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Abstract

A rainbow matching in an edge-colored graph is a matching in which all the edges
have distinct colors. Wang asked if there is a function f(δ) such that a properly edge-
colored graph G with minimum degree δ and order at least f(δ) must have a rainbow
matching of size δ. We answer this question in the affirmative; an extremal approach
yields that f(δ) = 98δ/23 < 4.27δ suffices. Furthermore, we give an O(δ(G)|V (G)|2)-
time algorithm that generates such a matching in a properly edge-colored graph of
order at least 6.5δ.

Keywords: Rainbow matching, properly edge-colored graphs

1 Introduction

All graphs under consideration in this paper are simple, and we let δ(G) and ∆(G) denote
the minimum and maximum degree of a graph G, respectively. In this paper, we consider
edge-colored graphs and let c(uv) denote the color of the edge uv. An edge coloring of a
graph is proper if the colors on edges sharing an endpoint are distinct. An edge-colored
graph is rainbow if all edges have distinct colors. Rainbow matchings are of particular
interest given their connection to transversals of Latin squares: each Latin square can be
converted to a properly edge-colored complete bipartite graph, and a transversal of the Latin
square is a rainbow perfect matching in the graph. Ryser’s conjecture [9] that every Latin
square of odd order has a transversal can be seen as the beginning of the study of rainbow
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matchings. Stein [10] later conjectured that every Latin square of order n has a transversal
of size n − 1; equivalently every proper edge-coloring Kn,n has a rainbow matching of size
n−1. The connection between Latin transversals and rainbow matchings in Kn,n has inspired
additional interest in the study of rainbow matchings in triangle-free graphs. A thorough
survey of rainbow matching and other rainbow subgraphs in edge-colored graphs appears in
[6].

Several results have been attained for rainbow matchings in arbitrarily edge-colored
graphs. The color degree of a vertex v in an edge-colored graph G, written d̂(v), is the
number of distinct colors on edges incident to v. We let δ̂(G) denote the minimum color
degree among the vertices in G. Wang and Li [12] proved that every edge-colored graph

G contains a rainbow matching of size at least
⌈
5δ̂(G)−3

12

⌉
, and conjectured that a rainbow

matching of size
⌈
δ̂(G)/2

⌉
exists if δ̂(G) > 4. LeSaulnier et al. [8] then proved that every

edge-colored graph G contains a rainbow matching of size
⌊
δ̂(G)/2

⌋
. Finally, Kostochka and

Yancey [5] proved the conjecture of Wang and Li in full, and also that triangle-free graphs
have rainbow matchings of size

⌈
2δ̂(G)/3

⌉
.

Since the edge-colored graphs generated by Latin squares are properly edge-colored, it is
of interest to consider rainbow matchings in properly edge-colored graphs. In this direction,
LeSaulnier et al. proved that a properly edge-colored graph G satisfying |V (G)| 6= δ(G) + 2
that is not K4 has a rainbow matching of size dδ(G)/2e. Wang then asked if there is a
function f such that a properly edge-colored graph G with minimum degree δ and order at
least f(δ) must contain a rainbow matching of size δ [11]. As a first step towards answering
this question, Wang showed that a graph G with order at least 8δ/5 has a rainbow matching
of size b3δ(G)/5c.

Since there are n× n Latin squares with no transversals when n is even (see [1, 14]), for
such a function f it is clear that f(δ) > 2δ when δ is even. Furthermore, since maximum
matchings in Kδ,n−δ have only δ edges (provided n > 2δ), there is no function for the order
of G depending on δ(G) that can guarantee a rainbow matching of size greater than δ(G).

In this paper we answer Wang’s question from [11] in the affirmative, proving that a
linear number of vertices in terms of the minimum degree suffices.

Theorem 1. If G is a properly edge-colored graph satisfying |V (G)| > 98δ(G)/23, then G
contains a rainbow matching of size δ(G).

Independently, Wang, Zhang, and Liu [13] also answering Wang’s question in the affir-
mative, proving that a properly edge-colored graph G with at least (δ(G)2 + 4δ(G) − 4)/4
vertices has a rainbow matching of size δ(G).

