On (K_q, k) stable graphs with small k

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759 Université d'Orléans, 45067 Orléans Cedex 2, France

fouquet@univ-lemans.fr, henri.thuillier@univ-orleans.fr, jmvanh@univ-lemans.fr

Adam Paweł Wojda *

Wydział Matematyki Stosowanej Zakład Matematyki Dyskretnej A.G.H., Al. Mickiewicza 30, 30-059 Kraków, Poland

wojda@agh.edu.pl

Submitted: Feb 7, 2011; Accepted: Jun 14, 2012; Published: Jun 28, 2012 Mathematics Subject Classification: 05C35, 05C75, 05C99

Abstract

A graph G is (K_q, k) stable if it contains a copy of K_q after deleting any subset of k vertices. In a previous paper we have characterized the (K_q, k) stable graphs with minimum size for $3 \le q \le 5$ and we have proved that the only (K_q, k) stable graph with minimum size is K_{q+k} for $q \ge 5$ and $k \le 3$. We show that for $q \ge 6$ and $k \le \frac{q}{2} + 1$ the only (K_q, k) stable graph with minimum size is isomorphic to K_{q+k} .

1 Introduction

For terms not defined here we refer to [1]. As usually, the *order* of a graph G is the number of its vertices (it is denoted by |G|) and the *size* of G is the number of its edges (it is denoted by e(G)). The degree of a vertex v in a graph G is denoted by $d_G(v)$, or simply by d(v) if no confusion is possible. For any set S of vertices, we denote by G - S the subgraph induced by V(G) - S. If $S = \{v\}$ we write G - v for $G - \{v\}$. When e is an edge of G we denote by G - e the spanning subgraph $V(G) = \{v\}$. The disjoint union of two graphs G_1 and G_2 is denoted by $G_1 + G_2$. The union of P mutually disjoint copies of a graph G is denoted by $P(G) = \{v\}$. A complete subgraph of order $P(G) = \{v\}$ when a graph $P(G) = \{v\}$ contains a $P(G) = \{v\}$ when a graph $P(G) = \{v\}$ when a graph $P(G) = \{v\}$ when a graph $P(G) = \{v\}$ contains a $P(G) = \{v\}$ when a graph $P(G) = \{v\}$ when a $P(G) = \{v\}$ when $P(G) = \{v\}$ when $P(G) = \{v\}$ is denoted by $P(G) = \{v\}$ when $P(G) = \{v\}$ is denoted by $P(G) = \{v\}$ when $P(G) = \{v\}$ is denoted by $P(G) = \{v\}$ when $P(G) = \{v\}$ is denoted by $P(G) = \{v\}$ is denoted by $P(G) = \{v\}$ when $P(G) = \{v\}$ is denoted by $P(G) = \{v\}$ in $P(G) = \{v\}$ in

^{*}The research of APW was partially sponsored by polish Ministry of Science and Higher Education.

In [5] Horvárth and Katona consider the notion of (H, k) stable graph: given a simple graph H, an integer k and a graph G containing H as subgraph, G is a a (H, k) stable graph whenever the deletion of any set of k edges does not lead to a H-free graph. These authors consider (P_n, k) stable graphs and prove a conjecture stated in [4] on the minimum size of a (P_4, k) stable graph. In [2], Dudek, Szymański and Zwonek are interested in a vertex version of this notion and introduce the (H, k) vertex stable graphs.

Definition 1.1 Let H be a graph and k be a natural number. A graph G of order at least k is said to be a (H, k) vertex stable graph if for any set S of k vertices the subgraph G - S contains a graph isomorphic to H.

In this paper, since no confusion will be possible, a (H, k) vertex stable shall be simply called a (H, k) stable graph. By Q(H, k) we denote the size of a minimum (H, k) stable graph. It is clear that if G is a (H, k) stable graph with minimum size then the graph obtained from G by addition or deletion of some isolated vertices is also minimum (H, k) stable. Hence we shall assume that all the graphs considered in the paper have no isolated vertices. A (H, k) stable graph with minimum size shall be called a minimum (H, k) stable graph.

