Rainbow Matchings of Size $\delta(G)$ in Properly Edge-Colored Graphs

Jennifer Diemunsch ${ }^{1,4}$ Michael Ferrara ${ }^{1,5}$ Allan Lo ${ }^{2,6}$
Casey Moffatt ${ }^{1} \quad$ Florian Pfender ${ }^{3} \quad$ Paul S. Wenger ${ }^{1}$

Submitted: Dec 21, 2011; Accepted: Jun 16, 2012; Published: Jun 28, 2012

Abstract

A rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Wang asked if there is a function $f(\delta)$ such that a properly edgecolored graph G with minimum degree δ and order at least $f(\delta)$ must have a rainbow matching of size δ. We answer this question in the affirmative; an extremal approach yields that $f(\delta)=98 \delta / 23<4.27 \delta$ suffices. Furthermore, we give an $O\left(\delta(G)|V(G)|^{2}\right)$ time algorithm that generates such a matching in a properly edge-colored graph of order at least 6.5δ.

Keywords: Rainbow matching, properly edge-colored graphs

1 Introduction

All graphs under consideration in this paper are simple, and we let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of a graph G, respectively. In this paper, we consider edge-colored graphs and let $c(u v)$ denote the color of the edge $u v$. An edge coloring of a graph is proper if the colors on edges sharing an endpoint are distinct. An edge-colored graph is rainbow if all edges have distinct colors. Rainbow matchings are of particular interest given their connection to transversals of Latin squares: each Latin square can be converted to a properly edge-colored complete bipartite graph, and a transversal of the Latin square is a rainbow perfect matching in the graph. Ryser's conjecture [9] that every Latin square of odd order has a transversal can be seen as the beginning of the study of rainbow

[^0]matchings. Stein [10] later conjectured that every Latin square of order n has a transversal of size $n-1$; equivalently every proper edge-coloring $K_{n, n}$ has a rainbow matching of size $n-1$. The connection between Latin transversals and rainbow matchings in $K_{n, n}$ has inspired additional interest in the study of rainbow matchings in triangle-free graphs. A thorough survey of rainbow matching and other rainbow subgraphs in edge-colored graphs appears in [6].

Several results have been attained for rainbow matchings in arbitrarily edge-colored graphs. The color degree of a vertex v in an edge-colored graph G, written $\hat{d}(v)$, is the number of distinct colors on edges incident to v. We let $\hat{\delta}(G)$ denote the minimum color degree among the vertices in G. Wang and Li [12] proved that every edge-colored graph G contains a rainbow matching of size at least $\left\lceil\frac{5 \hat{\delta}(G)-3}{12}\right\rceil$, and conjectured that a rainbow matching of size $[\hat{\delta}(G) / 2\rceil$ exists if $\hat{\delta}(G) \geqslant 4$. LeSaulnier et al. [8] then proved that every edge-colored graph G contains a rainbow matching of size $\lfloor\hat{\delta}(G) / 2\rfloor$. Finally, Kostochka and Yancey [5] proved the conjecture of Wang and Li in full, and also that triangle-free graphs have rainbow matchings of size $\lceil 2 \hat{\delta}(G) / 3\rceil$.

Since the edge-colored graphs generated by Latin squares are properly edge-colored, it is of interest to consider rainbow matchings in properly edge-colored graphs. In this direction, LeSaulnier et al. proved that a properly edge-colored graph G satisfying $|V(G)| \neq \delta(G)+2$ that is not K_{4} has a rainbow matching of size $\lceil\delta(G) / 2\rceil$. Wang then asked if there is a function f such that a properly edge-colored graph G with minimum degree δ and order at least $f(\delta)$ must contain a rainbow matching of size $\delta[11]$. As a first step towards answering this question, Wang showed that a graph G with order at least $8 \delta / 5$ has a rainbow matching of size $\lfloor 3 \delta(G) / 5\rfloor$.

Since there are $n \times n$ Latin squares with no transversals when n is even (see $[1,14]$), for such a function f it is clear that $f(\delta)>2 \delta$ when δ is even. Furthermore, since maximum matchings in $K_{\delta, n-\delta}$ have only δ edges (provided $n \geqslant 2 \delta$), there is no function for the order of G depending on $\delta(G)$ that can guarantee a rainbow matching of size greater than $\delta(G)$.

In this paper we answer Wang's question from [11] in the affirmative, proving that a linear number of vertices in terms of the minimum degree suffices.

