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Abstract

A graph G is (Kq, k) stable if it contains a copy of Kq after deleting any subset
of k vertices. In a previous paper we have characterized the (Kq, k) stable graphs
with minimum size for 3 6 q 6 5 and we have proved that the only (Kq, k) stable
graph with minimum size is Kq+k for q > 5 and k 6 3. We show that for q > 6 and
k 6 q

2 + 1 the only (Kq, k) stable graph with minimum size is isomorphic to Kq+k.

1 Introduction

For terms not defined here we refer to [1]. As usually, the order of a graph G is the
number of its vertices (it is denoted by |G|) and the size of G is the number of its edges
(it is denoted by e(G)). The degree of a vertex v in a graph G is denoted by dG(v), or
simply by d(v) if no confusion is possible. For any set S of vertices, we denote by G− S
the subgraph induced by V (G) − S. If S = {v} we write G − v for G − {v}. When e is
an edge of G we denote by G − e the spanning subgraph (V (G), E − {e}). The disjoint
union of two graphs G1 and G2 is denoted by G1 + G2. The union of p mutually disjoint
copies of a graph G is denoted by pG. A complete subgraph of order q of G is called a
q-clique of G. The complete graph of order q is denoted by Kq. When a graph G contains
a q-clique as subgraph, we say “G contains a Kq”.

∗The research of APW was partially sponsored by polish Ministry of Science and Higher Education.
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In [5] Horvárth and Katona consider the notion of (H, k) stable graph: given a simple
graph H, an integer k and a graph G containing H as subgraph, G is a a (H, k) stable
graph whenever the deletion of any set of k edges does not lead to a H-free graph. These
authors consider (Pn, k) stable graphs and prove a conjecture stated in [4] on the minimum
size of a (P4, k) stable graph. In [2], Dudek, Szymański and Zwonek are interested in a
vertex version of this notion and introduce the (H, k) vertex stable graphs.

Definition 1.1 Let H be a graph and k be a natural number. A graph G of order at least
k is said to be a (H, k) vertex stable graph if for any set S of k vertices the subgraph
G− S contains a graph isomorphic to H.

In this paper, since no confusion will be possible, a (H, k) vertex stable shall be simply
called a (H, k) stable graph. By Q(H, k) we denote the size of a minimum (H, k) stable
graph. It is clear that if G is a (H, k) stable graph with minimum size then the graph
obtained from G by addition or deletion of some isolated vertices is also minimum (H, k)
stable. Hence we shall assume that all the graphs considered in the paper have no isolated
vertices. A (H, k) stable graph with minimum size shall be called a minimum (H, k) stable
graph.

Lemma 1.2 [2] Let q and k be integers, q > 2, k > 1. If G is (H, k) stable then, for
every vertex v of G, the graph G− v is (H, k − 1) stable.

Proposition 1.3 [2] If G is a (H, k) stable graph with minimum size then every vertex
as well as every edge is contained in a subgraph isomorphic to H.

Proof: Let e be an edge of G which is not contained in any subgraph of G isomorphic
to H, then G− e would be a (H, k) stable graph with less edges than G, a contradiction.
Let x be a vertex of G and e be an edge of G incident with x, since e is an edge of some
subgraph isomorphic to H, say H0, the vertex x is a vertex of H0. �

2 Preliminary results

We are interested in minimum (Kq, k) stable graphs (where q and k are integers such
that q > 2 and k > 0). As a corollary to Proposition 1.3, every edge and every vertex
of a minimum (Kq, k) stable graph is contained in a Kq (thus the minimum degree is at
least q − 1). Note that, for q > 2 and k > 0, the graph Kq+k is (Kq, k) stable, hence
Q(Kq, k) 6

(
q+k
2

)
.

Definition 2.1 Let H be a non complete graph on q + t vertices (t > 1). We shall say
that H is a near complete graph when it has a vertex v such that

• H − v is complete.

