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Abstract

A semigroup is nilpotent of degree 3 if it has a zero, every product of 3 elements
equals the zero, and some product of 2 elements is non-zero. It is part of the folklore
of semigroup theory that almost all finite semigroups are nilpotent of degree 3.

We give formulae for the number of nilpotent semigroups of degree 3 on a set with
n ∈ N elements up to equality, isomorphism, and isomorphism or anti-isomorphism.
Likewise, we give formulae for the number of nilpotent commutative semigroups on
a set with n elements up to equality and up to isomorphism.

Keywords: nilpotent semigroups; power group enumeration; nilpotency degree

1 Introduction

The topic of enumerating finite algebraic or combinatorial objects of a particular type is
classical. Many theoretical enumeration results were obtained thanks to the advanced or-
bit counting methods developed by Redfield [Red27], Polya [Pol37], and de Bruijn [dB59].
Numerous applications of the method known as power group enumeration can be found
in [HP73]. Of particular interest for this paper is the usage to count universal algebras
in [Har66].

The enumeration of finite semigroups has mainly been performed by exhaustive search
and the results are therefore restricted to very small orders. The most recent numbers
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are of semigroups of order 9 [Dis10], of semigroups with identity of order 10 [DK09],
commutative semigroups of order 10 [Gri03], and linearly ordered semigroups of order 7
[Sla95].

In this paper we use power group enumeration to develop formulae for the number of
semigroups of a particular type, which we now define.

A semigroup S is nilpotent if there exists a r ∈ N such that the set

Sr = { s1s2 · · · sr | s1, s2, . . . , sr ∈ S }

has size 1. If r is the least number such that |Sr| = 1, then we say that S has (nilpotency)
degree r.

As usual, the number of ‘structural types’ of objects is of greater interest than the
number of distinct objects. Let S and T be semigroups. Then a function f : S → T is an
isomorphism if it is a bijection and f(x · y) = f(x) · f(y) for all x, y ∈ S. The dual S∗ of
S is the semigroup with multiplication ∗ defined by x ∗ y = y · x on the set S. A bijection
f : S → T is an anti-isomorphism if f is an isomorphism from S∗ to T . Throughout this
article we distinguish between the number of distinct semigroups on a set, the number up
to isomorphism, and the number up to isomorphism or anti-isomorphism. We shall refer
to the number of distinct semigroups that can be defined on a set as the number up to
equality.

For n ∈ N we let z(n) denote the number of nilpotent semigroups of degree 3 on
{1, 2, . . . , n}. The particular interest in nilpotent semigroups of degree 3 stems from the
observation that almost all finite semigroups are of this type. More precisely, Kleitman,
Rothschild, and Spencer identified z(n) in [KRS76] as an asymptotic lower bound for
the number of all semigroups on that set. Furthermore, Jürgensen, Migliorini, and Szép
suspected in [JMS91] that z(n)/2n! was a good lower bound for the number of semigroups
with n elements up to isomorphism or anti-isomorphism based on the comparison of
these two numbers for n = 1, 2, . . . , 7. This belief was later supported by Satoh, Yama,
and Tokizawa [SYT94, Section 8] and the first author [Dis10] in their analyses of the
semigroups with orders 8 and 9, respectively.

This paper is structured as follows: in the next section we present and discuss our
results, delaying certain technical details for later sections; in Section 3 we describe a way
to construct semigroups of degree 2 or 3; in Section 4 nilpotent semigroups of degree 3 are
considered up to equality; in Section 5 we present the relevant background material from
power group enumeration and a number of technical results in preparation for Section 6
where we give the proofs for our main theorems. Tables containing the first few terms of
the sequences defined by the various formulae in the paper can be found at the appropriate
points. The implementation used to obtain these numbers is provided as the function
Nr3NilpotentSemigroups in the computer algebra system GAP [GAP08] by the package
Smallsemi [DM11].
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2 Formulae for the number of nilpotent semigroups

of degree 3

2.1 Up to equality

The number of nilpotent and commutative nilpotent semigroups of degree 3 on a finite
set can be computed using formulae given in [JMS91, Theorems 15.3 and 15.8]. We
summarise the relevant results in the following theorem. As the theorems in [JMS91] are
stated incorrectly we shall give a proof for Theorem 1 in Section 4.

Theorem 1. For n ∈ N the following hold:

(i) the number of distinct nilpotent semigroups of degree 3 on {1, 2, . . . , n} is

a(n)∑
m=2

(
n

m

)
m

m−1∑
i=0

(−1)i
(
m− 1

i

)
(m− i)((n−m)2)

where a(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
;

(ii) the number of distinct commutative nilpotent semigroups of degree 3 on {1, 2, . . . , n}
is

c(n)∑
m=2

(
n

m

)
m

m−1∑
i=0

(−1)i
(
m− 1

i

)
(m− i)(n−m)(n−m+1)/2

where c(n) =
⌊
n+ 3/2−

√
2n+ 1/4

⌋
.

Note that there are no nilpotent semigroups of degree 3 with fewer than 3 elements.
Accordingly, the formulae in Theorem 1 yield that the number of nilpotent and commu-
tative nilpotent semigroups of degree 3 with 1 or 2 elements is 0. The first few non-zero
terms of the sequences given by Theorem 1 are shown in Tables 1 and 2.