Theorem 1. If G is a properly edge-colored graph satisfying $|V(G)| \geqslant 98 \delta(G) / 23$, then G contains a rainbow matching of size $\delta(G)$.

Independently, Wang, Zhang, and Liu [13] also answering Wang's question in the affirmative, proving that a properly edge-colored graph G with at least $\left(\delta(G)^{2}+4 \delta(G)-4\right) / 4$ vertices has a rainbow matching of size $\delta(G)$.

The proof of Theorem 1 utilizes extremal techniques akin to those that appear in $[5,8,11]$ and [12]. We also implement a greedy algorithmic approach to demonstrate that it is possible to efficiently construct a rainbow matching of size δ in a properly edge-colored graph with minimum degree δ having order at least 6.5δ. To our knowledge, an algorithmic approach of this type has not been previously employed in the study of rainbow matchings.

Theorem 2. If G is a properly edge-colored graph with minimum degree δ satisfying $|V(G)|>$ $\frac{13}{2} \delta-\frac{23}{2}+\frac{41}{8 \delta}$, then there is an $O\left(\delta(G)|V(G)|^{2}\right)$-time algorithm that produces a rainbow matching of size δ in G.

As a contrast, Itai, Rodeh, and Tanimota [4] proved that determining if an edge-colored graph G has a rainbow matching of size k is NP-complete, even if G is bipartite. More recently, Le and Pfender [7] have shown that the problem of determining the maximum size of a rainbow matching in a properly edge-colored graph is NP-hard, even when restricted to properly edge-colored paths.

2 Proof of Theorem 1

Let G be a properly edge-colored n-vertex graph with minimum degree δ and $n \geqslant 98 \delta / 23$. The theorem holds easily if $\delta \leqslant 2$, so we may assume that $\delta \geqslant 3$. By way of contradiction, let G be a counterexample with δ minimized; thus G does not contain a rainbow matching of size δ. Further, we may assume that $|E(G)|$ is minimized, so in particular the vertices of degree greater than δ form an independent set, as otherwise we could delete an edge without lowering the minimum degree. We break the proof into a series of simple claims.

Let $\Delta(G)=d_{1} \geqslant d_{2} \geqslant \ldots \geqslant d_{n}=\delta$ with $d\left(v_{i}\right)=d_{i}$ be the degree sequence of G.
Lemma 3. For $1 \leqslant k \leqslant 2 \delta / 3$, there exists an $i \leqslant k$ such that $d_{i} \leqslant 3 \delta-k-2 i$.
Proof. Suppose that for some $k \leqslant 2 \delta / 3, d_{i} \geqslant 3 \delta+1-k-2 i$ for all $1 \leqslant i \leqslant k$. It follows that $d_{i}>\delta$ for $i \leqslant k$, and therefore $\left\{v_{1}, \ldots, v_{k}\right\}$ is an independent set. Delete the vertices $v_{1}, v_{2}, \ldots, v_{k}$ from G, and note that $\delta\left(G \backslash\left\{v_{1}, \ldots, v_{k}\right\}\right) \geqslant \delta-k$. By the minimality of G, there exists a rainbow matching M_{k} of size $\delta-k$ in $G \backslash\left\{v_{1}, \ldots, v_{k}\right\}$.

The vertex v_{k} has at most $2(\delta-k)$ neighbors in M_{k}, and is incident to at most $\delta-k$ edges colored with colors occurring in M_{k}. Thus, v_{k} has a neighbor $w_{k} \notin V\left(M_{k}\right)$ such that the color of $v_{k} w_{k}$ does not occur in M_{k}, and we can extend M_{k} by adding the edge $v_{k} w_{k}$; call the resulting rainbow matching M_{k-1}. Note that $w_{k} \neq v_{i}$ for $i \leqslant k$ as $\left\{v_{1}, \ldots v_{k}\right\}$ is an independent set.

The j th iteration of this process produces a rainbow matching M_{k-j} of size $\delta-k+j$ that contains $\left\{v_{k}, \ldots, v_{k-j+1}\right\}$. Hence v_{k-j} has at most $2(\delta-k)+j$ neighbors in M_{k-j} and is incident to at most $\delta-k+j$ edges colored with colors occurring in M_{k-j}. Thus there is a vertex $w_{k-j} \in N\left(v_{k-j}\right)$ such that the edge $v_{k-j} w_{k-j}$ extends M_{k-j} to a $(\delta-k+j+1)$-edge rainbow matching $M_{k-(j+1)}$. Continuing in this fashion extends the matching M_{k} by k edges, yielding a rainbow matching of size δ, a contradiction finishing the proof.