Lemma 1.2 [2] Let q and k be integers, $q \ge 2, k \ge 1$. If G is (H, k) stable then, for every vertex v of G, the graph G - v is (H, k - 1) stable.

Proposition 1.3 [2] If G is a (H,k) stable graph with minimum size then every vertex as well as every edge is contained in a subgraph isomorphic to H.

Proof: Let e be an edge of G which is not contained in any subgraph of G isomorphic to H, then G - e would be a (H, k) stable graph with less edges than G, a contradiction. Let x be a vertex of G and e be an edge of G incident with x, since e is an edge of some subgraph isomorphic to H, say H_0 , the vertex x is a vertex of H_0 .

2 Preliminary results

We are interested in minimum (K_q, k) stable graphs (where q and k are integers such that $q \ge 2$ and $k \ge 0$). As a corollary to Proposition 1.3, every edge and every vertex of a minimum (K_q, k) stable graph is contained in a K_q (thus the minimum degree is at least q-1). Note that, for $q \ge 2$ and $k \ge 0$, the graph K_{q+k} is (K_q, k) stable, hence $Q(K_q, k) \le {q+k \choose 2}$.

Definition 2.1 Let H be a non complete graph on q + t vertices $(t \ge 1)$. We shall say that H is a near complete graph when it has a vertex v such that

- H v is complete.
- $d_H(v) = q + r$ with $-1 \leqslant r \leqslant t 2$.

The previous definition generalizes Definition 1.5 in [3] initially given for $r \in \{-1, 0, 1\}$ and the following lemma generalizes Proposition 2.1 in [3].

Lemma 2.2 Every minimum (K_q, k) stable graph G, where $q \ge 3$ and $k \ge 1$, has no component H isomorphic to a near complete graph.

Proof: Suppose, contrary to our claim, that G has such a component H and let v be the vertex of H such that H-v is a clique of G. Then |H|=q+t, with $t\geqslant 1$, and $q-1\leqslant d(v)=q+r\leqslant q+t-2$. Since G is minimum (K_q,k) stable, G-v is $(K_q,k-1)$ stable and is not (K_q,k) stable. Then G-v contains a set S with at most k vertices intersecting every subgraph of G-v isomorphic to a K_q . The graph G-S contains some K_q (at least one) and clearly every subgraph of G-S isomorphic to a K_q contains v. Since N(v) is a K_{q+r} and N(v)-S contains no K_q , $|N(v)-S|\leqslant q-1$. Since there exists a K_q containing v in H-S, |N(v)-S|=q-1 (and hence $|S\cap N(v)|=r+1$). Since H-v-S contains no K_q , H-v-S=N(v)-S. Let a be a vertex of H-v not adjacent to v and let b be a vertex in N(v)-S, and consider $S'=S-\{a\}+\{b\}$. We have $|S'|\leqslant k$ and G-S' contains no K_q , a contradiction.

It is clear that $Q(K_q, 0) = {q \choose 2}$ and the only minimum $(K_q, 0)$ stable graph is K_q . It is an easy exercise to see that $Q(K_2, k) = k + 1$ and that the matching $(k + 1)K_2$ is the unique minimum (K_2, k) stable graph.

Theorem 2.3 [3] Let G be a minimum (K_q, k) stable graph, with $k \ge 0$ and $3 \le q \le 5$. Then G is isomorphic to $sK_{2q-2} + tK_{2q-3}$, for any choice of s and t such that s(q-1) + t(q-2) = k+1.

In [3] it was proved that if $q \ge 4$ and $k \in \{1,2\}$ then $Q(K_q,k) = {q+k \choose 2}$ and the only minimum (K_q,k) stable graph is K_{q+k} . We have proved also that if $q \ge 5$ then $Q(K_q,3) = {q+3 \choose 2}$ and the only minimum $(K_q,3)$ stable graph is K_{q+3} . Dudek, Szymański and Zwonek proved the following result.

Theorem 2.4 [2] For every $q \ge 4$, there exists an integer k(q) such that $Q(K_q, k) \le (2q-3)(k+1)$ for $k \ge k(q)$.

