 Introduction

A poset is said to be an interval order (also known as (2 + 2)-free poset) if it does not
contain an induced subposet that is isomorphic to 2 + 2, the union of two disjoint 2-
element chains. Let P be a poset with a strict order relation ≺. A strict down-set of
an element x ∈ P is the set D(x) of all the elements of P that are smaller than x, i.e.,
D(x) = {y ∈ P : y ≺ x}. Similarly, the strict up-set of x, denoted by U(x), is the set
{y ∈ P : y � x}. A poset P is (2 + 2)-free if and only if its sets of strict down-sets,
D(P ) = {D(x) : x ∈ P} can be written as

D(P ) = {D1, D2, . . . , Dm}
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where ∅ = D1 ⊂ D2 ⊂ . . . ⊂ Dm, see [1, 2]. In such context, we say that x ∈ P has level i
if D(x) = Di. An element has level 1 if and only if it is minimal. Following Fishburn [7],
we call the number m of distinct strict down-sets the magnitude of P. It turns out that m
is also equal to the number of distinct strict up-sets, and we can order the strict up-sets
of P into a decreasing chain

D(P ) = {U1, U2, . . . , Um}

where U1 ⊃ U2 ⊃ . . . ⊃ Um = ∅, see [7, 8]. We say that x has up-level i if U(x) = Ui. An
element has up-level m if and only if it is maximal.

The dual of a poset P is the poset P with the same elements as P and an order relation
≺ defined by x≺y ⇐⇒ y ≺ x. A poset is self-dual if it is isomorphic to its dual.

Fishburn [7, 9] did pioneering work on interval orders; for instance, he provided sev-
eral equivalent characterizations of interval orders and established a bijection between
interval orders and a certain kind of integer matrices, called Fishburn matrices. Recently,
Bousquet-Mélou et al. [2] constructed bijections between interval orders and ascent se-
quences, between ascent sequences and permutations avoiding a certain pattern, between
interval orders and regular linearized chord diagrams by Stoimenow [12]. Several other
papers have focused on bijections between interval orders and other objects. For instance,
Dukes and Parviainen [4] have described a direct bijection between Fishburn matrices and
ascent sequences, while the papers of Claesson et al. [3] and Dukes et al. [6] extend the
bijection between interval orders and Fishburn matrices to more general combinatorial
structures.

A Fishburn matrix of size n is an upper-triangular matrix with nonnegative integers
which sum to n and each row and each column contains a nonzero entry. Throughout
this paper we assume that each matrix has its rows numbered from top to bottom, and
columns numbered left-to-right, starting with row and column number one. We let Mi,j

denote the entry of M in row i and column j. The size of a matrix M is the sum of all its
entries. Moreover, the dimension of an upper triangular matrix is defined to the number
of rows.

The dual matrix of M , denoted by M , is obtained from M by transposition along the
diagonal running from bottom-left to top-right. More precisely, for 1 6 i, j 6 m, we have
M i,j = Mm+1−j,m+1−i where m is the dimension of M . If a matrix M is equal to M , we
call it self-dual.

Fishburn [7, 9] showed that an interval order P of magnitude m corresponds to an
m × m Fishburn matrix M with Mi,j being equal to the number of elements of P that
have level i and up-level j. Jeĺınek [10] showed that the Fishburn’s bijection turns out to
be a bijection between self-dual interval orders of size n and self-dual Fishburn matrices
of size n.

Following the terminologies given in [10], we distinguish three types of cells in a Fish-
burn matrix M of dimension k : a cell (i, j) is a diagonal cell if i + j = k + 1, i.e., (i, j)
belongs to the north-east diagonal of the matrix. If i+j < k+1 (i.e., (i, j) is above and to
the left of the diagonal) then (i, j) is a North-West cell, or NW-cell, while if i+ j > k+ 1,
then (i, j) is an SE-cell. Clearly, NW-cells and diagonal cells together determine a self-
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dual Fishburn matrix. The reduced size of a self-dual fishburn matrix M is the sum of
all diagonal cells and NW-cells. The reduced size of a self-dual interval order P is the
reduced size of its corresponding self-dual Fishburn matrix under Fishburn’s bijection.