• dH(v) = q + r with −1 6 r 6 t− 2.
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The previous definition generalizes Definition 1.5 in [3] initially given for r ∈ {−1, 0, 1}
and the following lemma generalizes Proposition 2.1 in [3].

Lemma 2.2 Every minimum (Kq, k) stable graph G, where q > 3 and k > 1, has no
component H isomorphic to a near complete graph.

Proof: Suppose, contrary to our claim, that G has such a component H and let v be
the vertex of H such that H − v is a clique of G. Then |H| = q + t, with t > 1, and
q− 1 6 d(v) = q + r 6 q + t− 2. Since G is minimum (Kq, k) stable, G− v is (Kq, k− 1)
stable and is not (Kq, k) stable. Then G − v contains a set S with at most k vertices
intersecting every subgraph of G− v isomorphic to a Kq. The graph G−S contains some
Kq (at least one) and clearly every subgraph of G − S isomorphic to a Kq contains v.
Since N(v) is a Kq+r and N(v)−S contains no Kq, |N(v)−S| 6 q− 1. Since there exists
a Kq containing v in H − S, |N(v) − S| = q − 1 (and hence |S ∩ N(v)| = r + 1). Since
H−v−S contains no Kq, H−v−S = N(v)−S. Let a be a vertex of H−v not adjacent
to v and let b be a vertex in N(v)−S, and consider S

′
= S−{a}+{b}. We have | S ′ |6 k

and G− S
′

contains no Kq, a contradiction. �

It is clear that Q(Kq, 0) =
(
q
2

)
and the only minimum (Kq, 0) stable graph is Kq. It is an

easy exercise to see that Q(K2, k) = k + 1 and that the matching (k + 1)K2 is the unique
minimum (K2, k) stable graph.

Theorem 2.3 [3] Let G be a minimum (Kq, k) stable graph, with k > 0 and 3 6 q 6 5.
Then G is isomorphic to sK2q−2 + tK2q−3, for any choice of s and t such that s(q − 1) +
t(q − 2) = k + 1.

In [3] it was proved that if q > 4 and k ∈ {1, 2} then Q(Kq, k) =
(
q+k
2

)
and the

only minimum (Kq, k) stable graph is Kq+k. We have proved also that if q > 5 then
Q(Kq, 3) =

(
q+3
2

)
and the only minimum (Kq, 3) stable graph is Kq+3. Dudek, Szymański

and Zwonek proved the following result.

Theorem 2.4 [2] For every q > 4, there exists an integer k(q) such that Q(Kq, k) 6
(2q − 3)(k + 1) for k > k(q).

As a consequence of this last result, they have deduced that for every k > k(q) Kq+k is
not minimum (Kq, k) stable.

Remark 2.5 From now on, throughout this section we assume that q and k are integers
such that q > 4, k > 1 and for every r such that 0 6 r < k we have Q(Kq, r) =

(
q+r
2

)
and

the only minimum (Kq, r) stable graph is Kq+r.

In view of Theorem 2.4, k is bounded from above and we are interested in obtaining the
greatest possible value of k.

Lemma 2.6 Let G be a (Kq, k) stable graph such that e(G) 6
(
q+k
2

)
. Then either for

every vertex v we have d(v) 6 q + k − 2 or G is isomorphic to Kq+k.
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Proof: Suppose that some vertex v has degree at least q + k − 1. By Lemma 1.2 the
graph G − v is (Kq, k − 1) stable, hence Q(Kq, k − 1) 6 e(G − v) = e(G) − d(v). Since
Q(Kq, k − 1) =

(
q+k−1

2

)
, we have(

q+k−1
2

)
6 e(G)− d(v) 6

(
q+k
2

)
− (q + k − 1) =

(
q+k−1

2

)
.

It follows that e(G− v) =
(
q+k−1

2

)
, G− v is isomorphic to Kq+k−1 and d(v) = q + k − 1.

Hence, G is isomorphic to Kq+k. �

Lemma 2.7 Let G be a minimum (Kq, k) stable graph. Then one of the following state-
ments is true

• G has no component isomorphic to Kq ,

• Q(Kq, k − 1) +
(
q
2

)
6 Q(Kq, k).