As a corollary of Lemma 3, we obtain the following.
Lemma 4. For $1 \leqslant k \leqslant 2 \delta / 3$, we have $\sum_{i=1}^{k} d_{i} \leqslant k(3 \delta-2-k)$, with equality only if $d_{1}=d_{k}=3 \delta-2-k$.

Proof. We proceed by induction on k. For $k=1$, the statement follows from Lemma 3. Now let $k>1$ and let $i \leqslant k$ such that $d_{i} \leqslant 3 \delta-k-2 i$. By induction,

$$
\begin{gathered}
\sum_{j=1}^{i-1} d_{j} \leqslant(i-1)(3 \delta-1-i), \text { and } \\
\sum_{j=i}^{k} d_{j} \leqslant(k-i+1) d_{i} \leqslant(k-i+1)(3 \delta-k-2 i) .
\end{gathered}
$$

Thus,
$\sum_{j=1}^{k} d_{j} \leqslant(i-1)(3 \delta-1-i)+(k-i+1)(3 \delta-k-2 i)=3 k \delta-k^{2}-k+1-i(k+2-i) \leqslant k(3 \delta-2-k)$
and equality holds only if $i=1$ and $d_{1}=d_{k}=3 \delta-2-k$.
Let C be a maximum color class in G and let $|C|=a$. By the minimality of G, there exists a rainbow matching $M=\left\{x_{i} y_{i}: 1 \leqslant i \leqslant \delta-1\right\}$ of size $\delta-1$ in $G-C$. Without loss of generality, we may assume that $c\left(x_{i} y_{i}\right)=i$ for $1 \leqslant i \leqslant \delta-1$ and the edges in C have color δ. Let $W=V(G) \backslash V(M)$; observe that $|W|=n-2(\delta-1)$. If there is an edge e in $G[W]$ with $c(e) \notin\{1, \ldots, \delta-1\}$ then we can add e to M to obtain a rainbow matching of size δ. Thus we may assume that every edge whose color is not in $\{1, \ldots, \delta-1\}$ has an endpoint in $V(M)$. An edge $u v$ is good if its color is not in $\{1, \ldots, \delta-1\}$ and one of its endpoints is in W. A vertex $v \in V(M)$ is good if v is incident with at least seven good edges.

Claim 5. For $i \in\{1, \ldots, \delta-1\}$, if x_{i} is incident with at least three good edges, then no good edge is incident with y_{i}, and vice versa.

Proof. Suppose that $y_{i} u$ is a good edge. If x_{i} is incident with at least three good edges, then x has a neighbor w such that $v w$ is a good edge, $w \neq u$, and $c\left(x_{i} w\right) \neq c\left(y_{i} u\right)$. Thus $\left(M \cup\left\{x_{i} w, y_{i} u\right\}\right) \backslash\left\{x_{i} y_{i}\right\}$ is a rainbow matching of size δ, a contradiction.

By Claim 5, we may assume without loss of generality that $\left\{x_{1}, \ldots, x_{r}\right\}$ is the set of good vertices for some $r \geqslant 0$. Let $W^{\prime}=W \cup\left\{y_{1}, \ldots, y_{r}\right\}$.

Claim 6. No edge uv in $G\left[W^{\prime}\right]$ has color in $\{1, \ldots, r\}$.
Proof. By way of contradiction, assume that there is an edge $u v$ in $G\left[W^{\prime}\right]$ such that $c(u v) \in$ $\{1, \ldots, r\}$. Let M^{\prime} be the subset of M consisting of the edge with color $c(u v)$ and any edges with an endpoint in $\{u, v\}$. There are at most three such edges (the edge with color $c(u v)$ and possibly one for each endpoint); without loss of generality, let $M^{\prime}=\left\{x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$ (here $1 \leqslant t \leqslant 3$). Note that x_{j} is a good vertex for $1 \leqslant j \leqslant t$. Thus there are distinct vertices w_{1}, \ldots, w_{t} such that $x_{j} w_{j}$ is a good edge for $1 \leqslant j \leqslant t$ and the colors on the edges $u v, x_{1} w_{1}, \ldots, x_{t} w_{t}$ are distinct. Thus $\left(M \cup\left\{u v, x_{1} w_{1}, \ldots, x_{t} w_{t}\right\}\right) \backslash\left\{x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$ is a rainbow matching of size δ, a contradiction.