A row-Fishburn matrix of size n is defined to be an upper-triangular matrix with
nonnegative integers which sum to n and each row contains a nonzero entry. In a matrix
A, the sum of a column (resp. row) is defined to the sum of all the entries in this column
(resp. row). A column or a row is said to be zero if it contains no nonzero entries. The
set of self-dual Fishburn matrices of reduced size n is denoted by M(n). Let M(n, k, p)
be the set of self-dual Fishburn matrices of reduced size n whose first row has sum k and
diagonal cells have sum p. Let RM(n) be the set of row-Fishburn matrices of size n.
The set of row-Fishburn matrices in RM(n) whose last column has sum k is denoted by
RM(n, k). Let RM(n, k, p) denote the set of row-Fishburn matrices in RM(n, k) whose
first row has sum p. Moreover, the set of self-dual interval orders of reduced size n is
denoted by I(n).

Based on the bijection between interval orders and Fishburn matrices, Jeĺınek [10]
presented a new method to derive formulas for the generating functions of interval or-
ders, counted with respect to their size, magnitude, and number of minimal and maximal
elements, which generalize previous results on refined enumeration of interval orders ob-
tained by Bousquet-Mélou et al. [2], Kitaev and Remmel [11], and Dukes et al. [5].
Applying the new method, Jeĺınek [10] obtained formulas for the generating functions of
self-dual interval orders with respect to analogous statistics. From the obtained generat-
ing functions, relations between self-dual Fishburn matrices and row-Fishburn matrices
were derived, that is,

|M(n, k, 0)| = |RM(n, k)|, (1)

and for p > 1
|M(n, k, p)| = |RM(n, k, p)|. (2)

Combining the bijection between self-dual interval orders and self-dual Fishburn martices,
formulas (1) and (2), Jeĺınek derived that for n > 1,

|I(n)| = |M(n)| = 2|RM(n)|, (3)

and asked for bijective proofs of (1) and (2). The main objective of this paper is to present
bijective proofs of these formulas by establishing a one-to-one correspondence between two
variations of upper-triangular matrices of nonnegative integers.

Let M(n, k) be the set of self-dual Fishburn matrices of reduced size n whose first
row has sum k. Denote by EM(n, k) (resp. OM(n, k) ) the set of self-dual Fishburn
matrices in M(n, k) whose dimension are even (resp. odd). Using the bijection between
two variations of upper-triangular matrices of nonnegative integers, we derive that

|EM(n, k)| = |OM(n, k)| = |RM(n, k)|. (4)
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2 The bijective proofs

Recall that a self-dual Fishburn matrix is determined by its NW-cells and diagonal cells.
Given a self-dual Fishburn matrix M , the reduced matrix of M , denoted by R(M), is a
matrix obtained from M by filling all the SE-cells with zeros. An upper-triangular matrix
is said to be a super triangular matrix if all its SE-cells are zero.

Lemma 1. Let M ′ be a super triangular matrix of dimension m. Then M ′ is a reduced
matrix of a self-dual Fishburn matrix if and only if it satisfies the following two conditions:

(i) for 1 6 i 6 dm
2
e, each column i contains a nonzero entry;

(ii) for 1 6 i 6 dm
2
e, either row i or column m+ 1− i contains a nonzero entry.

Proof. Let M be a self-dual Fishburn matrix with R(M) = M ′. Clearly, M ′ is a super
triangular matrix. Since the first dm

2
e columns of M ′ are the same as those in M , the

condition (i) follows immediately. It remains to show that M ′ satisfies condition (ii).
Since M is self-dual Fishburn matrix, for all 1 6 i 6 m, row i must contains a nonzero
entry, that is,

m∑
j=1

Mi,j =
m−i∑
j=1

Mi,j +
m∑

j=m+1−i

Mi,j =
m−i∑
j=1

Mi,j +
i∑

j=1

Mj,m+1−i > 0.