The proof of Theorem 1 utilizes extremal techniques akin to those that appear in [5, 8, 11]
and [12]. We also implement a greedy algorithmic approach to demonstrate that it is possible
to efficiently construct a rainbow matching of size δ in a properly edge-colored graph with
minimum degree δ having order at least 6.5δ. To our knowledge, an algorithmic approach
of this type has not been previously employed in the study of rainbow matchings.

the electronic journal of combinatorics 19(2) (2012), #P52 2



Theorem 2. If G is a properly edge-colored graph with minimum degree δ satisfying |V (G)| >
13
2
δ − 23

2
+ 41

8δ
, then there is an O(δ(G)|V (G)|2)-time algorithm that produces a rainbow

matching of size δ in G.

As a contrast, Itai, Rodeh, and Tanimota [4] proved that determining if an edge-colored
graph G has a rainbow matching of size k is NP-complete, even if G is bipartite. More
recently, Le and Pfender [7] have shown that the problem of determining the maximum size
of a rainbow matching in a properly edge-colored graph is NP-hard, even when restricted to
properly edge-colored paths.

2 Proof of Theorem 1

Let G be a properly edge-colored n-vertex graph with minimum degree δ and n > 98δ/23.
The theorem holds easily if δ 6 2, so we may assume that δ > 3. By way of contradiction,
let G be a counterexample with δ minimized; thus G does not contain a rainbow matching
of size δ. Further, we may assume that |E(G)| is minimized, so in particular the vertices of
degree greater than δ form an independent set, as otherwise we could delete an edge without
lowering the minimum degree. We break the proof into a series of simple claims.

Let ∆(G) = d1 > d2 > . . . > dn = δ with d(vi) = di be the degree sequence of G.

Lemma 3. For 1 6 k 6 2δ/3, there exists an i 6 k such that di 6 3δ − k − 2i.

Proof. Suppose that for some k 6 2δ/3, di > 3δ + 1 − k − 2i for all 1 6 i 6 k. It follows
that di > δ for i 6 k, and therefore {v1, . . . , vk} is an independent set. Delete the vertices
v1, v2, . . . , vk from G, and note that δ(G \ {v1, . . . , vk}) > δ − k. By the minimality of G,
there exists a rainbow matching Mk of size δ − k in G \ {v1, . . . , vk}.

The vertex vk has at most 2(δ − k) neighbors in Mk, and is incident to at most δ − k
edges colored with colors occurring in Mk. Thus, vk has a neighbor wk /∈ V (Mk) such that
the color of vkwk does not occur in Mk, and we can extend Mk by adding the edge vkwk;
call the resulting rainbow matching Mk−1. Note that wk 6= vi for i 6 k as {v1, . . . vk} is an
independent set.

The jth iteration of this process produces a rainbow matching Mk−j of size δ − k + j
that contains {vk, . . . , vk−j+1}. Hence vk−j has at most 2(δ − k) + j neighbors in Mk−j and
is incident to at most δ− k+ j edges colored with colors occurring in Mk−j. Thus there is a
vertex wk−j ∈ N(vk−j) such that the edge vk−jwk−j extends Mk−j to a (δ − k + j + 1)-edge
rainbow matching Mk−(j+1). Continuing in this fashion extends the matching Mk by k edges,
yielding a rainbow matching of size δ, a contradiction finishing the proof.

As a corollary of Lemma 3, we obtain the following.

Lemma 4. For 1 6 k 6 2δ/3, we have
∑k

i=1 di 6 k(3δ − 2 − k), with equality only if
d1 = dk = 3δ − 2− k.
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Proof. We proceed by induction on k. For k = 1, the statement follows from Lemma 3. Now
let k > 1 and let i 6 k such that di 6 3δ − k − 2i. By induction,

i−1∑
j=1

dj 6 (i− 1)(3δ − 1− i), and

k∑
j=i

dj 6 (k − i+ 1)di 6 (k − i+ 1)(3δ − k − 2i).

Thus,

k∑
j=1

dj 6 (i−1)(3δ−1−i)+(k−i+1)(3δ−k−2i) = 3kδ−k2−k+1−i(k+2−i) 6 k(3δ−2−k)

and equality holds only if i = 1 and d1 = dk = 3δ − 2− k.