As a consequence of this last result, they have deduced that for every $k \ge k(q)$ K_{q+k} is not minimum (K_q, k) stable.

Remark 2.5 From now on, throughout this section we assume that q and k are integers such that $q \ge 4$, $k \ge 1$ and for every r such that $0 \le r < k$ we have $Q(K_q, r) = \binom{q+r}{2}$ and the only minimum (K_q, r) stable graph is K_{q+r} .

In view of Theorem 2.4, k is bounded from above and we are interested in obtaining the greatest possible value of k.

Lemma 2.6 Let G be a (K_q, k) stable graph such that $e(G) \leq {q+k \choose 2}$. Then either for every vertex v we have $d(v) \leq q + k - 2$ or G is isomorphic to K_{q+k} .

Suppose that some vertex v has degree at least q + k - 1. By Lemma 1.2 the graph G - v is $(K_q, k - 1)$ stable, hence $Q(K_q, k - 1) \leq e(G - v) = e(G) - d(v)$. Since $Q(K_q, k - 1) = {q+k-1 \choose 2}$, we have

 ${q+k-1 \choose 2} \leqslant e(G) - d(v) \leqslant {q+k \choose 2} - (q+k-1) = {q+k-1 \choose 2}.$ It follows that $e(G-v) = {q+k-1 \choose 2}$, G-v is isomorphic to K_{q+k-1} and d(v) = q+k-1. Hence, G is isomorphic to K_{q+k} .

Lemma 2.7 Let G be a minimum (K_q, k) stable graph. Then one of the following statements is true

- G has no component isomorphic to K_q ,
- $Q(K_q, k-1) + \binom{q}{2} \leqslant Q(K_q, k)$.

Proof: Suppose that some component H of G is isomorphic to a K_q . If G-H is not $(K_q, k-1)$ stable, then there is a set S with at most k-1 vertices intersecting each K_q of G-H. Then, for any vertex a of H, S+a intersects each K_q of G while S has at most k-1 vertices, a contradiction. Hence G-H is $(K_q, k-1)$ stable and we have $Q(K_q, k-1) \leq e(G-H) = Q(K_q, k) - {\binom{q}{2}}.$

Lemma 2.8 [3] Let G be a minimum (K_q, k) stable graph and let u be a vertex of degree q-1. Then one of the following statements is true

- $\forall v \in N(u) \quad d(v) \geqslant q+1$,
- $Q(K_a, k-1) + 3(q-2) \leq Q(K_a, k)$.

Proof: By Proposition 1.3, since d(u) = q - 1, $\{u\} \cup N(u)$ induces a complete graph on q vertices. Assume that some vertex $w \in N(u)$ has degree q+r where r=-1 or r=0, and let v be a neighbour of u distinct from w. Since the degree of u in G-v is q-2, no edge incident with u can be contained in a K_q of G-v. Since G-v is $(K_q, k-1)$ stable, we can delete the q-2 edges incident with u in G-v and the resulting graph G' is still $(K_q, k-1)$ stable. By deleting v, we have $e(G-v) \leq e(G) - (q-1)$ and hence

$$e(G') \le e(G) - (q-1) - (q-2).$$

In G', the degree of w is now q + r - 2. Hence, no edge incident with w in G' can be contained in a K_q . Deleting these q + r - 2 edges from G' leads to a graph G'' which remains to be $(K_q, k-1)$ stable. We get thus

$$Q(K_q, k-1) \le e(G'') \le e(G) - (q-1) - (q-2) - (q+r-2).$$

Since $e(G) \leq Q(K_q, k)$, the result follows.

Lemma 2.9 Let G be a minimum (K_q, k) stable graph, where $1 \le k \le 2q - 6$, and let v be a vertex of degree q - 1. Then for every vertex $w \in N(v)$ we have $d(w) \ge q + 1$.

Proof: Suppose, contrary to the assertion of the lemma, that $d(w) \leq q$ for some vertex $w \in N(v)$. By Lemma 2.8, we have $Q(K_q, k-1) + 3(q-2) \leq Q(K_q, k)$. Since $Q(K_q, k-1) = {q+k-1 \choose 2}$ and $Q(K_q, k) \leq {q+k \choose 2}$ we have ${q+k-1 \choose 2} + 3q - 6 \leq {q+k \choose 2}$. Then we obtain $k \geq 2q - 5$, a contradiction.