Hence, for 1 6 i 6 dm
2
e, either row i or column m + 1 − i of R(M) contains a nonzero

entry. Therefore, the condition (ii) holds for R(M).
Conversely, given a super triangular matrix M ′ satisfying conditions (i) and (ii), We

can recover a self-dual matrix M from M ′ by filling the SE-cell (m+ 1− j,m+ 1− i) with
M ′

i,j. If 1 6 i 6 dm
2
e, the sum of row i of M is given by

m∑
j=i

Mi,j =
m−i∑
j=i

Mi,j +
m∑

j=m+1−i

Mi,j =
m−i∑
j=1

Mi,j +
i∑

j=1

Mj,m+1−i =
m−i∑
j=1

M ′
i,j +

i∑
j=1

M ′
j,m+1−i.

By the condition (ii), we have
∑m

j=iMi,j =
∑m−i

j=1 M
′
i,j+

∑i
j=1M

′
j,m+1−i > 0, which implies

that row i contains a nonzero entry. If dm
2
e+ 1 6 i 6 m, the sum of row i of M is given

by
m∑
j=i

Mi,j =
m∑
j=i

M ′
m+1−j,m+1−i =

m+1−i∑
j=1

M ′
j,m+1−i,

which implies that the sum of row i of M is the same as that of column m+ 1− i of M ′.
By condition (i), row i contains a nonzero entry. Hence M is a self-dual Fishburn matrix
with R(M) = M ′. This completes the proof.

Denote by SMk(n) the set of all super triangular matrices of size n and dimension
2k + 1 having the following two properties:
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(a) for 1 6 i 6 k, each column i contains a nonzero entry;

(b) for 1 6 i 6 k, either row k + 1− i or column k + 1 + i contains a nonzero entry.

Let SM(n) =
⋃

k>0 SMk(n).
Now we proceed to present a map α from M(n) to SM(n). Given a nonempty self-

dual matrix M of dimension m, let α(M) be the matrix obtained from M by the following
procedure.

• If m = 2k + 1 for some integer k > 0, then let α(M) be the matrix obtained from
the reduced matrix R(M) of M by interchanging the cell (i, k+ 1) and the diagonal
cell (i,m+ 1− i) for 1 6 i 6 k.

• If m = 2k for some integer k > 1, then let A be the matrix obtained from R(M) by
adding one zero row and one zero column immediately after column k and row k.
Define α(M) to be the matrix obtained from A by interchanging the cell (i, k + 1)
and the diagonal cell (i,m+ 1− i) of the resulting matrix A.

Obviously, α(M) is a super triangular matrix of dimension 2k+1 and size n. It easy to
check that the map α preserves the first k columns and the total sum of row i and column
m + 1 − i of the reduced matrix R(M). By Lemma 1, the matrix α(M) has properties
(a) and (b). Hence α(M) is a super triangular matrix in SM(n).

Conversely, given a super triangular matrix M ′ in SM(n) of dimension 2k+1, we can
recover a matrix M ∈ M(n) with α(M) = M ′. First we interchange the cell (i, k + 1)
with the diagonal cell (i,m − i) for 1 6 i 6 k. Then we obtain a matrix A by deleting
column k+ 1 and row k+ 1 if they are zero. It is easy to check that properties (a) and (b)
ensure that the obtained matrix A is the reduced matrix of a self-dual Fishburn matrix.
Let M be a self-dual Fishburn matrix with R(M) = A. Hence α is a bijection between
M(n) and SM(n).

Let M be a super triangular matrix of dimension 2k+ 1, then column k+ 1 is called a
center column. From the construction of the bijection α, we see that the map α transforms
the sum of the diagonal cells of a self-dual matrix to the sum of the center column of a
super triangular matrix. Hence, we have the following result.