Let C be a maximum color class in G and let |C| = a. By the minimality of G, there
exists a rainbow matching M = {xiyi : 1 6 i 6 δ− 1} of size δ− 1 in G−C. Without loss of
generality, we may assume that c(xiyi) = i for 1 6 i 6 δ−1 and the edges in C have color δ.
Let W = V (G)\V (M); observe that |W | = n − 2(δ − 1). If there is an edge e in G[W ]
with c(e) /∈ {1, . . . , δ − 1} then we can add e to M to obtain a rainbow matching of size δ.
Thus we may assume that every edge whose color is not in {1, . . . , δ − 1} has an endpoint
in V (M). An edge uv is good if its color is not in {1, . . . , δ − 1} and one of its endpoints is
in W . A vertex v ∈ V (M) is good if v is incident with at least seven good edges.

Claim 5. For i ∈ {1, . . . , δ−1}, if xi is incident with at least three good edges, then no good
edge is incident with yi, and vice versa.

Proof. Suppose that yiu is a good edge. If xi is incident with at least three good edges,
then x has a neighbor w such that vw is a good edge, w 6= u, and c(xiw) 6= c(yiu). Thus
(M ∪ {xiw, yiu})\{xiyi} is a rainbow matching of size δ, a contradiction.

By Claim 5, we may assume without loss of generality that {x1, . . . , xr} is the set of good
vertices for some r > 0. Let W ′ = W ∪ {y1, . . . , yr}.

Claim 6. No edge uv in G[W ′] has color in {1, . . . , r}.

Proof. By way of contradiction, assume that there is an edge uv in G[W ′] such that c(uv) ∈
{1, . . . , r}. Let M ′ be the subset of M consisting of the edge with color c(uv) and any edges
with an endpoint in {u, v}. There are at most three such edges (the edge with color c(uv)
and possibly one for each endpoint); without loss of generality, let M ′ = {x1y1, . . . , xtyt}
(here 1 6 t 6 3). Note that xj is a good vertex for 1 6 j 6 t. Thus there are distinct
vertices w1, . . . , wt such that xjwj is a good edge for 1 6 j 6 t and the colors on the
edges uv, x1w1, . . . , xtwt are distinct. Thus (M ∪ {uv, x1w1, . . . , xtwt})\{x1y1, . . . , xtyt} is a
rainbow matching of size δ, a contradiction.
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An edge uv is nice if its color is not in {r+1, . . . , δ−1} and one of its endpoints is in W ′.
Note that every good edge is nice. Recall that every good edge has an endpoint in V (M).
By Claim 5 and Claim 6, no nice edge lies in G[W ′]. Hence, every nice edge joins vertices in
W ′ and V (G)\W ′. A vertex v ∈ V (M)\{x1, . . . , xr, y1, . . . , yr} is nice if v is incident with at
least seven nice edges. Note that if there is no good vertex (i.e. r = 0), then the definitions
of good and nice vertices are the same and so there is also no nice vertex. Next, we prove
analogues of Claim 5 and Claim 6 for nice vertices and edges.

Claim 7. For i ∈ {r + 1, . . . , δ − 1}, if xi is incident with at least three nice edges, then no
nice edge is incident with yi, and vice versa.

Proof. Suppose yiu is a nice edge for some i ∈ {r+ 1, . . . , δ− 1}. If xi is incident to at least
three nice edges, then xi has a neighbor v such that xiv is a nice edge, v 6= u, and c(xiv) 6=
c(yiu). Let M ′ be the subset of M consisting of edges with an endpoint in {u, v} or a color
in {c(xiv), c(yiu)}. There are at most four such edges (possibly one with each endpoint and
one with each color); without loss of generality, let M ′ = {x1y1, . . . , xtyt} (here 0 6 t 6 4).
Note that xj is a good vertex for 1 6 j 6 t. Thus there are distinct vertices w1, . . . , wt such
that xjwj is a good edge for 1 6 j 6 t and the colors on the edges xiv, yiu, x1w1, . . . , xtwt are
distinct. Thus (M ∪ {xiv, yiu, x1w1, . . . , xtwt})\{xiyi, x1y1, . . . , xtyt} is a rainbow matching
of size δ, a contradiction.

By Claim 7, we may assume that {xr+1, xr+2, . . . , xr+s} is the set of nice vertices for some
s > 0.

Claim 8. No edge uv in G[W ′] has color in {1, . . . , r + s}.