An edge $u v$ is nice if its color is not in $\{r+1, \ldots, \delta-1\}$ and one of its endpoints is in W^{\prime}. Note that every good edge is nice. Recall that every good edge has an endpoint in $V(M)$. By Claim 5 and Claim 6, no nice edge lies in $G\left[W^{\prime}\right]$. Hence, every nice edge joins vertices in W^{\prime} and $V(G) \backslash W^{\prime}$. A vertex $v \in V(M) \backslash\left\{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right\}$ is nice if v is incident with at least seven nice edges. Note that if there is no good vertex (i.e. $r=0$), then the definitions of good and nice vertices are the same and so there is also no nice vertex. Next, we prove analogues of Claim 5 and Claim 6 for nice vertices and edges.

Claim 7. For $i \in\{r+1, \ldots, \delta-1\}$, if x_{i} is incident with at least three nice edges, then no nice edge is incident with y_{i}, and vice versa.

Proof. Suppose $y_{i} u$ is a nice edge for some $i \in\{r+1, \ldots, \delta-1\}$. If x_{i} is incident to at least three nice edges, then x_{i} has a neighbor v such that $x_{i} v$ is a nice edge, $v \neq u$, and $c\left(x_{i} v\right) \neq$ $c\left(y_{i} u\right)$. Let M^{\prime} be the subset of M consisting of edges with an endpoint in $\{u, v\}$ or a color in $\left\{c\left(x_{i} v\right), c\left(y_{i} u\right)\right\}$. There are at most four such edges (possibly one with each endpoint and one with each color); without loss of generality, let $M^{\prime}=\left\{x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$ (here $0 \leqslant t \leqslant 4$). Note that x_{j} is a good vertex for $1 \leqslant j \leqslant t$. Thus there are distinct vertices w_{1}, \ldots, w_{t} such that $x_{j} w_{j}$ is a good edge for $1 \leqslant j \leqslant t$ and the colors on the edges $x_{i} v, y_{i} u, x_{1} w_{1}, \ldots, x_{t} w_{t}$ are distinct. Thus $\left(M \cup\left\{x_{i} v, y_{i} u, x_{1} w_{1}, \ldots, x_{t} w_{t}\right\}\right) \backslash\left\{x_{i} y_{i}, x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$ is a rainbow matching of size δ, a contradiction.

By Claim 7, we may assume that $\left\{x_{r+1}, x_{r+2}, \ldots, x_{r+s}\right\}$ is the set of nice vertices for some $s \geqslant 0$.

Claim 8. No edge uv in $G\left[W^{\prime}\right]$ has color in $\{1, \ldots, r+s\}$.
Proof. By Claim 6, the claim holds if $s=0$. Assume that $s \geqslant 1$, and consequently $r \geqslant 1$. Without loss of generality, suppose that there is an edge $u v$ in $G\left[W^{\prime}\right]$ with $c(u w)=r+1$. Because x_{r+1} is nice, it has a neighbor v^{\prime} in W^{\prime} such that $x_{r+1} v^{\prime}$ is a nice edge and $v^{\prime} \neq u, v$. Let M^{\prime} be the subset of M consisting of those edges an endpoint in $\left\{u, v, v^{\prime}\right\}$ or color $c\left(x_{r+1} v^{\prime}\right)$. Again there are at most four edges in M^{\prime} and we let $M^{\prime}=\left\{x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$. Defining w_{1}, \ldots, w_{t} as before, $\left(M \cup\left\{u v, x_{r+1} v^{\prime}, x_{1} w_{1}, \ldots, x_{t} w_{t}\right\}\right) \backslash\left\{x_{r+1} y_{r+1}, x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$ is a rainbow matching of size δ, a contradiction.

Next, we count the number of nice edges in G.
Claim 9. There are at most $\max \{(3 \delta-8-r+s) r+6(\delta-1),(7 \delta / 3-7+s) r+6(\delta-1)\}$ nice edges in G.

Proof. Recall that $V(G) \backslash W^{\prime}=\left\{x_{1}, \ldots, x_{\delta-1}, y_{r+1}, \ldots, y_{\delta-1}\right\}$ and every nice edge joins vertices from W^{\prime} and $V(G) \backslash W^{\prime}$. If $r \leqslant 2 \delta / 3$, then the set of good vertices is incident to at most $r(3 \delta-2-r)$ nice edges by Lemma 4. Similarly, if $r \geqslant 2 \delta / 3$, then the set of good vertices is incident to at most $r(3 \delta-2-\lfloor 2 \delta / 3\rfloor) \leqslant r(7 \delta / 3-1)$ nice edges. For $i \in\{r+1, \ldots, r+s\}$, Claim 7 implies that x_{i} is incident to at most $r+6$ nice edges and y_{i} is incident to none.