Theorem 2. The map α is a bijection betweenM(n) and SM(n). Moreover, the bijection
α preserves the sum of the first row, and transforms the sum of the diagonal cells of a
self-dual matrix to the sum of the center column of a super triangular matrix.

Example 3. Consider a matrix A ∈M(5),

A =


1 0 1 0 0
0 1 1 1 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1

 .
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The reduced matrix of A is given by

R(A) =


1 0 1 0 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
and we have

α(A) =


1 0 0 0 1
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
Let B(n) the set of upper-triangular matrices of size n in which each row contains a

nonzero entry except for the first row. Given a nonempty matrix A ∈ RM(n), we can
get two distinct matrices in B(n) from A by either doing nothing or adding a zero row
and a zero column before the first row and the first column. Thus for n > 1 we have the
following relation

|B(n)| = 2|RM(n)|. (5)

Now we proceed to construct a bijection between the set SM(n) and the set B(n). Before
constructing the bijection, we need some definitions. In a matrix A with m rows, the
operation of adding column i to column j is defined by increasing Ak,j by Ak,i for each
k = 1, 2, . . . ,m.

Let B(n, k, p) be the set of matrices in B(n) whose whose first row has sum p and last
column has sum k. Similarly, let SM(n, k, p) be the set of matrices in SM(n) whose first
row has sum k and center column has sum p.

Theorem 4. For n > 1, there is a bijection β between SM(n) and B(n). Moreover, the
map β is essentially a bijection between SM(n, k, p) and B(n, k, p).

Proof. Given a nonempty triangular matrix A ∈ SM(n) of dimension 2k + 1, we recur-
sively construct a sequence of super triangular matrices A(0), A(1), . . . , A(l). Let A(0) = A
and assume that we have obtained the matrix A(j). Let A(j) be a super triangular matrix
of dimension 2r + 1 for some integer r. For 1 6 i 6 r, if each column r + 1 + i is zero,
then let A(l) = A(j). Otherwise, we proceed to generate the matrix A(j+1) by the following
insertion algorithm.

• Find the largest value i such that column r + 1 + i contains a nonzero entry. Then
fill the entries of column r + 1 + i with zeros.

• Insert one column immediately after column r + 1 − i, one zero row immediately
after row r + 1 − i, one zero column immediately before column r + 1 + i and one
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zero row immediately before row r+1+ i. Let the entry in row j of the new inserted
column after column r + 1− i be filled with the entry in row j of column r + 1 + i
of A(j) for 1 6 j 6 2r + 1.

Suppose that A(l) is of dimension 2q+1. Then the last q rows and q columns of A(l) are zero
rows and columns. Let B be an upper-triangular matrix obtained from A(l) by deleting
the last q columns and q rows. From the above insertion procedure to generate A(j+1)

form A(j), we see that the inserted column after column r+1− i contains a nonzero entry.
This ensures that each matrix A(j) has property (a) with 0 6 j 6 l. Hence each column i
of A(l) contains a nonzero entry with 1 6 i 6 q. Hence, B is an upper-triangular matrix
in which each column contains a nonzero entry except for the last column. Moreover, the
insertion algorithm preserves the sum of each nonzero row of A, which implies that B is
of size n. Let β(A) be the dual matrix of B. Hence we have β(A) ∈ B(n).

Conversely, we can construct a matrix A = β′(A′) in SM(n) from a matrix A′ of
dimension k + 1 in B(n). Let B be the dual matrix of A′. Define M to be a matrix of
dimension 2k + 1 obtained from B by adding k consecutive zero rows and k consecutive
zero columns immediately after column k+ 1 and row k+ 1. Clearly, the obtained matrix
is a super triangular matrix having property (a). If for all 1 6 i 6 k, either row k+ 1− i
or column k + 1 + i contains a nonzero entry, then we do nothing for M and let A = M .
Otherwise, we can construct a new super triangular matrix A by the following removal
algorithm.