Lemma 2.10 Let G be a minimum (K_q, k) stable graph, where $q \ge 5$ and $1 \le k \le q - 1$. Then the minimum degree of G is at least q.

Proof: Suppose that there is a vertex v of degree q-1 and let w be a neighbour of v. Since $q-1\leqslant 2q-6$, by Lemma 2.9, w has degree at least q+1. By Lemma 1.2 the graph G-w is $(K_q,k-1)$ stable. In that graph v is not contained in any K_q since its degree is q-2. Hence $G-\{w,v\}$ is still $(K_q,k-1)$ stable. We have $e(G-\{w,v\})=e(G)-(d(v)+d(w)-1)\leqslant e(G)-2q+1$. Since $Q(K_q,k-1)=\binom{q+k-1}{2}$ and $Q(K_q,k)\leqslant \binom{q+k}{2}$ we have $\binom{q+k-1}{2}\leqslant e(G)-2q+1\leqslant \binom{q+k}{2}-2q+1$. It follows that $k\geqslant q$, a contradiction.

Lemma 2.11 Let G be a minimum (K_q, k) stable graph, where $q \ge 5$ and $1 \le k \le q - 1$, and let v be a vertex of degree q. Then the subgraph induced by N(v) is complete.

Proof: Suppose not, and assume that N(v) contains two nonadjacent vertices a and b. Let $w \in N(v)$ distinct from a and b (w must exist since q > 3). By Lemma 1.2 the graph G - w is $(K_q, k - 1)$ stable. In that graph v is not contained in a K_q since its two neighbours a and b are not adjacent. Hence $G - \{w, v\}$ is still $(K_q, k - 1)$ stable. By Lemma 2.10, $d(w) \geqslant q$ and hence $e(G - \{w, v\}) = e(G) - (d(v) + d(w) - 1) \leqslant e(G) - 2q + 1$. We have, as in the proof of Lemma 2.10, $\binom{q+k-1}{2} \leqslant e(G) - 2q + 1 \leqslant \binom{q+k}{2} - 2q + 1$, and we obtain $k \geqslant q$, a contradiction.

Lemma 2.12 Let G be a minimum (K_q, k) stable graph, where $q \ge 5$ and $2 \le k \le \frac{q}{2} + 1$, and let v be a vertex of degree at least q + 1. Then either N(v) induces a complete graph or there exists an ordering $v_1, \ldots, v_{d(v)}$ of the vertices of N(v) such that $\{v_1, \ldots, v_{q-1}\}$ induces a complete graph and $v_{d(v)-1}v_{d(v)}$ is not in E(G). Moreover, there exists a vertex w in $\{v_1, \ldots, v_{q-1}\}$ adjacent to $v_{d(v)-1}$ and $v_{d(v)}$.

Proof: Suppose that the subgraph induced by N(v) is not complete and let a and b be two nonadjacent neighbours of v.

Claim 2.12.1 $N(v) - \{a, b\}$ contains a K_{q-1} .

Proof of Claim: Let us suppose first that d(a) = q (or d(b) = q). Hence, by Lemma 2.11, N(a) induces a K_{q+1} . Since $v \in N(a)$ and $b \notin N(a)$, $N(v) - \{a,b\}$ contains a K_{q-1} as claimed. Hence we can assume now that $d(a) \geqslant q+1$ and $d(b) \geqslant q+1$. Suppose for contradiction that every K_{q-1} in N(v) intersects $\{a,b\}$, that is, there is no K_q containing v in $G - \{a,b\}$. Since the graph $G - \{a,b\}$ is $(K_q,k-2)$ stable, the graph $G - \{a,b,v\}$ is still $(K_q,k-2)$ stable. Then $e(G - \{a,b,v\}) = e(G) - (d(v) + d(a) + d(b) - 2) \leqslant e(G) - 3q - 1$ and hence $Q(K_q,k-2) \leqslant e(G - \{a,b,v\}) \leqslant e(G) - 3q - 1 = Q(K_q,k) - 3q - 1$. Since $Q(K_q,k-2) = {q+k-2 \choose 2}$ and $Q(K_q,k) \leqslant {q+k \choose 2}$, we have ${q+k-2 \choose 2} \leqslant {q+k \choose 2} - 3q - 1$ and hence ${q+k-2 \choose 2} \leqslant {q+k \choose 2} - 3q - 1$ and hence ${q+k-2 \choose 2} \leqslant {q+k \choose 2} - 3q - 1$ and hence