Proof: Suppose that some component H of G is isomorphic to a Kq. If G − H is not
(Kq, k − 1) stable, then there is a set S with at most k − 1 vertices intersecting each Kq

of G − H. Then, for any vertex a of H, S + a intersects each Kq of G while S has at
most k − 1 vertices, a contradiction. Hence G − H is (Kq, k − 1) stable and we have
Q(Kq, k − 1) 6 e(G−H) = Q(Kq, k)−

(
q
2

)
. �

Lemma 2.8 [3] Let G be a minimum (Kq, k) stable graph and let u be a vertex of degree
q − 1. Then one of the following statements is true

• ∀v ∈ N(u) d(v) > q + 1 ,

• Q(Kq, k − 1) + 3(q − 2) 6 Q(Kq, k).

Proof: By Proposition 1.3, since d(u) = q − 1, {u} ∪N(u) induces a complete graph on
q vertices. Assume that some vertex w ∈ N(u) has degree q + r where r = −1 or r = 0,
and let v be a neighbour of u distinct from w. Since the degree of u in G− v is q − 2, no
edge incident with u can be contained in a Kq of G− v. Since G− v is (Kq, k− 1) stable,
we can delete the q − 2 edges incident with u in G− v and the resulting graph G′ is still
(Kq, k − 1) stable. By deleting v, we have e(G− v) 6 e(G)− (q − 1) and hence

e(G
′
) 6 e(G)− (q − 1)− (q − 2).

In G′, the degree of w is now q + r − 2. Hence, no edge incident with w in G′ can be
contained in a Kq. Deleting these q + r − 2 edges from G′ leads to a graph G” which
remains to be (Kq, k − 1) stable. We get thus

Q(Kq, k − 1) 6 e(G
′′
) 6 e(G)− (q − 1)− (q − 2)− (q + r − 2).

Since e(G) 6 Q(Kq, k), the result follows. �
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Lemma 2.9 Let G be a minimum (Kq, k) stable graph, where 1 6 k 6 2q − 6, and let v
be a vertex of degree q − 1. Then for every vertex w ∈ N(v) we have d(w) > q + 1.

Proof: Suppose, contrary to the assertion of the lemma, that d(w) 6 q for some ver-
tex w ∈ N(v). By Lemma 2.8, we have Q(Kq, k − 1) + 3(q − 2) 6 Q(Kq, k). Since
Q(Kq, k− 1) =

(
q+k−1

2

)
and Q(Kq, k) 6

(
q+k
2

)
we have

(
q+k−1

2

)
+ 3q− 6 6

(
q+k
2

)
. Then we

obtain k > 2q − 5, a contradiction. �

Lemma 2.10 Let G be a minimum (Kq, k) stable graph, where q > 5 and 1 6 k 6 q− 1.
Then the minimum degree of G is at least q.

Proof: Suppose that there is a vertex v of degree q − 1 and let w be a neighbour
of v. Since q − 1 6 2q − 6, by Lemma 2.9, w has degree at least q + 1. By Lemma
1.2 the graph G − w is (Kq, k − 1) stable. In that graph v is not contained in any
Kq since its degree is q − 2. Hence G − {w, v} is still (Kq, k − 1) stable. We have
e(G− {w, v}) = e(G)− (d(v) + d(w)− 1) 6 e(G)− 2q + 1. Since Q(Kq, k − 1) =

(
q+k−1

2

)
and Q(Kq, k) 6

(
q+k
2

)
we have

(
q+k−1

2

)
6 e(G)− 2q + 1 6

(
q+k
2

)
− 2q + 1. It follows that

k > q, a contradiction. �

Lemma 2.11 Let G be a minimum (Kq, k) stable graph, where q > 5 and 1 6 k 6 q− 1,
and let v be a vertex of degree q. Then the subgraph induced by N(v) is complete.