Proof. By Claim 6, the claim holds if s = 0. Assume that s > 1, and consequently r > 1.
Without loss of generality, suppose that there is an edge uv in G[W ′] with c(uw) = r + 1.
Because xr+1 is nice, it has a neighbor v′ in W ′ such that xr+1v

′ is a nice edge and v′ 6= u, v.
Let M ′ be the subset of M consisting of those edges an endpoint in {u, v, v′} or color
c(xr+1v

′). Again there are at most four edges in M ′ and we let M ′ = {x1y1, . . . , xtyt}.
Defining w1, . . . , wt as before, (M ∪ {uv, xr+1v

′, x1w1, . . . , xtwt})\{xr+1yr+1, x1y1, . . . , xtyt}
is a rainbow matching of size δ, a contradiction.

Next, we count the number of nice edges in G.

Claim 9. There are at most max {(3δ − 8− r + s)r + 6(δ − 1), (7δ/3− 7 + s) r + 6(δ − 1)}
nice edges in G.

Proof. Recall that V (G) \W ′ = {x1, . . . , xδ−1, yr+1, . . . , yδ−1} and every nice edge joins ver-
tices from W ′ and V (G)\W ′. If r 6 2δ/3, then the set of good vertices is incident to at most
r(3δ − 2− r) nice edges by Lemma 4. Similarly, if r > 2δ/3, then the set of good vertices is
incident to at most r(3δ − 2− b2δ/3c) 6 r(7δ/3− 1) nice edges. For i ∈ {r + 1, . . . , r + s},
Claim 7 implies that xi is incident to at most r + 6 nice edges and yi is incident to none.
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For i ∈ {r + s+ 1, . . . , δ − 1}, by Claim 7 there are at most six nice edges with an endpoint
in {xi, yi}. Therefore, the number of nice edges is at most

(3δ − 2− r)r + (r + 6)s+ 6(δ − 1− r − s) = (3δ − 8− r + s)r + 6(δ − 1) if r 6 2δ/3,

and

(7δ/3− 1) r + (r + 6)s+ 6(δ − 1− r − s) = (7δ/3− 7 + s) r + 6(δ − 1) if r > 2δ/3.

Recall that C is the color class with color δ, |C| = a, and C is a maximum size color class.
Therefore there are at least 2(a− δ+ 1) vertices in W incident to an edge in C. Since every
edge in C has an endpoint in V (M) it follows that there are at least 2(a− δ + 1) vertices in
V (M) joined to W by edges in C. Without loss of generality, let {r + s + 1, . . . , r + s + t}
be the set of indices i ∈ {r + s+ 1, . . . , δ − 1} such that xi or yi is incident to an edge in C.
By Claim 5 and Claim 7, we have

t > a− δ + 1− r + s

2
and r + s+ t 6 δ − 1. (1)

Claim 10. For i ∈ {r + s+ 1, . . . , r + s+ t}, there is at most one edge of color i in G[W ].

Proof. Suppose uv and u′v′ are edges of color i in G[W ] for some i ∈ {r+s+1, . . . , r+s+t}.
Without loss of generality, we may assume that there exists w ∈ W such that c(xiw) = δ and
w 6= u, v. Hence, (M∪{uv, xiw})\{xiyi} is a rainbow matching of size δ, a contradiction.

Now we count the number of nice edges from W ′ to V (G) \W ′. Recall that each color
class in G contains at most a edges. By Claim 8, there is no edge in G[W ′] of color i ∈
{r + 1, . . . , r + s}. Thus, for i ∈ {r + 1, . . . , r + s} there are at most a − 1 vertices in
W ′ that are incident with an edge of color i. Since every color class has size at most a,
for i ∈ {r + s + 1, . . . , δ − 1} there are at most 2(a − 1) vertices in W ′ that are incident
with an edge of color i. Furthermore for i ∈ {r + s + 1, . . . , r + s + t}, Claim 10 implies
that there are at most a vertices in W that are incident with an edge of color i. Since
W ′ \W = {y1, . . . , yr}, it follows that for i ∈ {r + s + 1, . . . , r + s + t} there are at most
min{a+ r, 2(a− 1)} vertices in W ′ that are incident with an edge of color i. It then follows,
using the fact that |W ′| = |W |+ r = n− 2(δ− 1) + r and (1), that the number of nice edges
from W ′ to V (G) \W ′ is at least

δ|W ′| − (a− 1)(2δ − 2− 2r − s− 2t)−min{a+ r, 2(a− 1)}t
= δn− 2δ(δ − 1) + δr − (a− 1)(2δ − 2− 2r − s) + max{a− r − 2, 0}t.