2.2 Up to isomorphism and up to isomorphism or
anti-isomorphism

Our main results are explicit formulae for the number of nilpotent and commutative nilpo-
tent semigroups of degree 3 on any finite set up to isomorphism and up to isomorphism or
anti-isomorphism. As every commutative semigroup is equal to its dual we obtain three
different formulae.

If j is a partition of n ∈ N, written as j ` n, then we denote by ji the number of
summands equalling i. The first of our main theorems, dealing with nilpotent semigroups
of degree 3 up to isomorphism, can then be stated as follows:
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Table 1: Numbers of nilpotent semigroups of degree 3 up to equality

n number of nilpotent semigroups of degree 3 on {1, 2, . . . , n}

3 6
4 180
5 11 720
6 3 089 250
7 5 944 080 072
8 147 348 275 209 800
9 38 430 603 831 264 883 632

10 90 116 197 775 746 464 859 791 750
11 2 118 031 078 806 486 819 496 589 635 743 440
12 966 490 887 282 837 500 134 221 233 339 527 160 717 340
13 17 165 261 053 166 610 940 029 331 024 343 115 375 665 769 316 911 576
14 6 444 206 974 822 296 283 920 298 148 689 544 172 139 277 283 018 112 679 406 098 010

Table 2: Numbers of commutative nilpotent semigroups of degree 3 up to equality

n number of commutative nilpotent semigroups of degree 3 on {1, 2, . . . , n}

3 6
4 84
5 1 620
6 67 170
7 7 655 424
8 2 762 847 752
9 3 177 531 099 864

10 11 942 816 968 513 350
11 170 387 990 514 807 763 280
12 11 445 734 473 992 302 207 677 404
13 3 783 741 947 416 133 941 828 688 621 484
14 5 515 869 594 360 617 154 295 309 604 962 217 274
15 33 920 023 793 863 706 955 629 537 246 610 157 737 736 800
16 961 315 883 918 211 839 933 605 601 923 922 425 713 635 603 848 080
17 160 898 868 329 022 121 111 520 489 011 089 643 697 943 356 922 368 997 915 120
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Table 3: Numbers of nilpotent semigroups of degree 3 up to isomorphism

n number of non-isomorphic nilpotent semigroups of degree 3 of order n

3 1
4 9
5 118
6 4 671
7 1 199 989
8 3 661 522 792
9 105 931 872 028 455

10 24 834 563 582 168 716 305
11 53 061 406 576 514 239 124 327 751
12 2 017 720 196 187 069 550 262 596 208 732 035
13 2 756 576 827 989 210 680 367 439 732 667 802 738 773 384
14 73 919 858 836 708 511 517 426 763 179 873 538 289 329 852 786 253 510
15 29 599 937 964 452 484 359 589 007 277 447 538 854 227 891 149 791 717 673 581 110 642

Theorem 2. Let n, p, q ∈ N. For 1 6 q < p denote

N(p, q) =
∑
j`q−1

∑
k`p−q

(
q−1∏
i=1

ji! i
ji

p−q∏
i=1

ki! i
ki

)−1 p−q∏
a,b=1

1 +
∑

d|lcm(a,b)

djd

kakb gcd(a,b)

. (1)

Then the number of nilpotent semigroups of degree 3 and order n up to isomorphism equals

a(n)∑
m=2

(N(n, n)−N(n− 1,m− 1)) where a(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
,

The second of our main theorems gives the number of nilpotent semigroups of degree 3
up to isomorphism or anti-isomorphism.

Theorem 3. Let n, p, q ∈ N. For 1 6 q < p let N(p, q) as in (1) and denote

L(p, q) =
1

2
N(p, q) +

1

2

∑
j`q−1

∑
k`p−q

(
q−1∏
i=1

ji! i
ji

p−q∏
i=1

ki! i
ki

)−1 p−q∏
a=1

(
qkaa p

k2a−ka
a,a

a−1∏
b=1

p2kakba,b

)
, (2)

where

pa,b =

1 +
∑

d|lcm(2,a,b)

djd

ab/ lcm(2,a,b)

and

qa =


(1 +

∑
d|a djd)(1 +

∑
d|2a djd)

(a−1)/2 if a ≡ 1 mod 2

(1 +
∑

d|a djd)
a if a ≡ 0 mod 4

(1 +
∑

d|a/2 djd)
2(1 +

∑
d|a djd)

a−1 if a ≡ 2 mod 4.
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Table 4: Numbers of nilpotent semigroups of degree 3 up to isomorphism or anti-
isomorphism

n number of non-(anti-)isomorphic nilpotent semigroups of degree 3 of order n

3 1
4 8
5 84
6 2 660
7 609 797
8 1 831 687 022
9 52 966 239 062 973

10 12 417 282 095 522 918 811
11 26 530 703 289 252 298 687 053 072
12 1 008 860 098 093 547 692 911 901 804 990 610
13 1 378 288 413 994 605 341 053 354 105 969 660 808 031 163
14 36 959 929 418 354 255 758 713 676 933 402 538 920 157 765 946 956 889
15 14 799 968 982 226 242 179 794 503 639 146 983 952 853 044 950 740 907 666 303 436 922

Then the number of nilpotent semigroups of degree 3 and order n up to isomorphism or
anti-isomorphism equals

a(n)∑
m=2

(L(n,m)− L(n− 1,m− 1)) where a(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
.