Proof: Suppose not, and assume that N(v) contains two nonadjacent vertices a and b.
Let w ∈ N(v) distinct from a and b (w must exist since q > 3). By Lemma 1.2 the graph
G− w is (Kq, k − 1) stable. In that graph v is not contained in a Kq since its two neigh-
bours a and b are not adjacent. Hence G − {w, v} is still (Kq, k − 1) stable. By Lemma
2.10, d(w) > q and hence e(G− {w, v}) = e(G)− (d(v) + d(w)− 1) 6 e(G)− 2q + 1. We
have, as in the proof of Lemma 2.10,

(
q+k−1

2

)
6 e(G) − 2q + 1 6

(
q+k
2

)
− 2q + 1, and we

obtain k > q, a contradiction. �

Lemma 2.12 Let G be a minimum (Kq, k) stable graph, where q > 5 and 2 6 k 6 q
2

+ 1,
and let v be a vertex of degree at least q + 1. Then either N(v) induces a complete graph
or there exists an ordering v1, . . . , vd(v) of the vertices of N(v) such that {v1, . . . , vq−1}
induces a complete graph and vd(v)−1vd(v) is not in E(G). Moreover, there exists a vertex
w in {v1, . . . , vq−1} adjacent to vd(v)−1 and vd(v).

Proof: Suppose that the subgraph induced by N(v) is not complete and let a and b be
two nonadjacent neighbours of v.

Claim 2.12.1 N(v)− {a, b} contains a Kq−1.
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Proof of Claim: Let us suppose first that d(a) = q (or d(b) = q). Hence, by Lemma 2.11,
N(a) induces a Kq+1. Since v ∈ N(a) and b 6∈ N(a), N(v) − {a, b} contains a Kq−1 as
claimed. Hence we can assume now that d(a) > q + 1 and d(b) > q + 1. Suppose for
contradiction that every Kq−1 in N(v) intersects {a, b}, that is, there is no Kq containing v
in G−{a, b}. Since the graph G−{a, b} is (Kq, k−2) stable, the graph G−{a, b, v} is still
(Kq, k−2) stable. Then e(G−{a, b, v}) = e(G)− (d(v)+d(a)+d(b)−2) 6 e(G)−3q−1
and hence Q(Kq, k − 2) 6 e(G − {a, b, v}) 6 e(G) − 3q − 1 = Q(Kq, k) − 3q − 1. Since
Q(Kq, k−2) =

(
q+k−2

2

)
and Q(Kq, k) 6

(
q+k
2

)
, we have

(
q+k−2

2

)
6

(
q+k
2

)
−3q−1 and hence

q
2

+ 2 6 k, a contradiction to k 6 q
2

+ 1. �

Thus, we can order the vertices of N(v) in such a way that the q−1 first ones v1, . . . , vq−1
induce a complete graph and the two last vertices vd(v)−1 and vd(v) are not adjacent, as
claimed.
Set d(v) = q+r with r > 1. By Proposition 1.3, the edges vvq+r−1 and vvq+r are contained
in two distinct q-cliques, say Q1 and Q2. Since vq+r−1 and vq+r are not adjacent, each
Qi contains at most r vertices in N(v) − {v1, . . . , vq−1} and at least q − r + 1 vertices
in {v1, . . . , vq−1}. Since N(v) is not complete and e(G) 6

(
q+k
2

)
, by Lemma 2.6 we have

d(v) 6 q + k − 2, and hence r 6 k − 2. Since k 6 q
2

+ 1, Q1 (as well as Q2) has at least
q − r + 1 > q − k + 3 > q

2
vertices in {v1, . . . , vq−1}. Hence Q1 and Q2 have at least one

common vertex w in {v1, . . . , vq−1}, and the Lemma follows. �

Lemma 2.13 Let G be a minimum (Kq, k) stable graph, where q > 5 and 2 6 k 6 q
2

+ 1,
and let H be a component of G. Then either H is complete or for every vertex v of
maximum degree in H the subgraph induced by N(v) contains no complete subgraph on
d(v)− 1 vertices.

