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Abstract

A graph G is (K, k) stable if it contains a copy of K, after deleting any subset
of k vertices. In a previous paper we have characterized the (K, k) stable graphs
with minimum size for 3 < ¢ < 5 and we have proved that the only (K, k) stable
graph with minimum size is K, for ¢ > 5 and k < 3. We show that for ¢ > 6 and
k <2 +1 the only (K, k) stable graph with minimum size is isomorphic to Kgp.

1 Introduction

For terms not defined here we refer to [1]. As usually, the order of a graph G is the
number of its vertices (it is denoted by |G|) and the size of G is the number of its edges
(it is denoted by e(G)). The degree of a vertex v in a graph G is denoted by dg(v), or
simply by d(v) if no confusion is possible. For any set S of vertices, we denote by G — S
the subgraph induced by V(G) — S. If S = {v} we write G — v for G — {v}. When e is
an edge of G we denote by G — e the spanning subgraph (V(G), E — {e}). The disjoint
union of two graphs GG; and G5 is denoted by G 4+ G5. The union of p mutually disjoint
copies of a graph G is denoted by pG. A complete subgraph of order ¢ of G is called a
q-clique of G. The complete graph of order ¢ is denoted by K,. When a graph G contains
a g-clique as subgraph, we say “G contains a K,”.

*The research of APW was partially sponsored by polish Ministry of Science and Higher Education.

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(2) (2012), #P50 1



In [5] Horvarth and Katona consider the notion of (H,k) stable graph: given a simple
graph H, an integer k and a graph G containing H as subgraph, G is a a (H, k) stable
graph whenever the deletion of any set of k£ edges does not lead to a H-free graph. These
authors consider (P,, k) stable graphs and prove a conjecture stated in [4] on the minimum
size of a (Py, k) stable graph. In [2], Dudek, Szymanski and Zwonek are interested in a
vertex version of this notion and introduce the (H, k) vertex stable graphs.

Definition 1.1 Let H be a graph and k be a natural number. A graph G of order at least
k is said to be a (H,k) vertex stable graph if for any set S of k wvertices the subgraph
G — S contains a graph isomorphic to H.

In this paper, since no confusion will be possible, a (H, k) vertex stable shall be simply
called a (H, k) stable graph. By Q(H, k) we denote the size of a minimum (H, k) stable
graph. It is clear that if G is a (H, k) stable graph with minimum size then the graph
obtained from G by addition or deletion of some isolated vertices is also minimum (H, k)
stable. Hence we shall assume that all the graphs considered in the paper have no isolated
vertices. A (H, k) stable graph with minimum size shall be called a minimum (H, k) stable
graph.

Lemma 1.2 [2] Let q and k be integers, q > 2,k > 1. If G is (H,k) stable then, for
every vertex v of G, the graph G — v is (H,k — 1) stable.

Proposition 1.3 [2] If G is a (H, k) stable graph with minimum size then every vertex
as well as every edge is contained in a subgraph isomorphic to H.

Proof: Let e be an edge of G which is not contained in any subgraph of G isomorphic
to H, then G — e would be a (H, k) stable graph with less edges than G, a contradiction.
Let = be a vertex of G and e be an edge of (G incident with x, since e is an edge of some
subgraph isomorphic to H, say Hy, the vertex x is a vertex of Hj. 0

2 Preliminary results

We are interested in minimum (K, k) stable graphs (where ¢ and k are integers such
that ¢ > 2 and k£ > 0). As a corollary to Proposition 1.3, every edge and every vertex
of a minimum (K, k) stable graph is contained in a K, (thus the minimum degree is at
least ¢ — 1). Note that, for ¢ > 2 and k£ > 0, the graph K, is (K, k) stable, hence

QUK. k) < (137).

Definition 2.1 Let H be a non complete graph on q + t vertices (t > 1). We shall say
that H is a near complete graph when it has a vertex v such that

e H — v is complete.

o dy(v)=q+r with =1 <r <t—2.
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The previous definition generalizes Definition 1.5 in [3] initially given for r € {—1,0,1}
and the following lemma generalizes Proposition 2.1 in [3].

Lemma 2.2 Every minimum (K, k) stable graph G, where ¢ > 3 and k > 1, has no
component H isomorphic to a near complete graph.