A semigroup is self-dual if it is isomorphic to its dual. The concept of anti-isomorphism
has no relevance for self-dual semigroups. Combining Theorems 2 and 3, it is possible
to deduce a formula for the number of self-dual, nilpotent semigroups of degree 3 up to
isomorphism. More generally, considering semigroups of a certain type the number of
self-dual semigroups up to isomorphism is equal to twice the number of semigroups up to
isomorphism and anti-isomorphism minus the number of semigroups up to isomorphism.

Corollary 4. Let n ∈ N and let N(p, q) and L(p, q) be as defined in (1) and (2), respec-
tively. Then the number of self-dual, nilpotent semigroups of degree 3 and order n up to
isomorphism equals

a(n)∑
m=2

(2L(n,m)−N(n,m)− 2L(n− 1,m− 1) +N(n− 1,m− 1))

where a(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
.

Substituting in the previous corollary the actual formula for 2L(p, q) we notice that
N(p, q)/2 appears as a term in L(p, q) and cancels. The resulting simplified formula is
implemented as part of the function Nr3NilpotentSemigroups in Smallsemi [DM11].

Since commutative semigroups are self-dual, we obtain just one formula up to isomor-
phism for commutative nilpotent semigroups of degree 3.
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Table 5: Numbers of self-dual nilpotent semigroups of degree 3 up to isomorphism

n number of non-isomorphic self-dual nilpotent semigroups of degree 3 of order n

3 1
4 7
5 50
6 649
7 19 605
8 1 851 252
9 606 097 491

10 608 877 121 317
11 1 990 358 249 778 393
12 25 835 561 207 401 249 185
13 1 739 268 479 271 518 877 288 942
14 590 686 931 539 550 985 679 107 660 268
15 846 429 051 478 198 751 690 097 659 025 763 202

Theorem 5. Let n, p, q ∈ N. For 1 6 q < p denote

K(p, q) =
∑
j`q−1

∑
k`p−q

(q−1∏
i=1

ji! i
ji

p−q∏
i=1

ki! i
ki

)−1 bn
2
c∏

a=1

1 +
∑
d|a

djd

k2a1 +
∑
d|2a

djd

ak2a

·

bn+1
2
c∏

a=1

1 +
∑
d|2a−1

djd

ak2a−1∏
a<b

1 +
∑

d|lcm(a,b)

djd

kakb gcd(a,b)
 .

Then the number of nilpotent, commutative semigroups of degree 3 and order n up to
isomorphism equals

c(n)∑
m=2

(K(n,m)−K(n− 1,m− 1)) where c(n) =
⌊
n+ 3/2−

√
2n+ 1/4

⌋
.

To determine the number of nilpotent semigroups of degree 3 up to isomorphism or up
to isomorphism or anti-isomorphism, we use the technique of power group enumeration
in a similar way as Harrison did for universal algebras [Har66]. In Section 5 we present
the relevant background material and a number of technical results in preparation for
Section 6 where we give the proofs for Theorems 2, 3, and 5.

2.3 Bounds and asymptotics

The formula for the number of nilpotent semigroups of degree 3 up to isomorphism or anti-
isomorphism in Theorem 3 provides a new lower bound for the number of semigroups up to
isomorphism or anti-isomorphism of a given size. Presumably this bound is asymptotic,
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Table 6: Numbers of commutative nilpotent semigroups of degree 3 up to isomorphism

n number of non-isomorphic commutative nilpotent semigroups of degree 3 of order n

3 1
4 5
5 23
6 155
7 2 106
8 79 997
9 9 350 240

10 3 377 274 621
11 4 305 807 399 354
12 23 951 673 822 318 901
13 608 006 617 857 847 433 462
14 63 282 042 551 031 180 915 403 659
15 25 940 470 166 038 603 666 194 391 357 972
16 45 946 454 978 824 286 601 551 283 052 739 171 318
17 452 361 442 895 926 947 438 998 019 240 982 893 517 749 169
18 30 258 046 596 218 438 115 657 059 107 812 634 405 962 381 166 457 711
19 12 094 270 656 160 403 920 767 935 604 624 748 908 993 169 949 317 454 767 617 795

that is, the ratio tends to 1 while the order tends to infinity, although this is not a
consequence of the result for semigroups up to equality in [KRS76]. The comparison
in Table 7 shows also that the lower bound z(n)/2n! from [JMS91] seems to converge
rapidly towards our new bound. Analogous observations can be made considering only
commutative semigroups though the convergence appears slower as mentioned by Grillet
in the analysis in [Gri03].

Our formulae also yield a large qualitative improvement over the old lower bound since
they give exact numbers of nilpotent semigroups of degree 3. In particular, the provided
numbers can be used to cut down the effort required in an exhaustive search to determine
the number of semigroups of a given order, as already done for semigroups of order 9
in [Dis10].