Proof: Assume that H is not complete.

Claim 2.13.1 The maximum degree in H is at least q + 1.

Proof of Claim: If the minimum degree in H is at least q + 1, we are done. If there exists
a vertex u of degree q − 1 in H then, by Lemma 2.9, the degree of any vertex of N(u)
is at least q + 1. If there exists a vertex u of degree q then, by Lemma 2.11, N(u) ∪ {u}
induces a Kq+1. Since H is connected, there exists a vertex in H − (N(u) ∪ {u}) having
at least one neighbour w in N(u), and clearly d(w) > q + 1. �

Let v be a vertex of maximum degree in H and set d(v) = q + r, with k > 1. Since H
is not complete, the subgraph induced on N(v) is not complete. By Lemma 2.12, there
exists an ordering {v1 . . . vq+r} of the vertices of N(v) such that {v1, . . . , vq−1} induces a
complete graph and vq+r−1vq+r is not an edge of G. Suppose that the subgraph induced by
N(v) contains a complete subgraph on q+ r− 1 vertices. Then, without loss of generality
we may suppose that {v1, . . . , vq+r−2, vq+r−1} induces a complete graph. Let us denote by
A the set of neighbours of vq+r in N(v).
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Claim 2.13.2 |A| > q − 2, every vertex in A has degree q + r and has no neighbour
outside N(v) ∪ {v}.

Proof of Claim: Since G is a minimum (Kq, k) stable graph, by Proposition 1.3, the
edge vvq+r must be contained in a Kq. Hence vq+r has at least q − 2 neighbours in
{v1, . . . , vq+r−2}. Since the subgraph induced by (N(v)−{vq+r}) is complete, every vertex
a in A is adjacent to every vertex in (N(v) − {a}) ∪ {v}. Then d(a) = q + r, i.e. a has
maximum degree in H. Hence, no vertex in A has a neighbour outside N(v) ∪ {v}, and
the Claim follows. �

By Lemma 2.2, the (q+r)-clique (N(v)−{vq+r})∪{v} is a proper subgraph of H−{vq+r}.
Since H is connected, there exists a vertex w outside N(v) ∪ {v} adjacent to a vertex u
in N(v). Let us denote by B the set of neighbours of w in N(v). Since the edge uw is
contained in a Kq by Proposition 1.3, w must have at least q − 2 common neighbours
with u in N(v), and hence |B| > q−1. Since by Claim 2.13.2 A has no neighbour outside
N(v) ∪ {v}, A and B are disjoint. Then we have 2q − 3 6 |A ∪B| 6 |N(v)| = q + r, and
hence q 6 r+3. Since r 6 k−2 by Lemma 2.6, we obtain q 6 k+1 6 q

2
+2, that is q 6 4,

a contradiction. Hence, the subgraph induced by the vertices {v1, . . . , vq+r−2, vq+r−1} is
not complete, and the Lemma follows. �

Proposition 2.14 Let G be a minimum (Kq, k) stable graph, where q > 5 and 2 6 k 6
q
2

+ 1. Then every component of G is a complete graph.

Proof: Let H be a component of G and v be a vertex of maximum degree in H. If
the subgraph induced on N(v) is complete then H is obviously complete. We can thus
assume that N(v) is not a clique. By Lemmas 2.10 and 2.11, the minimum degree is at
least q + 1, and hence d(v) = q + r with r > 1.

Claim 2.14.1 The graph G− (N(v) ∪ {v}) is (Kq, k − r) stable.