Thus, we can order the vertices of N(v) in such a way that the q-1 first ones v_1, \ldots, v_{q-1} induce a complete graph and the two last vertices $v_{d(v)-1}$ and $v_{d(v)}$ are not adjacent, as claimed.

Set d(v) = q + r with $r \ge 1$. By Proposition 1.3, the edges vv_{q+r-1} and vv_{q+r} are contained in two distinct q-cliques, say Q_1 and Q_2 . Since v_{q+r-1} and v_{q+r} are not adjacent, each Q_i contains at most r vertices in $N(v) - \{v_1, \ldots, v_{q-1}\}$ and at least q - r + 1 vertices in $\{v_1, \ldots, v_{q-1}\}$. Since N(v) is not complete and $e(G) \le {q+k \choose 2}$, by Lemma 2.6 we have $d(v) \le q + k - 2$, and hence $r \le k - 2$. Since $k \le \frac{q}{2} + 1$, Q_1 (as well as Q_2) has at least $q - r + 1 \ge q - k + 3 > \frac{q}{2}$ vertices in $\{v_1, \ldots, v_{q-1}\}$. Hence Q_1 and Q_2 have at least one common vertex w in $\{v_1, \ldots, v_{q-1}\}$, and the Lemma follows.

Lemma 2.13 Let G be a minimum (K_q, k) stable graph, where $q \ge 5$ and $2 \le k \le \frac{q}{2} + 1$, and let H be a component of G. Then either H is complete or for every vertex v of maximum degree in H the subgraph induced by N(v) contains no complete subgraph on d(v) - 1 vertices.

Proof: Assume that H is not complete.

Claim 2.13.1 The maximum degree in H is at least q + 1.

Proof of Claim: If the minimum degree in H is at least q+1, we are done. If there exists a vertex u of degree q-1 in H then, by Lemma 2.9, the degree of any vertex of N(u) is at least q+1. If there exists a vertex u of degree q then, by Lemma 2.11, $N(u) \cup \{u\}$ induces a K_{q+1} . Since H is connected, there exists a vertex in $H - (N(u) \cup \{u\})$ having at least one neighbour w in N(u), and clearly $d(w) \ge q+1$.

Let v be a vertex of maximum degree in H and set d(v) = q + r, with $k \ge 1$. Since H is not complete, the subgraph induced on N(v) is not complete. By Lemma 2.12, there exists an ordering $\{v_1 \dots v_{q+r}\}$ of the vertices of N(v) such that $\{v_1, \dots, v_{q-1}\}$ induces a complete graph and $v_{q+r-1}v_{q+r}$ is not an edge of G. Suppose that the subgraph induced by N(v) contains a complete subgraph on q+r-1 vertices. Then, without loss of generality we may suppose that $\{v_1, \dots, v_{q+r-2}, v_{q+r-1}\}$ induces a complete graph. Let us denote by A the set of neighbours of v_{q+r} in N(v).

Claim 2.13.2 $|A| \ge q - 2$, every vertex in A has degree q + r and has no neighbour outside $N(v) \cup \{v\}$.

Proof of Claim: Since G is a minimum (K_q, k) stable graph, by Proposition 1.3, the edge vv_{q+r} must be contained in a K_q . Hence v_{q+r} has at least q-2 neighbours in $\{v_1, \ldots, v_{q+r-2}\}$. Since the subgraph induced by $(N(v) - \{v_{q+r}\})$ is complete, every vertex a in A is adjacent to every vertex in $(N(v) - \{a\}) \cup \{v\}$. Then d(a) = q + r, i.e. a has maximum degree in H. Hence, no vertex in A has a neighbour outside $N(v) \cup \{v\}$, and the Claim follows.