The conjectured asymptotic behaviour of the lower bound of z(n)/2n! for the number
of semigroups of order n would imply that almost all sets of isomorphic semigroups on
{1, 2, . . . , n} are of size n!. In other words, most semigroups have trivial automorphism
group; a property that is known for various types of algebraic and combinatorial objects,
for example graphs [ER63]. Our formulae could help to prove this conjecture at least for
nilpotent semigroups of degree 3. In each summand in (1) those semigroups of degree 3
are counted for which a bijection with cycle structure corresponding to the partitions j
and k is an automorphism. It remains to estimate the contribution of all summands that
do not correspond to the identity map.
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Table 7: Numbers of semigroups and nilpotent semigroups of degree 3

number of semigroups number of semigroups of
n up to isomorphism degree 3 up to isomorphism lower bound dz(n)/2n!e

or anti-isomorphism or anti-isomorphism

3 18 1 1
4 126 8 4
5 1 160 84 49
6 15 973 2 660 2 146
7 836 021 609 797 589 691
8 1 843 120 128 1 831 687 022 1 827 235 556
9 52 989 400 714 478 52 966 239 062 973 52 952 220 887 436

10 unknown 12 417 282 095 522 918 811 12 416 804 146 790 463 082

3 Construction of nilpotent semigroups of degree 2

or 3

In this section we describe how to construct nilpotent semigroups of degree 2 or 3 on an
n-element set. A similar construction is given in [KRS76]. For the sake of brevity we will
denote by [n] the set {1, 2, . . . , n} where n ∈ N.

Definition 6. Let n > 2, let A be a non-empty proper subset of [n], and let B denote
the complement of A in [n]. If z ∈ B is arbitrary and ψ : A × A → B is any function,
then we can define multiplication on [n] by

xy =

{
ψ(x, y) if x, y ∈ A
z otherwise.

(3)

We will denote the set [n] with the operation given above by H(A,ψ, z).

Any product abc in H(A,ψ, z) equals z, and so the multiplication defined in (3) is
associative. It follows that H(A,ψ, z) is a nilpotent semigroup of degree 2 or 3. The
semigroup H(A,ψ, z) has degree 2 if and only if H(A,ψ, z) is a zero semigroup if and
only if ψ is the constant function with value z. Conversely, if T is a nilpotent semigroup
of degree 3 with elements [n], then setting A = T \T 2, letting ψ : A×A→ T 2 be defined
by ψ(x, y) = xy for all x, y ∈ T , and setting z to be the zero element of T , we see that
T = H(A,ψ, z). Therefore when enumerating nilpotent semigroups of degree 3 it suffices
to consider the semigroups H(A,ψ, z).

4 Semigroups and commutative semigroups of degree

3 up to equality

Denote by Zn the set of nilpotent semigroups of degree 3 on {1, 2, . . . , n}. A formula for
the cardinality of a proper subset of Zn is stated in Theorem 15.3 of [JMS91]. However, the
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formula given in [JMS91] actually yields |Zn| and this is what the proof of the theorem
in [JMS91] shows. Similarly, the formula in Theorem 15.8 of [JMS91] can be used to
determine the number of all commutative semigroups in Zn even though the statement
says otherwise. For the sake of completeness and to avoid confusion we prove that the
formulae as given in Theorem 1 are correct.

Proof of Theorem 1. In both parts of the proof, we let A be a fixed non-empty proper
subset of [n] = {1, 2, . . . , n}, let B denote the complement of A in [n], let m = |B|, and
let z ∈ B be fixed. We consider semigroups of the form H(A,ψ, z) where ψ : A×A→ B
as given in Definition 6.

(i). The number of functions from A × A to B is m(n−m)2 . To avoid counting semi-
groups twice for different m, we will only consider those functions ψ where every element
in B \ {z} appears in the image of ψ. For a subset X of B \ {z} of size i, there are
(m − i)(n−m)2 functions with no element from X in their image. Using the Inclusion-
Exclusion Principle, the number of functions from A × A to B with image containing
B \ {z} is

m−1∑
i=0

(−1)i
(
m− 1

i

)
(m− i)(n−m)2 . (4)

The function ψ is defined on a set with (n−m)2 elements. Hence the condition that
B \ {z} is contained in the image of ψ implies that m − 1 6 (n − m)2. Reformulation
yields

m 6 n+ 1/2−
√
n− 3/4. (5)

If m = 1, then every function ψ : A × A → B is constant, and so, as mentioned above,
H(A,ψ, z) is not nilpotent of degree 3. Summing (4) over all appropriate values of m, the(
n
m

)
choices for B and the m choices for z ∈ B concludes the proof of this part.

(ii). If H(A,ψ, z) is a commutative semigroup, then the function ψ : A × A → B is
defined by its values on pairs (i, j) with i 6 j. There are (n−m)(n−m+ 1)/2 such pairs
and hence there are m(n−m)(n−m+1)/2 such functions ψ.

The rest of the proof follows the same steps as the proof of part (i) withm(n−m)(n−m+1)/2

replacing m(n−m)2 and where the inequality m − 1 6 (n − m)(n − m + 1)/2 yields the
parameter c(n).

5 Power group enumeration

In this section, we shall introduce the required background material relating to power
group enumeration and determine the cycle indices of certain power groups necessary to
prove our main theorems. The presentation in this section is based on [HP73].

Let X be a non-empty set and let SX denote the symmetric group on X. We again
denote the set {1, 2, . . . , n} by [n], and will write Sn instead of SX if X = [n]. For a
permutation π ∈ SX , let δ(π, k) denote the number of cycles of length k in the disjoint
cycle decomposition of π.
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Definition 7. Let G be a subgroup of Sn. Then the polynomial

Z(G;x1, x2, . . . , xn) =
1

|G|
∑
g∈G

n∏
k=1

x
δ(g,k)
k

is called the cycle index of the group G; in short, we write Z(G).

The cycle structure of a permutation π ∈ Sn corresponds to a partition of n, and all
elements with the same cycle structure form a conjugacy class of Sn. Remember that if
j is a partition of n, written as j ` n, then we denote by ji the number of summands
equalling i. This yields ji = δ(π, i) for all i and for each element π in the conjugacy class
corresponding to j. This observation allows us to write the cycle index of the symmetric
group in a compact form.