Proof of Claim 2.14.1: By Lemma 2.12, we can consider an ordering v1, . . . , vq+r of N(v)
such that the set {v1, . . . , vq−1} induces a Kq−1, vq+r−1vq+r 6∈ E(G) and there is a ver-
tex w ∈ {v1, . . . , vq−1} adjacent to vq+r−1 and vq+r. By Lemma 2.13, we can find two
nonadjacent vertices a and b in N(v) − {vq+r} and two nonadjacent vertices c and d in
N(v)− {vq+r−1}. Let us note that since the set {v1, . . . , vq−1} induces a complete graph,
it contains at most one vertex of the set {a, b} and at most one vertex of {c, d}. Then,
|{v1, . . . , vq−1} ∩ {w, a, b, c, d}| 6 3.
Since H is not complete, the graph G is not complete and by Lemma 2.6 we have r 6 k−2.
Since k 6 q

2
+ 1 and q > 6, there exists a subset A ⊆ {v1 . . . vq−1} such that

• |A| = r ,

• w 6∈ A ,

• A ∩ {a, b, c, d} = ∅.
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By repeated applications of Lemma 1.2, the graph G1 obtained from G by deleting A is
(Kq, k − r) stable. In G1, the degree of v is equal to q.
Without loss of generality, suppose that a is distinct from vq+r−1 and c is distinct from
vq+r. If there exists a q-clique in G1 containing the edge vvq+r−1 then {v1, . . . , vq+r−2}−A
is a (q − 2)-clique containing a. Since ab is not an edge, we must have b = vq+r−1,
a contradiction to the fact that avq+r−1 is an edge. Thus, there is no q-clique in G1

containing vvq+r−1. Analogously, we prove that there is no q-clique in G1 containing
vvq+r.
Hence, the graph G2 obtained from G1 by deletion of the edges vvq+r−1 and vvq+r is still
(Kq, k − r) stable. In G2, v has degree q − 2, so it is not contained in any Kq. We can
thus delete v and we get a (Kq, k − r) stable graph G3.
Since the maximum degree in G is q+r, the degree of w in G3 is at most q−1. Recall that
w is adjacent to the two nonadjacent vertices vq+r−1 and vq+r. Hence w is not contained
in any Kq of G3, which means that G4 = G3−w is still (Kq, k−r) stable. Since the degree
of each vertex in {v1, . . . , vq−1} − (A∪ {w}) is at most q− 2 in G4, none of these vertices
can be contained in any Kq of G4. Hence by deletion of these vertices we get again a
(Kq, k − r) stable graph G5. We shall prove that none of the r + 1 vertices vq, . . . , vq+r is
contained in a Kq of G5.
Note that G5 = G − {v, v1, . . . , vq−1}. For q 6 j 6 q + r, denote by dj the degree of the
vertex vj in the subgraph induced by {vq, . . . , vq+r}. Clearly we have 0 6 dj 6 r. In G,
by Proposition 1.3, the edge vvj is contained in a Kq. Hence vj is adjacent (in G) to at
least q − 2 − dj vertices in {v1, . . . , vq−1}. Since we have deleted the vertex v and the
vertices v1, . . . , vq−1, we have thus dG5(vj) 6 q + r − (q − 2 − dj) − 1 = r + 1 + dj. If
dj 6 r − 1 then dG5(vj) 6 2r 6 2(k − 2) 6 q − 2 and there is no Kq in G5 containing
vj. The equality dG5(vj) = q − 1 can only be obtained when dj = r, that is vj has r
neighbours in vq . . . vq+r. Since vq+r−1 and vq+r are not adjacent, vj is not contained in
any Kq of G5.

Hence, the graph G6 = G− (N(v)∪ {v}) obtained from G5 by deletion of all the vertices
vq, vq+1 . . . , vq+r is still (Kq, k − r) stable, and the Claim follows. �

Claim 2.14.2(
q + k − r

2

)
+ q + r +

(
q − 1

2

)
+

1

2
(r + 1)(2q − r − 2) + 1 6

(
q + k

2

)
(1)

Proof of Claim: 2.14.2 To get back G from G− (N(v) ∪ {v}) we add, at least

• the q + r edges incident with v,

• the
(
q−1
2

)
edges of the (q − 1)-clique induced by the set {v1, . . . , vq−1},

• the edges incident with {vq, . . . , vq+r} and not incident with v.