By Lemma 2.2, the (q+r)-clique $(N(v)-\{v_{q+r}\})\cup\{v\}$ is a proper subgraph of $H-\{v_{q+r}\}$. Since H is connected, there exists a vertex w outside $N(v)\cup\{v\}$ adjacent to a vertex u in N(v). Let us denote by B the set of neighbours of w in N(v). Since the edge uw is contained in a K_q by Proposition 1.3, w must have at least q-2 common neighbours with u in N(v), and hence $|B|\geqslant q-1$. Since by Claim 2.13.2 A has no neighbour outside $N(v)\cup\{v\}$, A and B are disjoint. Then we have $2q-3\leqslant |A\cup B|\leqslant |N(v)|=q+r$, and hence $q\leqslant r+3$. Since $r\leqslant k-2$ by Lemma 2.6, we obtain $q\leqslant k+1\leqslant \frac{q}{2}+2$, that is $q\leqslant 4$, a contradiction. Hence, the subgraph induced by the vertices $\{v_1,\ldots,v_{q+r-2},v_{q+r-1}\}$ is not complete, and the Lemma follows.

Proposition 2.14 Let G be a minimum (K_q, k) stable graph, where $q \ge 5$ and $2 \le k \le \frac{q}{2} + 1$. Then every component of G is a complete graph.

Proof: Let H be a component of G and v be a vertex of maximum degree in H. If the subgraph induced on N(v) is complete then H is obviously complete. We can thus assume that N(v) is not a clique. By Lemmas 2.10 and 2.11, the minimum degree is at least q+1, and hence d(v)=q+r with $r \ge 1$.

Claim 2.14.1 The graph $G - (N(v) \cup \{v\})$ is $(K_q, k - r)$ stable.

Proof of Claim 2.14.1: By Lemma 2.12, we can consider an ordering v_1, \ldots, v_{q+r} of N(v) such that the set $\{v_1, \ldots, v_{q-1}\}$ induces a $K_{q-1}, v_{q+r-1}v_{q+r} \notin E(G)$ and there is a vertex $w \in \{v_1, \ldots, v_{q-1}\}$ adjacent to v_{q+r-1} and v_{q+r} . By Lemma 2.13, we can find two nonadjacent vertices a and b in $N(v) - \{v_{q+r}\}$ and two nonadjacent vertices c and d in $N(v) - \{v_{q+r-1}\}$. Let us note that since the set $\{v_1, \ldots, v_{q-1}\}$ induces a complete graph, it contains at most one vertex of the set $\{a, b\}$ and at most one vertex of $\{c, d\}$. Then, $|\{v_1, \ldots, v_{q-1}\} \cap \{w, a, b, c, d\}| \leq 3$.

Since H is not complete, the graph G is not complete and by Lemma 2.6 we have $r \leq k-2$. Since $k \leq \frac{q}{2} + 1$ and $q \geq 6$, there exists a subset $A \subseteq \{v_1 \dots v_{q-1}\}$ such that

- \bullet |A| = r,
- $w \notin A$,
- $\bullet \ A \cap \{a, b, c, d\} = \emptyset.$

By repeated applications of Lemma 1.2, the graph G_1 obtained from G by deleting A is $(K_q, k-r)$ stable. In G_1 , the degree of v is equal to q.

Without loss of generality, suppose that a is distinct from v_{q+r-1} and c is distinct from v_{q+r} . If there exists a q-clique in G_1 containing the edge vv_{q+r-1} then $\{v_1, \ldots, v_{q+r-2}\} - A$ is a (q-2)-clique containing a. Since ab is not an edge, we must have $b = v_{q+r-1}$, a contradiction to the fact that av_{q+r-1} is an edge. Thus, there is no q-clique in G_1 containing vv_{q+r-1} . Analogously, we prove that there is no q-clique in G_1 containing vv_{q+r} .