Lemma 8 ([HP73, (2.2.5)]). The cycle index of Sn is

Z(Sn) =
∑
j`n

(
n∏
i=1

ji!i
ji

)−1 n∏
a=1

xjaa .

In what follows we require actions other than the natural action of the symmetric
group SX on X. In particular, we require actions on functions in which two groups act
independently on the domains and on the images of the functions. If G is a group acting
on a set X, then we denote by xg the image of x ∈ X under the action of g ∈ G.

Definition 9. Let A and B be subgroups of SX and SY , respectively, where X and Y
are finite disjoint sets. Then we define an action of the group A × B on the set Y X of
functions from X to Y in the following way: the image of f ∈ Y X under (α, β) ∈ A× B
is given by

f (α,β)(x) = (f (xα))β

for all x ∈ X. We will refer to A×B with this action as a power group.

The cycle index itself is not required for the power groups used in this paper. Of
interest is the constant form of the Power Group Enumeration Theorem given below,
which states the number of orbits under the action of a power group. The result goes
back to de Bruijn [dB59], but is presented here in the form given in [HP73, Section 6.1].

Theorem 10. Let A × B be a power group acting on the functions Y X as in Definition
9. Then the number of orbits of A×B on Y X equals

1

|B|
∑
β∈B

Z(A; c1(β), c2(β), . . . , c|X|(β)),

where
ci(β) =

∑
d|i

d δ(β, d).
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To apply Theorem 10 in the enumeration of nilpotent semigroups of degree 3 we require
the cycle indices of the specific group actions defined below.

Definition 11. Let A be a group acting on a set X. Then we define:

(i) by A×2 the group A acting on X ×X componentwise, that is,

(x1, x2)
α = (xα1 , x

α
2 )

for α ∈ A;

(ii) by 2A×2 the group S2 × A acting on X ×X by

(x1, x2)
(π,α) = (xα1π , x

α
2π)

for α ∈ A and π ∈ S2.

(iii) by A{2} the group A acting pointwise on the set {{x1, x2} | xi ∈ X} of subsets of a
set X with 1 or 2 elements, that is,

{x1, x2}α = {xα1 , xα2}

for α ∈ A.

We will show in Section 6 that it is possible to distinguish nilpotent semigroups of
degree 3 of the form H(A,ψ, z) as defined in Definition 6 up to isomorphism, and up
to isomorphism or anti-isomorphism, by determining the orbit the function ψ belongs to
under certain power groups derived from the actions in Definition 11.

In the next lemma, we obtain the cycle indices of the groups S×2n , S
{2}
n , and 2S×2n using

the cycle index of Sn given in Lemma 8.

Lemma 12. For n ∈ N the following hold:

(i) the cycle index of S×2n is

Z(S×2n ) =
∑
j`n

(
n∏
i=1

ji! i
ji

)−1 n∏
a,b=1

x
jajb gcd(a,b)
lcm(a,b) ;

(ii) the cycle index of 2S×2n is

Z(2S×2n ) =
1

2
Z(S×2n ) +

1

2

∑
j`n

(
n∏
i=1

ji! i
ji

)−1 n∏
a=1

(
qjaa p

j2a−ja
a,a

a−1∏
b=1

p2jajba,b

)
,

where pa,b = x
ab/ lcm(2,a,b)
lcm(2,a,b) and

qa =


xax

(a−1)/2
2a if a ≡ 1 mod 2

xaa if a ≡ 0 mod 4

x2a/2x
a−1
a if a ≡ 2 mod 4;
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(iii) the cycle index of S
{2}
n is

Z(S{2}n ) =
∑
j`n

(
n∏
i=1

ji!i
ji

)−1 bn/2c∏
a=1

ra

b(n+1)/2c∏
a=1

sa

n∏
a=1

ta

(
a−1∏
b=1

x
jajb gcd(a,b)
lcm(a,b)

)
,

where the monomials are ra = xj2aa xaj2a2a , sa = x
aj2a−1

2a−1 , and ta = x
a(j2a−ja)/2
a .

Proof. (i). By definition each permutation in Sn induces a permutation in S×2n . Let
α ∈ Sn and let za and zb be two cycles thereof with length a and b respectively. Consider
the action of α on those pairs in [n] × [n] which have as first component an element in
za and as second component an element in zb. Let (i, j) ∈ [n] × [n] be one such pair.
Since iα

k
= i if and only if a divides k, and jα

k
= j if and only if b divides k, the pair

(i, j) is in an orbit of length lcm(a, b). The total number of pairs with first component in
za and second component in zb equals ab. Hence the number of orbits equals gcd(a, b).
Repeating this consideration for every pair of cycles in α leads to

n∏
a,b=1

x
δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b)

as the summand corresponding to α in the cycle index Z(S×2n ). This yields

Z(S×2n ) =
1

n!

∑
α∈Sn

n∏
a,b=1

x
δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b) .

That the contribution of α to Z(S×2n ) only depends on its cycle structure allows us to
replace the summation over all group elements by a summation over partitions of n; one
for each conjugacy class of Sn. The number of elements with cycle structure associated
to a partition j ` n equals n!/

∏n
i=1 ji! i

ji . Therefore

Z(S×2n ) =
1

n!