Proof:  Suppose, contrary to our claim, that G has such a component H and let v be
the vertex of H such that H — v is a clique of G. Then |H| = ¢ +t, with ¢ > 1, and
¢g—1<d(v)=qg+r<g+t—2. Since G is minimum (K, k) stable, G —v is (K,,k—1)
stable and is not (K, k) stable. Then G — v contains a set S with at most k vertices
intersecting every subgraph of G — v isomorphic to a K,. The graph G — S contains some
K, (at least one) and clearly every subgraph of G — S isomorphic to a K, contains v.
Since N(v) is a K4, and N(v) — S contains no K, |[N(v) — S| < ¢— 1. Since there exists
a K, containing v in H — 5, [N(v) — S| = ¢ — 1 (and hence |S N N(v)| =7+ 1). Since
H —v— S contains no K,, H—v—S = N(v)—S. Let a be a vertex of H —v not adjacent
to v and let b be a vertex in N(v)— .S, and consider S' = S — {a}+ {b}. We have | S" |< k
and G — S contains no K,, a contradiction. O

It is clear that Q(K,,0) = () and the only minimum (K, 0) stable graph is K. It is an
easy exercise to see that Q(Ks, k) = k+ 1 and that the matching (k4 1) K3 is the unique

minimum (K5, k) stable graph.

Theorem 2.3 [3] Let G be a minimum (K, k) stable graph, with k > 0 and 3 < ¢ < 5.
Then G is isomorphic to sKoy_o + tKs,_3, for any choice of s and t such that s(¢ — 1) +
tlg—2)=k+1.

In [3] it was proved that if ¢ > 4 and k € {1,2} then Q(K, k) = (“I*) and the
only minimum (K, k) stable graph is K ;. We have proved also that if ¢ > 5 then
Q(K,,3) = (q;?’) and the only minimum (K, 3) stable graph is K ;3. Dudek, Szymariski
and Zwonek proved the following result.

Theorem 2.4 [2] For every q > 4, there exists an integer k(q) such that Q(K, k) <
(2¢g —3)(k+ 1) for k = k(q).

As a consequence of this last result, they have deduced that for every k > k(q) Ky is
not minimum (K, k) stable.

Remark 2.5 From now on, throughout this section we assume that q and k are integers
such that ¢ > 4, k > 1 and for every r such that 0 < r < k we have Q(K,, 1) = (q;rr) and
the only minimum (K,,r) stable graph is K 4.

In view of Theorem 2.4, k is bounded from above and we are interested in obtaining the
greatest possible value of k.

Lemma 2.6 Let G be a (K, k) stable graph such that e(G) < (q;k). Then either for

every vertex v we have d(v) < g+ k — 2 or G is isomorphic to K.
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Proof:  Suppose that some vertex v has degree at least ¢ + k£ — 1. By Lemma 1.2 the
graph G — v is (K , k — 1) stable, hence Q(K,, k — 1) < e(G —v) = e(G) — d(v). Since
Q(K,k—1)= (q+§_1), we have

("57) <e(@) —d(v) < (1) = (a+ k-1 = ("),
It follows that (G —v) = (“*57"), G — v is isomorphic to K141 and d(v) = ¢+ k — 1.

Hence, G is isomorphic to K. 0

Lemma 2.7 Let G be a minimum (K, k) stable graph. Then one of the following state-
ments 18 true

e G has no component isomorphic to K, ,
o Q(Kyk—1)+ (9) < QK k).

Proof: Suppose that some component H of GG is isomorphic to a K,. If G — H is not
(K4, k — 1) stable, then there is a set S with at most k — 1 vertices intersecting each K,
of G — H. Then, for any vertex a of H, S + a intersects each K, of G while S has at
most k — 1 vertices, a contradiction. Hence G — H is (K, k — 1) stable and we have
Q(Kgk—1) <e(G— H) = Q(Ky, k) — (7). =

Lemma 2.8 [3] Let G be a minimum (K, k) stable graph and let u be a vertex of degree
q — 1. Then one of the following statements is true

e Yve N(u) dv)=2q+1,
hd Q(Kmk_ 1) +3(q_2) < Q(Kmk)

Proof: By Proposition 1.3, since d(u) = ¢ — 1, {u} U N(u) induces a complete graph on
q vertices. Assume that some vertex w € N(u) has degree ¢ + r where r = —1 or r = 0,
and let v be a neighbour of u distinct from w. Since the degree of u in G — v is ¢ — 2, no
edge incident with u can be contained in a K, of G —v. Since G —v is (K, k — 1) stable,
we can delete the ¢ — 2 edges incident with v in G — v and the resulting graph G’ is still
(Ky, k — 1) stable. By deleting v, we have e(G' —v) < e(G) — (¢ — 1) and hence

/

e(G) <e(G)—(g—1) = (¢—2).