Hence, the graph G_2 obtained from G_1 by deletion of the edges vv_{q+r-1} and vv_{q+r} is still $(K_q, k-r)$ stable. In G_2 , v has degree q-2, so it is not contained in any K_q . We can thus delete v and we get a $(K_q, k-r)$ stable graph G_3 .

Since the maximum degree in G is q+r, the degree of w in G_3 is at most q-1. Recall that w is adjacent to the two nonadjacent vertices v_{q+r-1} and v_{q+r} . Hence w is not contained in any K_q of G_3 , which means that $G_4 = G_3 - w$ is still $(K_q, k-r)$ stable. Since the degree of each vertex in $\{v_1, \ldots, v_{q-1}\} - (A \cup \{w\})$ is at most q-2 in G_4 , none of these vertices can be contained in any K_q of G_4 . Hence by deletion of these vertices we get again a $(K_q, k-r)$ stable graph G_5 . We shall prove that none of the r+1 vertices v_q, \ldots, v_{q+r} is contained in a K_q of G_5 .

Note that $G_5 = G - \{v, v_1, \ldots, v_{q-1}\}$. For $q \leq j \leq q+r$, denote by d_j the degree of the vertex v_j in the subgraph induced by $\{v_q, \ldots, v_{q+r}\}$. Clearly we have $0 \leq d_j \leq r$. In G, by Proposition 1.3, the edge vv_j is contained in a K_q . Hence v_j is adjacent (in G) to at least $q-2-d_j$ vertices in $\{v_1, \ldots, v_{q-1}\}$. Since we have deleted the vertex v and the vertices v_1, \ldots, v_{q-1} , we have thus $d_{G_5}(v_j) \leq q+r-(q-2-d_j)-1=r+1+d_j$. If $d_j \leq r-1$ then $d_{G_5}(v_j) \leq 2r \leq 2(k-2) \leq q-2$ and there is no K_q in G_5 containing v_j . The equality $d_{G_5}(v_j) = q-1$ can only be obtained when $d_j = r$, that is v_j has r neighbours in $v_q \ldots v_{q+r}$. Since v_{q+r-1} and v_{q+r} are not adjacent, v_j is not contained in any K_q of G_5 .

Hence, the graph $G_6 = G - (N(v) \cup \{v\})$ obtained from G_5 by deletion of all the vertices $v_q, v_{q+1}, \dots, v_{q+r}$ is still $(K_q, k-r)$ stable, and the Claim follows.

Claim 2.14.2

$$\binom{q+k-r}{2} + q + r + \binom{q-1}{2} + \frac{1}{2}(r+1)(2q-r-2) + 1 \leqslant \binom{q+k}{2} \tag{1}$$

Proof of Claim: 2.14.2 To get back G from $G - (N(v) \cup \{v\})$ we add, at least

- the q + r edges incident with v,
- the $\binom{q-1}{2}$ edges of the (q-1)-clique induced by the set $\{v_1,\ldots,v_{q-1}\}$,
- the edges incident with $\{v_q, \ldots, v_{q+r}\}$ and not incident with v.

Let l be the number of edges incident with v_q, \ldots, v_{q+r} , and not incident with v.

We have

$$e(G - (N(v) \cup \{v\})) + q + r + {q-1 \choose 2} + l \le e(G)$$
 (2)

In order to find a lower bound of the number of edges incident with the vertices v_q, \ldots, v_{q+r} , for each $i \in \{q, \ldots, q+r\}$ let us denote by d_i the degree of the vertex v_i in the subgraph induced by the set $\{v_q, \ldots, v_{q+r}\}$. Then,

$$l = \frac{1}{2} \sum_{i=q}^{q+r} d_i + \sum_{i=q}^{q+r} (d_G(v_i) - 1 - d_i) = \sum_{i=q}^{q+r} d_G(v_i) - (r+1) - \frac{1}{2} \sum_{i=q}^{q+r} d_i.$$

Since by Lemma 2.10 the minimum degree in G is at least q, we have

$$l \geqslant q(r+1) - (r+1) - \frac{1}{2} \sum_{i=q}^{q+r} d_i.$$

Since for every i in $\{q,\ldots,q+r-2\}$ $d_i\leqslant r,\ d_{q+r-1}\leqslant r-1$ and $d_{q+r}\leqslant r-1$, we obtain

$$l \geqslant q(r+1) - (r+1) - \frac{1}{2}r(r-1) - (r-1),$$

and hence

$$l \geqslant \frac{1}{2}(r+1)(2q-r-2)+1.$$

By the assumption made at the beginning of the section (see Remark 2.5), a minimum $(K_q, k-r)$ stable graph has $\binom{q+k-r}{2}$ edges. Since $e(G) \leqslant \binom{q+k}{2}$, the inequality (1) follows from Claim 2.14.1 and the inequality (2). This proves the Claim.