For $i \in\{r+s+1, \ldots, \delta-1\}$, by Claim 7 there are at most six nice edges with an endpoint in $\left\{x_{i}, y_{i}\right\}$. Therefore, the number of nice edges is at most

$$
(3 \delta-2-r) r+(r+6) s+6(\delta-1-r-s)=(3 \delta-8-r+s) r+6(\delta-1) \text { if } r \leqslant 2 \delta / 3,
$$

and
$(7 \delta / 3-1) r+(r+6) s+6(\delta-1-r-s)=(7 \delta / 3-7+s) r+6(\delta-1)$ if $r \geqslant 2 \delta / 3$.
Recall that C is the color class with color $\delta,|C|=a$, and C is a maximum size color class. Therefore there are at least $2(a-\delta+1)$ vertices in W incident to an edge in C. Since every edge in C has an endpoint in $V(M)$ it follows that there are at least $2(a-\delta+1)$ vertices in $V(M)$ joined to W by edges in C. Without loss of generality, let $\{r+s+1, \ldots, r+s+t\}$ be the set of indices $i \in\{r+s+1, \ldots, \delta-1\}$ such that x_{i} or y_{i} is incident to an edge in C. By Claim 5 and Claim 7, we have

$$
\begin{equation*}
t \geqslant a-\delta+1-\frac{r+s}{2} \text { and } r+s+t \leqslant \delta-1 \tag{1}
\end{equation*}
$$

Claim 10. For $i \in\{r+s+1, \ldots, r+s+t\}$, there is at most one edge of color i in $G[W]$.
Proof. Suppose $u v$ and $u^{\prime} v^{\prime}$ are edges of color i in $G[W]$ for some $i \in\{r+s+1, \ldots, r+s+t\}$. Without loss of generality, we may assume that there exists $w \in W$ such that $c\left(x_{i} w\right)=\delta$ and $w \neq u, v$. Hence, $\left(M \cup\left\{u v, x_{i} w\right\}\right) \backslash\left\{x_{i} y_{i}\right\}$ is a rainbow matching of size δ, a contradiction.

Now we count the number of nice edges from W^{\prime} to $V(G) \backslash W^{\prime}$. Recall that each color class in G contains at most a edges. By Claim 8, there is no edge in $G\left[W^{\prime}\right]$ of color $i \in$ $\{r+1, \ldots, r+s\}$. Thus, for $i \in\{r+1, \ldots, r+s\}$ there are at most $a-1$ vertices in W^{\prime} that are incident with an edge of color i. Since every color class has size at most a, for $i \in\{r+s+1, \ldots, \delta-1\}$ there are at most $2(a-1)$ vertices in W^{\prime} that are incident with an edge of color i. Furthermore for $i \in\{r+s+1, \ldots, r+s+t\}$, Claim 10 implies that there are at most a vertices in W that are incident with an edge of color i. Since $W^{\prime} \backslash W=\left\{y_{1}, \ldots, y_{r}\right\}$, it follows that for $i \in\{r+s+1, \ldots, r+s+t\}$ there are at most $\min \{a+r, 2(a-1)\}$ vertices in W^{\prime} that are incident with an edge of color i. It then follows, using the fact that $\left|W^{\prime}\right|=|W|+r=n-2(\delta-1)+r$ and (1), that the number of nice edges from W^{\prime} to $V(G) \backslash W^{\prime}$ is at least

$$
\begin{aligned}
& \delta\left|W^{\prime}\right|-(a-1)(2 \delta-2-2 r-s-2 t)-\min \{a+r, 2(a-1)\} t \\
= & \delta n-2 \delta(\delta-1)+\delta r-(a-1)(2 \delta-2-2 r-s)+\max \{a-r-2,0\} t .
\end{aligned}
$$

We first consider the case when $r \leqslant 2 \delta / 3$. Applying the upper bound of ($3 \delta-8-r+$ $s) r+6(\delta-1)$ nice edges from Claim 9 , we obtain

$$
\begin{equation*}
\delta n \leqslant(2 \delta-8-r+s) r+2(\delta+3)(\delta-1)+(a-1)(2 \delta-2-2 r-s)-\max \{a-r-2,0\} t \tag{2}
\end{equation*}
$$

To finish the proof we bound the right hand side of (2) to obtain a contradiction. Note that the coefficient of t is nonpositive. Thus, the right hand side of (2) is maximized when t is minimized. By (1), $t \geqslant \max \{a-\delta+1-(r+s) / 2,0\}$.