We first consider the case when r 6 2δ/3. Applying the upper bound of (3δ − 8 − r +
s)r + 6(δ − 1) nice edges from Claim 9, we obtain

δn 6 (2δ − 8− r + s)r + 2(δ + 3)(δ − 1) + (a− 1)(2δ − 2− 2r − s)−max{a− r − 2, 0}t.
(2)

the electronic journal of combinatorics 19(2) (2012), #P52 6



To finish the proof we bound the right hand side of (2) to obtain a contradiction. Note that
the coefficient of t is nonpositive. Thus, the right hand side of (2) is maximized when t is
minimized. By (1), t > max{a− δ + 1− (r + s)/2, 0}.

If a 6 δ−1+(r+s)/2, then we let t = 0. The coefficient of a is nonnegative, and thus (2)
is maximized when a is maximized; hence we assume a = δ − 1 + (r + s)/2. Substituting
for a yields a negative quadratic in s that is maximized when s = 1 − r/2. Since s is a
nonnegative integer and s = 0 if r = 0, (2) is maximized at s = 0, which yields

δn 6 2(2δ + 1)(δ − 1) + (δ − 5− 2r)r.

This is maximized when r = (δ− 5)/4, yielding n 6 33δ/8− 13/4 + 9/(8δ), a contradiction.
If a > δ − 1 + r/2, we let t = a− δ + 1− r/2. Since t > 0, it follows that r + s 6 δ − 2.

Thus a− r− 2 > δ − 3− (r− s)/2 > δ − 3− (δ − 2)/2 = δ/2− 2. As δ > 3 and a− r− 2 is
an integer, max{a− r− 2, 0} = a− r− 2. Therefore the coefficient of s in (2) is nonpositive
and we may assume that s = 0. Consequently, (2) becomes

δn 6 (3δ − 1− r/2− a)a+ (δ − 6− 3r/2)r + 2(δ2 − 1).

The right hand side is maximized when a = 3δ/2− 1/2− r/4, so

δn 6
1

16
(−28 + 68δ2 − 24δ + 4δr − 92r − 23r2),

which is maximized when r = 2δ/23− 2. This yields

n 6 98δ/23− 2 + 4/δ,

a contradiction.
To complete the proof of the theorem, we are left with the case r > 2δ/3. Similarly

to (2), since we have at most (7δ/3− 7 + s) r+ 6(δ− 1) nice edges in G by Claim 9, we have

δn 6 (4δ/3− 7 + s) r + 2(δ + 3)(δ − 1) + (a− 1)(2δ − 2− 2r − s)−max{a− r − 2, 0}t.
(3)

Again, the right hand side of (3) is maximized when t is minimized.
If a 6 δ − 1 + (r + s)/2, then (3) is maximized when t = 0 and a = δ − 1 + r/2. Again

we may assume that s = 0, yielding

δn 6 −2 + 4δ2 − 2δ + r(δ/3− 4− r).

This is maximized when r = δ/6− 2, yielding n 6 145δ/36− 8/3 + 6/δ, a contradiction.
If a > δ − 1 + (r + s)/2, we let t = a− δ + 1− (r + s)/2 and again we may assume that

s = 0. Then, (3) becomes

δn 6
1

6
(−6a2 + 3a(6δ − 2) + 12δ2 − (3a+ 30 + 3r − 2δ)r − 12),

which is maximized when r is minimized. Since we have assumed that r > 2δ/3, we have
r = 2δ/3 and we are back in the case r 6 2δ/3, finishing the proof of the theorem.
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3 Proof of Theorem 2

We proceed by induction on δ(G). The result is trivial if δ(G) = 1. We assume that G is a
graph with minimum degree δ > 1 and order greater than 13

2
δ − 23

2
+ 41

8δ
.

Lemma 11. If G has a color class containing at least 2δ − 1 edges, then G has a rainbow
matching of size δ.

Proof. Let C be a color class with at least 2δ − 1 edges. By induction, there is a rainbow
matching M of size δ−1 in G−C. There are 2δ−2 vertices covered by the edges in M , thus
one of the edges in C has no endpoint covered by M , and the matching can be extended.

It is also useful to note that we also have the following, which is identical to Lemma 3
when k = 1.

Lemma 12. If G satisfies ∆(G) > 3δ − 3, then G has a rainbow matching of size δ.