A simple calculation shows that the inequality

$$q^2 + q + 2 \leqslant 2kr$$

can be obtained by starting from the inequality (1).

Since $r \leqslant k-2$ and $k \leqslant \frac{q}{2}+1$, we have $q^2+q+2 \leqslant 2k(k-2) \leqslant (q+2)(\frac{q}{2}-1)$, hence $\frac{q^2}{2}+q+4 \leqslant 0$, a contradiction. Thus, N(v) is a clique and the Proposition follows. \square

3 Result

In [3], it is shown that if G is minimum (K_q, k) stable and the numbers k and q satisfy one of the following conditions:

- k = 1 and $q \geqslant 4$
- k=2 and $q\geqslant 4$
- k=3 and $q\geqslant 5$

then G is isomorphic to K_{q+k} .

Theorem 3.1 Let G be a minimum (K_q, k) stable graph, where $q \ge 6$ and $k \le \frac{q}{2} + 1$. Then G is isomorphic to K_{q+k} .

Proof: For $0 \le k \le 3$ the graph G is isomorphic to K_{q+k} . Let k be such that $4 \le k \le \frac{q}{2}+1$ and suppose that for every r with $0 \le r < k$ the only minimum (K_q, r) stable graph is K_{q+r} . By Proposition 2.14, the graph G is the disjoint union of p complete graphs $H_1 \equiv K_{q+k_1}, H_2 \equiv K_{q+k_2}, \cdots, H_p \equiv K_{q+k_p}$. Suppose, without loss of generality, that $k_1 \ge k_2 \ge \cdots \ge k_p \ge 0$ and that there exist two components H_i and H_j with i < j such that $k_i - k_j \ge 2$. By substituting $H'_i \equiv K_{q+k_i-1}$ for H_i and $H'_j \equiv K_{q+k_j+1}$ for H_j , we obtain a new (K_q, k) stable graph G' such that $e(G') = e(G) - (k_i - k_j - 1) < e(G)$, which is a contradiction. Thus, for any i and any j, $0 \le |k_i - k_j| \le 1$ (cf [2] Proposition 7). To conclude that G has a unique component, observe the following facts.

- The graphs $2K_{q+l}$ and K_{q+2l+1} are both $(K_q, 2l+1)$ stable, but if $2l+1 \leq \frac{q}{2}+1$ then $\binom{q+2l+1}{2} < 2\binom{q+l}{2}$.
- The graphs $K_{q+l} + K_{q+l+1}$ and K_{q+2l+2} are both $(K_q, 2l+2)$ stable but if $2l+2 \leq \frac{q}{2}+1$ then $\binom{q+2l+2}{2} < \binom{q+l+1}{2} + \binom{q+l}{2}$.

References

- [1] J.A. Bondy and U.S.R. Murty, *Graph theory*, vol. 244, Springer, Series Graduate texts in Mathematics, 2008.
- [2] A. Dudek, A. Szymański, and M. Zwonek, (*H,k*) stable graphs with minimum size, Discuss. Math. Graph Theory **28** (2008), 137–149.
- [3] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe, and A.P. Wojda. On (K_q, k) vertex stable graphs with minimum size, Discrete Math., **312** (2012), 2109–2118.
- [4] P. Frankl and G.Y. Katona, Extremal k-edge hamiltonian hypergraphs, Discrete Math., 308 (2008), 1415–1424.
- [5] I. Horváth and G.Y. Katona, Extremal P₄-stable graphs, Discrete Appl. Math. **159** (2011), 1786–1792.