∑
j`n

n!∏n
i=1 ji! i

ji

n∏
a,b=1

x
jajb gcd(a,b)
lcm(a,b) ,

and cancelling the factor n! concludes the proof.
(ii). For elements (id{1,2}, α) ∈ 2S×2n the contribution to the cycle index of 2S×2n equals

the contribute of α to Z(S×2n ) given in (i). It is rearranged as follows to illustrate which
contributions come from identical cycles and which from disjoint cycles:

n∏
a,b=1

x
δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b) =

n∏
a=1

(
xaδ(α,a)a xa(δ(α,a)

2−δ(α,a))
a

∏
b<a

x
2δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b)

)
.

For group elements of the form ((1 2), α) the contribution is going to be deduced from
the one of α. Let za and zb again be two cycles in α of length a and b respectively,
and assume at first, they are disjoint. Then za and zb induce 2 gcd(a, b) orbits of length
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lcm(a, b) on the 2ab pairs in [n] × [n] with one component from each of the two cycles.
Let

ω =
{

(i1, j1), (i2, j2), . . . , (ilcm(a,b), jlcm(a,b))
}

(6)

be such an orbit. Then

ω̄ =
{

(j1, i1), (j2, i2), . . . , (jlcm(a,b), ilcm(a,b))
}

(7)

is another one. The set ω ∪ ω̄ is closed under the action of ((1 2), α). In how many orbits
ω∪ ω̄ splits depends on the parity of a and b. Acting with ((1 2), α) on (i1, j1) for lcm(a, b)
times gives (i1, j1) if lcm(a, b) is even and (j1, i1) if lcm(a, b) is odd. Hence the two orbits
ω and ω̄ merge to one orbit in the latter case and give two new orbits of the original
length otherwise. This yields the monomial

x
2ab/ lcm(2,a,b)
lcm(2,a,b) =

{
x
2 gcd(a,b)
lcm(a,b) if lcm(a, b) ≡ 0 mod 2

x
gcd(a,b)
2 lcm(a,b) if lcm(a, b) ≡ 1 mod 2,

which appears δ(α, a)δ(α, b) times if a 6= b and (δ(α, a)2 − δ(α, a))/2 times if a = b.
Let za and zb now be identical and equal to the cycle (i1i2 · · · ia). The contribution to

the monomial of α is the factor xaa. The orbits are of the form

{(ig, ih) | 1 6 g, h 6 a, g ≡ h+ s mod a}

for 0 6 s 6 a − 1. For s = 0 the orbit consists of pairs with equal entries, that is,
{(i1, i1), (i2, i2) . . . (ia, ia)}, and thus stays the same under ((1 2), α). For an orbit ω =
{(ig, ih) | 1 6 g, h 6 a, g ≡ h + s mod a} with s 6= 0 define ω̄ as in (7). If ω 6= ω̄ one
argues like in the case of two disjoint cycles and gets the result depending on the parity
of a. Note that ω = ω̄ if and only if s = a/2. In particular this does not occur for a odd
in which case

xax
(a−1)/2
2a

is the factor contributed to the monomial of ((1 2), α). If on the other hand a is even, one
more case split is needed to deal with the orbit

ω = {(ig, ih) | 1 6 g, h 6 a, g ≡ h+ a/2 mod a}.

Acting with ((1 2), α) on (ia, ia/2) for a/2 times gives (ia, ia/2) if a/2 is odd and (ia/2, ia)
if a/2 is even. Thus ω splits into two orbits of length a/2 in the former case and stays
one orbit in the latter. The resulting factors contributed to the monomial of ((1 2), α) are
therefore

xaa if a ≡ 0 mod 4

x2a/2x
a−1
a if a ≡ 2 mod 4.

Following the analysis for all pairs of cycles in α leads to the contribution of ((1 2), α)
to the cycle index. Summing as before over all partitions of n, which correspond to the
different cycle structures, proves the formula for Z(2S×2n ).
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(iii). To compute Z(S
{2}
n ) let ω and ω̄ as in (6) and (7) be orbits for two cycles za

and zb from α ∈ Sn acting on [n]× [n]. If the two cycles za and zb are disjoint then both
ω and ω̄ correspond to the same orbit{

{i1, j1}, {i2, j2}, . . . , {ilcm(a,b), jlcm(a,b)}
}

of α acting on [n]{2}. The contribution to the monomial of α in Z(S
{2}
n ) is therefore

x
gcd(a,b)
lcm(a,b). Let za and zb now be identical and equal to the cycle (i1i2 · · · ia). In S×2n this

gave rise to the orbits {(ig, ih) | 1 6 g, h 6 a, g ≡ h + s mod a} for 0 6 s 6 a − 1. The

corresponding orbit under S
{2}
n for s = 0 becomes {{i1}, {i2}, . . . , {ia}}. All other orbits

become {{ig, ih} | 1 6 g, h 6 a, g ≡ h + s mod a} in the same way as before, but these
are identical for s and a − s. This yields one further exception if a is even and s = a/2,
in which case the orbit collapses to {{ig, ig+a/2} | 1 6 g 6 a/2}. In total, identical cycles
lead to the monomials

xa/2x
a/2
a if a ≡ 0 mod 2

x(a+1)/2
a if a ≡ 1 mod 2.

Summing once more over conjugacy classes and making the case split depending on the
parity proves the formula for Z(S

{2}
n ).

Formulae like those in the previous lemma for slightly different actions are given
in [HP73, (4.1.9)] and [HP73, (5.1.5)]. The proof techniques used here are essentially
the same as in [HP73].