In G', the degree of w is now ¢ + r — 2. Hence, no edge incident with w in G’ can be
contained in a K,. Deleting these ¢ + r — 2 edges from G’ leads to a graph G~ which
remains to be (K, k — 1) stable. We get thus

QEgk—1)<e(G)<e(G)=(¢—1)—(¢—2) = (g +7—-2).

Since e(G) < Q(K,, k), the result follows. O
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Lemma 2.9 Let G be a minimum (K, k) stable graph, where 1 < k < 2q — 6, and let v
be a vertezx of degree ¢ — 1. Then for every verter w € N(v) we have d(w) > q+ 1.

Proof:  Suppose, contrary to the assertion of the lemma, that d(w) < ¢ for some ver-
tex w € N(v). By Lemma 2.8, we have Q(K, k — 1) + 3(¢ —2) < (Kq,k). Since
Q(Kyk—1) = (“"571) and QUK k) < (“£%) we have (“"571) + 3¢ — 6 < (3*). Then we
obtain £ > 2¢q — 5, a contradiction. O

Lemma 2.10 Let G be a minimum (K, k) stable graph, where ¢ > 5 and 1 < k < ¢— 1.
Then the minimum degree of G is at least q.

Proof: ~ Suppose that there is a vertex v of degree ¢ — 1 and let w be a neighbour
of v. Since ¢ — 1 < 2¢ — 6, by Lemma 2.9, w has degree at least ¢ + 1. By Lemma
1.2 the graph G — w is (K, k — 1) stable. In that graph v is not contained in any
K, since its degree is ¢ — 2. Hence G — {w,v} is still (K, k — 1) stable. We have
e(G—A{w,v}) =e(G) — (d(v) + d(w) — 1) < e(G) — 2¢ + 1. Since Q(K,,k—1) = (q“;_l)
and Q(K,, k) < (q;k) we have (qﬂéfl) <e(G)—2¢+1< (q;k) —2q+ 1. It follows that
k > q, a contradiction. O

Lemma 2.11 Let G be a minimum (K,, k) stable graph, where ¢ > 5 and 1 < k < ¢ —1,
and let v be a vertex of degree q. Then the subgraph induced by N(v) is complete.

Proof: Suppose not, and assume that N(v) contains two nonadjacent vertices a and b.
Let w € N(v) distinct from a and b (w must exist since ¢ > 3). By Lemma 1.2 the graph
G —wis (K, k — 1) stable. In that graph v is not contained in a K|, since its two neigh-
bours a and b are not adjacent. Hence G — {w, v} is still (K,, k — 1) stable. By Lemma
2.10, d(w) > q and hence e(G — {w,v}) = e(G) — (d(v) + d(w) — 1) < e(G) —2¢+ 1. We
have, as in the proof of Lemma 2.10, (‘Hk* ) <e(G)—2q+1< (q;k) 2q + 1, and we
obtain k£ > ¢, a contradiction. U

Lemma 2.12 Let G be a minimum (K, k) stable graph, where ¢ =5 and 2 <k < 1+1,
and let v be a vertex of degree at least ¢+ 1. Then either N(v) induces a complete graph

or there exists an ordering vi,...,vqw) of the vertices of N(v) such that {vi,...,v4-1}
induces a complete graph and vyw)—1vaw) is not in E(G). Moreover, there exists a vertex
w in {v,...,v4-1} adjacent to vaw)—1 and vy .

Proof:  Suppose that the subgraph induced by N(v) is not complete and let a and b be
two nonadjacent neighbours of v.

Claim 2.12.1 N(v) — {a, b} contains a K, ;.