We begin by preprocessing the graph so that each edge is incident to at least one vertex
with degree δ. To achieve this, arbitrarily order the edges in G and process them in order.
If both endpoints of an edge have degree greater than δ when it is processed, delete that
edge. In the resulting graph, every edge is incident to a vertex with degree δ. Furthermore,
by Lemma 12 we may assume that ∆(G) 6 3δ − 3; thus the degree sum of the endpoints of
any edge is bounded above by 4δ − 3. After preprocessing, we begin the greedy algorithm.

In the ith step of the algorithm, a smallest color class is chosen (without loss of generality,
color i), and then an edge ei of color i is chosen such that the degree sum of the endpoints
is minimized. All the remaining edges of color i and all edges incident with the endpoints of
ei are deleted. The algorithm terminates when there are no edges in the graph.

We assume that the algorithm fails to produce a matching of size δ in G; suppose that
the rainbow matching M generated by the algorithm has size k. We let R denote the set of
vertices that are not covered by M .

Let ci denote the size of the smallest color class at step i. Since at most two edges of
color i + 1 are deleted in step i (one at each endpoint of ei), we observe that ci+1 + 2 > ci.
Otherwise, at step i color class i + 1 has fewer edges. Let step h be the last step in the
algorithm in which a color class that does not appear in M is completely removed from G.
It then follows that ch 6 2, and in general ci 6 2(h − i + 1) for i ∈ [h]. Let fi denote the
number of edges of color i deleted in step i with both endpoints in R. Since fi < ci, we have
fi 6 2(h− i) + 1 for i ∈ [h]. Note that after step h, there are exactly k− h colors remaining
in G. By Lemma 11, color classes contain at most 2δ− 2 edges, and therefore the last k− h
steps remove at most (k − h)(2δ − 2) edges. Furthermore, for i > h, the degree sum of the
endpoints of ei is at most 2(δ − 1).

For i ∈ [h], let xi and yi be the endpoints of ei, and let di(v) denote the degree of
a vertex v at the beginning of step i. Let µi = max{0, di(xi) + di(yi) − 2δ}; note that
2δ 6 2δ + µi 6 4δ − 3. Thus, at step i, at most 2δ + µi + fi − 1 edges are removed from the
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graph. Since the algorithm removes every edge from the graph, we conclude that

|E(G)| 6 (k − h)(2δ − 2) +
h∑
i=1

(2δ + µi + fi − 1). (4)

We now compute a lower bound for the number of edges in G. Since the degree sum of
the endpoints of ei in G is at least 2δ + µi, we immediately obtain the following inequality:

nδ +
∑

i∈[h] µi

2
6 |E(G)|.

If fi > 0 and µi > 0, then there is an edge with color i having both endpoints in R. Since
this edge was not chosen in step i by the algorithm, the degree sum of its endpoints is at
least 2δ+µi, and one of its endpoints has degree at least δ+µi. For each value of i satisfying
fi > 0, we wish to choose a representative vertex in R with degree at least δ+µi. Since there
are fi edges with color i having both endpoints in R, there are fi possible representatives for
color i. Since a vertex in R with high degree may be the representative for multiple colors,
we wish to select the largest system of distinct representatives.

Suppose that the largest system of distinct representatives has size t, and let T be the
set of indices of the colors that have representatives. For each color i ∈ T there is a distinct
vertex in R with degree at least δ+µi. Thus we may increase the edge count of G as follows:

nδ +
∑

i∈[h] µi +
∑

i∈T µi

2
6 |E(G)|. (5)

We let {f ↓i } denote the sequence {fi}i∈[h] sorted in nonincreasing order. Since fi 6 2(h−
i)+1, we conclude that f ↓i 6 2(h−i)+1. Because there is no system of distinct representatives
of size t + 1, the sequence {f ↓i } cannot majorize the sequence {t + 1, t, t− 1, . . . , 1}. Hence
there is a smallest value p ∈ [t+ 1] such that f ↓p 6 t+ 1− p. Therefore, the maximum value

of
∑h

i=1 f
↓
i is bounded by the sum of the sequence {2h− 1, 2h− 3, . . . , 2(h− p) + 3, t+ 1−

p, . . . , t+ 1− p}. Summing we attain∑
i∈[h]

fi 6 (p− 1)(2h− p+ 1) + (h− p+ 1)(t+ 1− p).