6 Proofs of the main theorems

In this section, we prove Theorem 2. The proofs of Theorems 3, and 5 are very similar
to the proof of Theorem 2, and so, for the sake of brevity we show how to obtain these
proofs from the one presented, rather than giving the proofs in detail.

We consider the following sets of nilpotent semigroups of degree 3: for m,n ∈ N with
2 6 m 6 n− 1 we define

Zn,m = {H([n] \ [m], ψ, 1) | ψ : [n] \ [m]× [n] \ [m]→ [m] with [m] \ {1} ⊆ im(ψ) } ,

where H([n] \ [m], ψ, 1) is as in Definition 6, and [n] is short for {1, 2, . . . , n}, as before.
From this point on, we will only consider semigroups belonging to Zn,m, and so we write
H(ψ) instead of H([n] \ [m], ψ, 1).

If H(ψ) ∈ Zn,m is commutative, then we define a function ψ′ from the set of subsets
of [n] with 1 or 2 elements to [m] by

ψ′{i, j} = ψ(i, j) (8)

for i 6 j. Since the equality ψ(i, j) = ψ(j, i) holds for all i, j, the function ψ′ is well-
defined. Moreover, every function from the set of subsets of [n] with 1 or 2 elements to [m]
is induced in this way by a function ψ such that H(ψ) ∈ Zn,m and H(ψ) is commutative.
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Lemma 13. Let S be a nilpotent semigroup of degree 3 with n elements. Then S is
isomorphic to a semigroup in Zn,m if and only if m = |S2|.

Proof. Let z denote the zero element of S, and let f : S → [n] be any bijection such that
f(z) = 1 and f(S2) = [m]. Then define ψ : ([n] \ [m])× ([n] \ [m])→ [m] by

ψ(i, j) = f(f−1(i)f−1(j)).

Now, since S is nilpotent, if x ∈ [m] \ {1}, there exist s, t ∈ S \ S2 such that f(st) = x.
Thus ψ(f(s), f(t)) = x and [m] \ {1} ⊆ im(ψ). Hence H(ψ) ∈ Zn,m and it remains to
show that f is an isomorphism. If x, y ∈ S \ S2, then f(x)f(y) = ψ(f(x), f(y)) = f(xy).
Otherwise, x ∈ S2 or y ∈ S2, in which case f(x)f(y) = 1 = f(z) = f(xy).

It follows from Lemma 13 that we can determine the number of isomorphism types in
each of the sets Zn,m independently. Of course, if S is a nilpotent semigroup of degree 3
and m = |S2|, then it is not true in general that there exists a unique semigroup in Zn,m
isomorphic to S. Instead isomorphisms between semigroups in Zn,m induce an equivalence
relation on the functions ψ, which define the semigroups in Zn,m.

If H(ψ) ∈ Zn,m and T is a nilpotent semigroup of degree 3 such that H(ψ) ∼= T , then
there exists π ∈ Sn such that Sπ = T . Hence T ∈ Zn,m if and only if π stabilises [n] \ [m]
and {1} – and hence [m] \ {1} – setwise. In particular, the action of π on the domain
and range of ψ are independent, and so equivalence can be captured using a power group
action.

Lemma 14. For m,n ∈ N with 2 6 m 6 n−1 let H(ψ), H(χ) ∈ Zn,m, and let Um denote
the pointwise stabiliser of 1 in Sm. Then the following hold:

(i) the semigroups H(ψ) and H(χ) are isomorphic if and only if ψ and χ are in the
same orbit under the power group S×2[n]\[m] × Um;

(ii) the semigroups H(ψ) and H(χ) are isomorphic or anti-isomorphic if and only if ψ
and χ are in the same orbit under the power group 2S×2[n]\[m] × Um.

If in addition H(ψ) and H(χ) are commutative, then:

(iii) the semigroups H(ψ) and H(χ) are isomorphic if and only if ψ′ and χ′ (as defined

in (8)) are in the same orbit under the power group S
{2}
[n]\[m] × Um.

Proof. (i). (⇒) By assumption there exists π ∈ Sn such that π : H(ψ) → H(χ) is an
isomorphism. From the comments before the lemma, π stabilises [n] \ [m] and 1, and so
there exist τ ∈ Um and σ ∈ S[n]\[m] such that τσ = π. Then for all x, y ∈ [n] \ [m]

ψ(x, y) = (ψ(x, y)π)π
−1

= (χ(xπ, yπ))π
−1

= (χ(xσ, yσ))τ
−1

.

It follows that χ acted on by (σ, τ−1) ∈ S×2[n]\[m] × Um equals ψ, as required.

(⇐) As ψ and χ lie in the same orbit under the action of the power group S×2[n]\[m]×Um,

there exist σ ∈ S[n]\[m] and τ ∈ Um such that ψ(σ,τ) = χ. Let π = στ−1 ∈ Sn. We will
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show that π is an isomorphism from H(ψ) to H(χ). Let x, y ∈ [n] be arbitrary. If
x, y ∈ [n] \ [m], then

xπyπ = ψ(xσ, yσ) = (ψ(xσ, yσ)τ )τ
−1

= (ψ(σ,τ)(x, y))τ
−1

= (χ(x, y))τ
−1

= (xy)π.