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(2) (2012), #P50 5



Proof of Claim: Let us suppose first that d(a) = ¢ (or d(b) = ¢q). Hence, by Lemma 2.11,
N(a) induces a K,1. Since v € N(a) and b ¢ N(a), N(v) — {a,b} contains a K, ; as
claimed. Hence we can assume now that d(a) > ¢+ 1 and d(b) > ¢ + 1. Suppose for
contradiction that every K,_; in N(v) intersects { ,b}, that is, there is no K, containing v
in G—{a,b}. Since the graph G —{a, b} is (K, k—2) stable, the graph G — {a b, v} is still

(K,, k—2) stable. Then e(G—{a,b,v}) :e( ) (d(v)+d(a)+d(b)—2) < e(G)—3q¢—1
and hence Q(K, 2) <e(G—{a,bv}) <e(G)—3¢—1=Q(K, k) —3q — 1. Since
QK k—2) = (q+k 2) and Q(K,, k) < (q+k) we have (qH;_Q) < (q;k) —3¢—1 and hence
142 <k, a contradiction to k < € + 1. 0

Thus, we can order the vertices of N(v) in such a way that the ¢ —1 first ones vy, ..., v,-1
induce a complete graph and the two last vertices vg,)—1 and vg) are not adjacent, as
claimed.

Set d(v) = g+r with r > 1. By Proposition 1.3, the edges vv 4,1 and vv,y, are contained
in two distinct g-cliques, say ); and Q2. Since v44,—; and v,4, are not adjacent, each
(); contains at most r vertices in N(v) — {vy,...,v,-1} and at least ¢ — r + 1 vertices
in {vq,...,v,-1}. Since N(v) is not complete and e(G) < (q+k) by Lemma 2.6 we have
d(v) < ¢+ k —2, and hence r < k — 2. Since k < £ + 1, Q1 (as well as ();) has at least
g—r+1>2q—k+3> % vertices in {vy,...,v,—1}. Hence @1 and () have at least one
common vertex w in {vy,...,v,-1}, and the Lemma follows. O

Lemma 2.13 Let G be a minimum (K, k) stable graph, where ¢ =5 and 2 <k < 1+1,
and let H be a component of G. Then either H is complete or for every verter v of
mazimum degree in H the subgraph induced by N(v) contains no complete subgraph on
d(v) — 1 vertices.

Proof: Assume that H is not complete.
Claim 2.13.1 The maximum degree in H is at least q + 1.

Proof of Claim: If the minimum degree in H is at least ¢ + 1, we are done. If there exists
a vertex u of degree ¢ — 1 in H then, by Lemma 2.9, the degree of any vertex of N(u)
is at least ¢ + 1. If there exists a vertex u of degree ¢ then, by Lemma 2.11, N(u) U {u}
induces a K. Since H is connected, there exists a vertex in H — (N(u) U {u}) having
at least one neighbour w in N(u), and clearly d(w) > ¢ + 1. 0

Let v be a vertex of maximum degree in H and set d(v) = ¢+ r, with £ > 1. Since H
is not complete, the subgraph induced on N(v) is not complete. By Lemma 2.12, there
exists an ordering {v; ... vy, } of the vertices of N(v) such that {v,...,v,-1} induces a
complete graph and vy4,-1v44, is not an edge of G. Suppose that the subgraph induced by
N (v) contains a complete subgraph on ¢+ — 1 vertices. Then, without loss of generality
we may suppose that {vq,...,Vg1r—2, Ugrr—1} induces a complete graph. Let us denote by
A the set of neighbours of v,, in N(v).

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(2) (2012), #P50 6



Claim 2.13.2 |A| > q — 2, every vertex in A has degree ¢ + r and has no neighbour
outside N(v) U {v}.

Proof of Claim: Since G is a minimum (K, k) stable graph, by Proposition 1.3, the
edge vv 4, must be contained in a K,. Hence vy, has at least ¢ — 2 neighbours in
{v1,...,v44r—2}. Since the subgraph induced by (N (v) —{v,4,}) is complete, every vertex
a in A is adjacent to every vertex in (N(v) — {a}) U {v}. Then d(a) = g+ r, i.e. a has
maximum degree in H. Hence, no vertex in A has a neighbour outside N(v) U {v}, and
the Claim follows. O

By Lemma 2.2, the (g+7)-clique (N(v) —{vg+,})U{v} is a proper subgraph of H —{v,4,}.
Since H is connected, there exists a vertex w outside N(v) U {v} adjacent to a vertex u
in N(v). Let us denote by B the set of neighbours of w in N(v). Since the edge uw is
contained in a K, by Proposition 1.3, w must have at least ¢ — 2 common neighbours
with v in N(v), and hence |B| > ¢ — 1. Since by Claim 2.13.2 A has no neighbour outside
N(v)U{v}, A and B are disjoint. Then we have 2g —3 < |[AU B| < |[N(v)| = ¢ +r, and
hence ¢ < r+3. Since r < k—2 by Lemma 2.6, we obtain ¢ < k+1 < %+2, that is ¢ < 4,
a contradiction. Hence, the subgraph induced by the vertices {v1, ..., Vgr—2, Vgtr—1} is
not complete, and the Lemma follows. 0]

Proposition 2.14 Let G be a minimum (K,, k) stable graph, where ¢ > 5 and 2 < k <
1+ 1. Then every component of G is a complete graph.