Let l be the number of edges incident with vq, . . . , vq+r, and not incident with v.
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We have

e(G− (N(v) ∪ {v})) + q + r +

(
q − 1

2

)
+ l 6 e(G) (2)

In order to find a lower bound of the number of edges incident with the vertices vq, . . . , vq+r,
for each i ∈ {q, . . . , q + r} let us denote by di the degree of the vertex vi in the subgraph
induced by the set {vq, . . . , vq+r}. Then,

l =
1

2
Σq+r

i=q di + Σq+r
i=q (dG(vi)− 1− di) = Σq+r

i=q dG(vi)− (r + 1)− 1

2
Σq+r

i=q di.

Since by Lemma 2.10 the minimum degree in G is at least q, we have

l > q(r + 1)− (r + 1)− 1

2
Σq+r

i=q di.

Since for every i in {q, . . . , q + r− 2} di 6 r, dq+r−1 6 r− 1 and dq+r 6 r− 1, we obtain

l > q(r + 1)− (r + 1)− 1

2
r(r − 1)− (r − 1),

and hence

l >
1

2
(r + 1)(2q − r − 2) + 1.

By the assumption made at the beginning of the section (see Remark 2.5), a minimum
(Kq, k− r) stable graph has

(
q+k−r

2

)
edges. Since e(G) 6

(
q+k
2

)
, the inequality (1) follows

from Claim 2.14.1 and the inequality (2). This proves the Claim. �

A simple calculation shows that the inequality

q2 + q + 2 6 2kr

can be obtained by starting from the inequality (1).
Since r 6 k − 2 and k 6 q

2
+ 1, we have q2 + q + 2 6 2k(k − 2) 6 (q + 2)( q

2
− 1), hence

q2

2
+ q + 4 6 0, a contradiction. Thus, N(v) is a clique and the Proposition follows. �

3 Result

In [3], it is shown that if G is minimum (Kq, k) stable and the numbers k and q satisfy
one of the following conditions:

• k = 1 and q > 4

• k = 2 and q > 4

• k = 3 and q > 5

then G is isomorphic to Kq+k.
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Theorem 3.1 Let G be a minimum (Kq, k) stable graph, where q > 6 and k 6 q
2

+ 1.
Then G is isomorphic to Kq+k.

Proof: For 0 6 k 6 3 the graph G is isomorphic to Kq+k. Let k be such that 4 6 k 6 q
2
+1

and suppose that for every r with 0 6 r < k the only minimum (Kq, r) stable graph
is Kq+r. By Proposition 2.14, the graph G is the disjoint union of p complete graphs
H1 ≡ Kq+k1 , H2 ≡ Kq+k2 , · · · , Hp ≡ Kq+kp . Suppose, without loss of generality, that
k1 > k2 > · · · > kp > 0 and that there exist two components Hi and Hj with i < j such
that ki − kj > 2. By substituting H ′i ≡ Kq+ki−1 for Hi and H ′j ≡ Kq+kj+1 for Hj, we
obtain a new (Kq, k) stable graph G′ such that e(G′) = e(G)− (ki−kj−1) < e(G), which
is a contradiction. Thus, for any i and any j, 0 6 |ki − kj| 6 1 (cf [2] Proposition 7).
To conclude that G has a unique component, observe the following facts.

• The graphs 2Kq+l and Kq+2l+1 are both (Kq, 2l + 1) stable, but if 2l + 1 6 q
2

+ 1

then
(
q+2l+1

2

)
< 2

(
q+l
2

)
.

• The graphs Kq+l + Kq+l+1 and Kq+2l+2 are both (Kq, 2l+2) stable but if 2l+2 6 q
2
+1

then
(
q+2l+2

2

)
<

(
q+l+1

2

)
+
(
q+l
2

)
.

�
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[5] I. Horváth and G.Y. Katona, Extremal P4-stable graphs, Discrete Appl. Math. 159
(2011), 1786–1792.

the electronic journal of combinatorics 19(2) (2012), #P50 10