If x ∈ [n] \ [m] and y ∈ [m], then (xy)π = 1π = 1 = xσyτ
−1

= xπyπ. The case when
x ∈ [m] and y ∈ [n] \ [m] and the case when x, y ∈ [m] follow by similar arguments.

(ii). In this part of the proof we write (α, β, γ) instead of ((α, β), γ) when referring
to elements of 2S×2[n]\[m] × Um.

(⇒) If H(ψ) and H(χ) are isomorphic, then, by part (i), the functions ψ and χ are
in the same orbit under the action of S×2[n]\[m] × Um. Since S×2[n]\[m] × Um is contained

in 2S×2[n]\[m] × Um, it follows that ψ and χ are in the same orbit under the action of

2S×2[n]\[m] × Um.

If H(ψ) and H(χ) are not isomorphic, then there exists π ∈ Sn such that π : H(ψ)→
H(χ) is an anti-isomorphism. As in the proof of part (i), there exist τ ∈ Um and σ ∈
S[n]\[m] such that π = τσ. Then, for all x, y ∈ [n] \ [m],

ψ(x, y) = (ψ(x, y)π)π
−1

= (χ(yπ, xπ))π
−1

= (χ(yσ, xσ))τ
−1

= χ(σ,τ−1)(y, x).

Hence χ acted on by ((1 2), σ, τ−1) ∈ 2S×2[n]\[m] × Um equals ψ.

(⇐) If ψ = χ(id{1,2},σ,τ) for some (id{1,2}, σ, τ) ∈ 2S×2[n]\[m] × Um, then H(ψ) and H(χ)

are isomorphic by part (i). So, we may assume that ψ = χ((1 2),σ,τ). Let π = στ−1 ∈ Sn.
We show that π is an anti-isomorphism from H(ψ) to H(χ). Let x, y ∈ [n] be arbitrary.
If x, y ∈ [n] \ [m], then

xπyπ = ψ(xσ, yσ) = (ψ(xσ, yσ)τ )τ
−1

= (ψ((1 2),σ,τ)(y, x))τ
−1

= (χ(y, x))τ
−1

= (yx)π.

If x ∈ [n] \ [m] and y ∈ [m], then (xy)π = 1π = 1 = yτ
−1
xσ = yπxπ. The case when

x ∈ [m] and y ∈ [n] \ [m] and the case when x, y ∈ [m] follow by similar arguments.
(iii). The proof follows from (i) and the observation that ψ′ and χ′ are in the same

orbit under S
{2}
[n]\[m]×Um if and only if ψ and χ are in the same orbit under S×2[n]\[m]×Um.

Lemma 14(i) shows that the number of non-isomorphic semigroups in Zn,m equals the
number of orbits of functions defining semigroups in Zn,m under the appropriate power
group action. Together with Theorem 10 this provides the essential information required
to prove the formula given in Theorem 2 for the number of nilpotent semigroups of degree
3 of order n up to isomorphism.

Proof of Theorem 2. Denote by Uq the stabiliser of 1 in Sq. We shall first show that
N(p, q) is the number of orbits of the power group S×2[p]\[q] × Uq on functions from ([p] \
[q])× ([p] \ [q]) to [q]. By Theorem 10 the latter equals

1

(q − 1)!

∑
β∈H

Z(S×2[p]\[q]; c1(β), . . . , c(p−q)2(β)), (9)
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where
ci(β) =

∑
d|i

dδ(β, d).

If β ∈ Uq, then Z(S×2[p]\[q]; c1(β), . . . , c(p−q)2(β)) only depends on the cycle structure of β
and is therefore an invariant of the conjugacy classes of Uq. These conjugacy classes are
in 1-1 correspondence with the partitions of q−1. If j is a partition of q−1 corresponding
to the conjugacy class of β, then δ(β, 1) = j1 + 1 and δ(β, i) = ji for i = 2, . . . , q − 1
(where ji denotes, as before, the number of summands in j equalling i). This yields that
ci(β) = 1 +

∑
d|i d jd. The size of the conjugacy class in Uq corresponding to the partition

j is (q − 1)!/
∏q−1

i=1 ji! i
ji . Hence summing over conjugacy classes in (9) gives:

∑
j`q−1

(
q−1∏
i=1

ji! i
ji

)−1
Z

S×2[p]\[q]; 1 +
∑
d|1

djd, . . . , 1 +
∑

d|(p−q)2
djd

 . (10)

Substituting the cycle index of S×2[p]\[q] from Lemma 12(i) into (10) yields the formula given

in the statement of the Theorem for N(p, q).
By Lemma 14(i), the number of non-isomorphic semigroups in Zn,m for m ∈ N with

2 6 m 6 n−1 equals the number of orbits under the power group S×2[n]\[m]×Um of functions

from ([n] \ [m]) × ([n] \ [m]) to [m] having [m] \ {1} in their image. The orbits counted
in N(n,m) include those of functions which do not contain [m] \ {1} in their image. The
number of such orbits equals N(n − 1,m − 1), the number of orbits of functions with
one fewer element in the image set. Hence the number of non-isomorphic semigroups in
Zn,m equals N(n,m) −N(n − 1,m − 1). With Lemma 13, it follows that the number of
non-isomorphic nilpotent semigroups of degree 3 with n elements is

a(n)∑
m=2

(N(m,n)−N(m− 1, n− 1)) where a(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
.

Replacing the cycle index in (9) by that of 2S×2[p]\[q] and S
{2}
[p]\[q] proves Theorems 3 and 5,

respectively, using the same argument as above.
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