• Find the least value i such that neither row k+ 1− i nor column k+ 1 + i contains a
nonzero entry. Then we obtain a super triangular matrix by adding column k+1− i
to column k + 2 + i and removing columns k + 1 + i, k + 1− i and rows k + 1− i,
k + 1 + i.

• Repeat the above procedure for the resulting matrix until the obtained matrix has
property (b).

Obviously, the obtained matrix A is a super triangular matrix having properties (a) and
(b). Since the algorithm preserves the sums of entries in each non-zero row of B, the
matrix A is of size n and the sum of the first row of A is the same as that of B. The
property (b) ensures that the inserted columns in the insertion algorithm are the removed
columns in the removal algorithm. Thus the map β′ is the inverse of the map β. From the
construction of the removal algorithm, the sum of the center column of A is equal to the
sum of the last column of B as well as the the sum of the first row of A′. This completes
the proof.

Example 5. Consider a matrix A ∈ SM(6),

A =


1 0 0 1 1
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
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Let A(0) = A. By applying the insertion algorithm, we get

A(1) =



1 1 0 0 1 0 0
0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

A(2) =



1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

where the inserted rows and columns are illustrated in bold at each step of the insertion
algorithm. Removing the last 4 zero rows and 4 zero columns, we get

B =


1 1 0 1 0
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

 .
Finally, we obtain

A′ = β(A) =


0 0 1 0 0
0 0 1 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1


Conversely, given A′ ∈ B(6), by applying removal algorithm, we can get A ∈ SM(6),
where the removed rows and columns are illustrated in bold at each step of the removal
algorithm.

Combining the bijection between self-dual interval orders and self-dual Fishburn ma-
trices and Theorems 2 and 4, we get a bijective proof of (3).

From Theorems 2 and 4, we have

|M(n, k, p)| = |SM(n, k, p)| = |B(n, k, p)|.

Given a matrix M ∈ B(n, k, 0), we can get a matrix A ∈ RM(n, k) by deleting the first
row and the first column. Conversely, given a matrix A′ ∈ RM(n, k), we can obtain a
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matrix M ′ ∈ B(n, k, 0) by inserting a zero row and a zero column before the first row and
the first column. This yields that

|M(n, k, 0)| = |B(n, k, 0)| = |RM(n, k)|. (6)

If p > 0, then B(n, k, p) is the same as RM(n, k, p). Hence, if p > 0 then we have

|M(n, k, p)| = |B(n, k, p)| = |RM(n, k, p)|. (7)

Therefore, we get combinatorial proofs of (1) and (2), in answer to the problem posed by
Jeĺınek [10].

Now we proceed to prove (4). Given a matrix A ∈ EM(n, k) of dimension 2m for some
integers m > 1, let R(A) be its reduced matrix. We obtain a super triangular matrix A′

from A by inserting a zero column and a zero row immediately after column m and row
m. By Lemma 1, we have A′ ∈ SM(n, k, 0).

Conversely, given a matrix A′ ∈ SM(n, k, 0) of dimension 2m + 1 for some integer
m > 1, we can recover a self-dual matrix A ∈ EM(n, k) as follows. First, we get a super
triangular matrix B from A′ by deleting column m+ 1 and row m+ 1. Let A be a matrix
with B = R(A). Obviously, we have the matrix A ∈ EM(n, k). Hence, we get that
|EM(n, k)| = |SM(n, k, 0)|. By (6), we deduce that

|EM(n, k)| = |SM(n, k, 0)| = |RM(n, k)|. (8)

From (6) and (7), we obtain that

|M(n, k)| = |M(n, k, 0)|+
∑

p>1 |M(n, k, p)|
= |RM(n, k)|+

∑
p>1 |RM(n, k, p)|

= 2|RM(n, k)|.

Meanwhile, we have |M(n, k)| = |EM(n, k)|+ |OM(n, k)|. Hence, (4) follows from (8).
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