Proof: Let H be a component of G and v be a vertex of maximum degree in H. If
the subgraph induced on N(v) is complete then H is obviously complete. We can thus
assume that N(v) is not a clique. By Lemmas 2.10 and 2.11, the minimum degree is at
least ¢ + 1, and hence d(v) = ¢+ r with r > 1.

Claim 2.14.1 The graph G — (N (v) U{v}) is (K, k —r) stable.

Proof of Claim 2.14.1: By Lemma 2.12, we can consider an ordering vy, ..., v, of N(v)
such that the set {vy,...,v,01} induces a K, 1, Ugrr—1Vg+r € E(G) and there is a ver-
tex w € {v1,...,v,1} adjacent to v,4,—1 and vgy,. By Lemma 2.13, we can find two
nonadjacent vertices a and b in N(v) — {v,4,} and two nonadjacent vertices ¢ and d in
N(v) — {vg4r—1}. Let us note that since the set {vy,...,v,.1} induces a complete graph,
it contains at most one vertex of the set {a,b} and at most one vertex of {c,d}. Then,
H{v1, .. -1 N {w, a,b,¢,d}| < 3.

Since H is not complete, the graph G is not complete and by Lemma 2.6 we have r < k—2.
Since k < 4 +1 and ¢ > 6, there exists a subset A C {v;...v,_1} such that

o Al =1,
e w¢g A,
e An{a,b,c,d} =0.
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By repeated applications of Lemma 1.2, the graph G obtained from G by deleting A is
(Ky, k —r) stable. In G, the degree of v is equal to ¢.

Without loss of generality, suppose that a is distinct from vgy,_; and c is distinct from
vg+r- 1f there exists a ¢-clique in G containing the edge vv,i,—1 then {vy, ..., v44r—2} — A
is a (¢ — 2)-clique containing a. Since ab is not an edge, we must have b = v 4,1,
a contradiction to the fact that avg4,_; is an edge. Thus, there is no g-clique in G
containing vv,4,—1. Analogously, we prove that there is no ¢-clique in G containing
VUgtr-

Hence, the graph G, obtained from G; by deletion of the edges vv,4,—1 and vvgy, is still
(K, k —r) stable. In Go, v has degree ¢ — 2, so it is not contained in any K,. We can
thus delete v and we get a (K, k — r) stable graph Gj.

Since the maximum degree in G is ¢+, the degree of w in G3 is at most ¢—1. Recall that
w is adjacent to the two nonadjacent vertices vgy,—1 and v,q,. Hence w is not contained
in any K, of G'3, which means that G4 = G3—w is still (K, k—r) stable. Since the degree
of each vertex in {vy,...,v,01} — (AU{w}) is at most ¢ — 2 in G4, none of these vertices
can be contained in any K, of G4. Hence by deletion of these vertices we get again a
(Ky, k —r) stable graph G5. We shall prove that none of the r + 1 vertices v, ..., Vg4, 18
contained in a K, of Gs.

Note that G5 = G — {v,v1,...,v4-1}. For ¢ < j < g+ r, denote by d; the degree of the
vertex v; in the subgraph induced by {v,,...,v44,}. Clearly we have 0 < d; < r. In G,
by Proposition 1.3, the edge vv; is contained in a K,. Hence v; is adjacent (in G) to at
least ¢ — 2 — d; vertices in {v1,...,v,-1}. Since we have deleted the vertex v and the
vertices vy, ...,v,-1, we have thus dg,(v;) < ¢+r—(¢—2—d;) —1=r+1+4+d;. If
d; < r—1 then dg,(v;) < 2r < 2(k —2) < ¢ — 2 and there is no K, in G5 containing
vj. The equality dg,(v;) = ¢ — 1 can only be obtained when d; = r, that is v; has r
neighbours in v, ... v44,. Since v4q,—1 and v,4, are not adjacent, v; is not contained in
any K, of Gs.