Over p, this value is maximized when p = t+1, yielding
∑

i∈[h] fi 6 t(2h−t). Since h 6 δ−1,

we then have
∑

i∈[h] fi 6 2(δ − 1)t− t2.
We now combine bounds (4) and (5):

nδ +
∑

i∈[h] µi +
∑

i∈T µi

2
6 (k − h)(2δ − 2) +

h∑
i=1

(2δ + µi + fi − 1).
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Hence, since k 6 δ − 1,

nδ

2
6 (2δ − 1)(δ − 1) +

1

2

∑
[h]\T

µi +
∑
i∈[h]

fi

6 (2δ − 1)(δ − 1) + (δ − 1− t)(δ − 3/2) + 2(δ − 1)t− t2

6 3δ2 − 11

2
δ +

5

2
+

(
δ − 1

2

)
t− t2.

This bound is maximized when t = (δ − 1
2
)/2. Thus

n 6
13

2
δ − 23

2
+

41

8δ
,

contradicting our choice for the order of G.
It remains to show that this proof provides the framework of a O(δ(G)|V (G)|2)-time

algorithm that generates a rainbow matching of size δ(G) in a properly edge-colored graph
G of order at least 13

2
δ − 23

2
+ 41

8δ
. Given such a G, we create a sequence of graphs {Gi} as

follows, letting G = G0, δ = δ(G), and n = |V (G)|. First, determine δ(Gi), ∆(Gi), and the
maximum size of a color class in Gi; this process takes O(n2)-time. If ∆(Gi) 6 3δ(Gi) − 3
and the maximum color class has at most 2δ(Gi)−2 edges, then terminate the sequence and
set Gi = G′. If ∆(Gi) > 3δ(Gi) − 3, then delete a vertex v of maximum degree and then
process the edges of Gi − v, iteratively deleting those with two endpoints of degree at least
δ(Gi); the resulting graph is Gi+1. If ∆(Gi) 6 3δ(Gi)− 3 but a maximum color class C has
at least 2δ(Gi) − 1 edges, then delete C and then process the edges of Gi − C, iteratively
deleting those with two endpoints of degree at least δ(Gi); the resulting graph is Gi+1. Note
that δ(Gi+1) = δ(Gi) − 1. If this process generates Gδ, we set G′ = Gδ and terminate.
Generating the sequence {Gi} consists of at most δ steps, each taking O(n2)-time.

Given that G′ = Gi, the algorithm from the proof of Theorem 2 takes O(δn2)-time to
generate a matching of size δ−i in G′. The preprocessing step and the process of determining
a smallest color class and choosing an edge in that class whose endpoints have minimum
degree sum both take O(n2)-time. This process is repeated at most δ times.

A matching of size δ− (i+ 1) in Gi+1 is easily extended in Gi to a matching of size δ− i
using the vertex of maximum degree or maximum color class. The process of extending the
matching takes O(δ)-time. Thus the total run-time of the algorithm generating the rainbow
matching of size δ in G is O(δn2).

It is worth noting that the analysis of the greedy algorithm used in the proof of Theorem 2
could be improved. In particular, the bound ci+1 > ci− 2 is sharp only if at step i there are
an equal number of edges of color i and i+ 1 and both endpoints of ei are incident to edges
with color i + 1. However, since one of the endpoints of ei has degree at most δ, at most
δ− 1 color classes can lose two edges in step i. Since the maximum size of a color class in G
is at most 2δ− 2, if G has order at least 6δ, then there are at least 3δ/2 color classes. Thus,
for small values of i, the bound ci 6 2(k− i+ 1) can likely be improved. However, we doubt
that such analysis of this algorithm can be improved to yield a bound on |V (G)| better than
6δ.
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wolfach”, Mathematisches Forschungsinstitut Oberwolfach, July 1967, 24–29.

[10] S. K. Stein, Transversals of Latin squares and their generalizations, Pacific J. Math. 59
(1975), no. 2, 567–575.

[11] G. Wang, Rainbow matchings in properly edge colored graphs, Electron. J. Combin. 18
(2011), #P162.

[12] G. Wang and H. Li, Heterochromatic matchings in edge-colored graphs, Electron. J.
Combin. 15 (2008), #R138.

[13] G. Wang, J. Zhang, and G. Liu, Existence of rainbow matchings in properly edge-colored
graphs, Front. Math. China 7 (2012), no. 3, 543–550.

[14] I. M. Wanless, Transversals in Latin squares: a survey, Surveys in Combinatorics 2011,
London Math. Soc. Lecture Note Series 392 (2011), 403–437.

the electronic journal of combinatorics 19(2) (2012), #P52 11