Hence, the graph G¢ = G — (N(v) U {v}) obtained from G5 by deletion of all the vertices
Ugs Ugt1 - - - » Ugsr 18 still (K, k — r) stable, and the Claim follows. u

Claim 2.14.2
- A +k
(“2 T>+q+7’+<q2 >+§(T+1)(2q—r—2)+1<<q2 ) (1)

Proof of Claim: 2.14.2 To get back G from G — (N(v) U {v}) we add, at least
e the ¢ + r edges incident with v,
e the (qgl) edges of the (¢ — 1)-clique induced by the set {vy,...,v,1},

e the edges incident with {v, ..., v,4,} and not incident with v.

Let [ be the number of edges incident with vy, ..., v,¢,, and not incident with v.
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We have

e(G—(N(u)u{v}))+q+r+(q;1)+l<e(G) (2)

In order to find a lower bound of the number of edges incident with the vertices vy, . .., Vg4,
for each i € {q,...,q+ r} let us denote by d; the degree of the vertex v; in the subgraph
induced by the set {v,, ..., v44,}. Then,

1 T T ‘a ]‘ ‘a
| = ngjqdi + 35 (do(vi) — 1= d;) = S0 dg(v;) — (r+ 1) — gﬁfiqdi.
Since by Lemma 2.10 the minimum degree in G is at least ¢, we have

1
I1>qir+1)—(r+1)— 523:;%.

Since for every ¢ in {q,...,¢+7r—2} d; <r, dyrr—1 <7 —1and dgy, <7 — 1, we obtain

1
l261(7“+1)—(7’+1)—§7’(7"—1)—(r—l),
and hence 1
l>§(r+1)(2q—r—2)+1.

By the assumption made at the beginning of the section (see Remark 2.5), a minimum
(K4, k —r) stable graph has (QH;T) edges. Since e(G) < (q;“k), the inequality (1) follows
from Claim 2.14.1 and the inequality (2). This proves the Claim. 0

A simple calculation shows that the inequality
¢ +q+2 < 2kr

can be obtained by starting from the inequality (1).
Since r < k—2and k < £+ 1, we have ¢* + ¢+ 2 < 2k(k —2) < (¢ +2)(% — 1), hence
% + g+ 4 <0, a contradiction. Thus, N(v) is a clique and the Proposition follows. [

3 Result

In [3], it is shown that if G is minimum (K, k) stable and the numbers k and ¢ satisfy
one of the following conditions:

e k=1landg>4
e k=2andq>14
5

>
e k=3and g >

then G is isomorphic to K.
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Theorem 3.1 Let G be a minimum (K,, k) stable graph, where ¢ > 6 and k < £ + 1.
Then G is isomorphic to K .

Proof: For 0 < k < 3 the graph G is isomorphic to K. Let k be such that 4 <k < {+1
and suppose that for every r with 0 < r < k the only minimum (K, r) stable graph
is K,+,. By Proposition 2.14, the graph G is the disjoint union of p complete graphs
Hy = Kyyy,, Hy = Kyypy, -+, Hy, = Kyqp,. Suppose, without loss of generality, that
ki > ke = --- >k, > 0 and that there exist two components H; and H; with ¢ < j such
that k; — k; > 2. By substituting H] = Ky, for H; and H; = Ky, 11 for Hj, we
obtain a new (K, k) stable graph G’ such that e(G’) = e(G) — (k; —k; — 1) < e(G), which
is a contradiction. Thus, for any ¢ and any j, 0 < |k; — k;| < 1 (cf [2] Proposition 7).
To conclude that G has a unique component, observe the following facts.

e The graphs 2K, ; and K, 91 are both (K20 + 1) stable, but if 20 +1 < £ +1
then (q+221+1) < 2(‘1;1).

e The graphs Kq4; + Kqqi41 and K99 are both (K, 204-2) stable but if 2/4+2 < +1

then (774%2) < (M471) + (7).

O

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, vol. 244, Springer, Series Graduate
texts in Mathematics, 2008.

[2] A. Dudek, A. Szymaniski, and M. Zwonek, (H,k) stable graphs with minimum size,
Discuss. Math. Graph Theory 28 (2008), 137-149.

[3] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe, and A.P. Wojda. On (K,, k) vertex
stable graphs with minimum size, Discrete Math., 312 (2012), 2109-2118.

[4] P. Frankl and G.Y. Katona, Extremal k-edge hamiltonian hypergraphs, Discrete
Math., 308 (2008), 1415-1424.

[5] I. Horvath and G.Y. Katona, Extremal Pj-stable graphs, Discrete Appl. Math. 159
(2011), 1786-1792.

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(2) (2012), #P50 10