If $a \leqslant \delta-1+(r+s) / 2$, then we let $t=0$. The coefficient of a is nonnegative, and thus (2) is maximized when a is maximized; hence we assume $a=\delta-1+(r+s) / 2$. Substituting for a yields a negative quadratic in s that is maximized when $s=1-r / 2$. Since s is a nonnegative integer and $s=0$ if $r=0,(2)$ is maximized at $s=0$, which yields

$$
\delta n \leqslant 2(2 \delta+1)(\delta-1)+(\delta-5-2 r) r
$$

This is maximized when $r=(\delta-5) / 4$, yielding $n \leqslant 33 \delta / 8-13 / 4+9 /(8 \delta)$, a contradiction.
If $a>\delta-1+r / 2$, we let $t=a-\delta+1-r / 2$. Since $t>0$, it follows that $r+s \leqslant \delta-2$. Thus $a-r-2>\delta-3-(r-s) / 2 \geqslant \delta-3-(\delta-2) / 2=\delta / 2-2$. As $\delta \geqslant 3$ and $a-r-2$ is an integer, $\max \{a-r-2,0\}=a-r-2$. Therefore the coefficient of s in (2) is nonpositive and we may assume that $s=0$. Consequently, (2) becomes

$$
\delta n \leqslant(3 \delta-1-r / 2-a) a+(\delta-6-3 r / 2) r+2\left(\delta^{2}-1\right)
$$

The right hand side is maximized when $a=3 \delta / 2-1 / 2-r / 4$, so

$$
\delta n \leqslant \frac{1}{16}\left(-28+68 \delta^{2}-24 \delta+4 \delta r-92 r-23 r^{2}\right),
$$

which is maximized when $r=2 \delta / 23-2$. This yields

$$
n \leqslant 98 \delta / 23-2+4 / \delta,
$$

a contradiction.
To complete the proof of the theorem, we are left with the case $r \geqslant 2 \delta / 3$. Similarly to (2), since we have at most $(7 \delta / 3-7+s) r+6(\delta-1)$ nice edges in G by Claim 9 , we have

$$
\begin{equation*}
\delta n \leqslant(4 \delta / 3-7+s) r+2(\delta+3)(\delta-1)+(a-1)(2 \delta-2-2 r-s)-\max \{a-r-2,0\} t . \tag{3}
\end{equation*}
$$

Again, the right hand side of (3) is maximized when t is minimized.
If $a \leqslant \delta-1+(r+s) / 2$, then (3) is maximized when $t=0$ and $a=\delta-1+r / 2$. Again we may assume that $s=0$, yielding

$$
\delta n \leqslant-2+4 \delta^{2}-2 \delta+r(\delta / 3-4-r) .
$$

This is maximized when $r=\delta / 6-2$, yielding $n \leqslant 145 \delta / 36-8 / 3+6 / \delta$, a contradiction.
If $a>\delta-1+(r+s) / 2$, we let $t=a-\delta+1-(r+s) / 2$ and again we may assume that $s=0$. Then, (3) becomes

$$
\delta n \leqslant \frac{1}{6}\left(-6 a^{2}+3 a(6 \delta-2)+12 \delta^{2}-(3 a+30+3 r-2 \delta) r-12\right),
$$

which is maximized when r is minimized. Since we have assumed that $r \geqslant 2 \delta / 3$, we have $r=2 \delta / 3$ and we are back in the case $r \leqslant 2 \delta / 3$, finishing the proof of the theorem.

3 Proof of Theorem 2

We proceed by induction on $\delta(G)$. The result is trivial if $\delta(G)=1$. We assume that G is a graph with minimum degree $\delta>1$ and order greater than $\frac{13}{2} \delta-\frac{23}{2}+\frac{41}{8 \delta}$.

Lemma 11. If G has a color class containing at least $2 \delta-1$ edges, then G has a rainbow matching of size δ.

Proof. Let C be a color class with at least $2 \delta-1$ edges. By induction, there is a rainbow matching M of size $\delta-1$ in $G-C$. There are $2 \delta-2$ vertices covered by the edges in M, thus one of the edges in C has no endpoint covered by M, and the matching can be extended.

It is also useful to note that we also have the following, which is identical to Lemma 3 when $k=1$.

Lemma 12. If G satisfies $\Delta(G)>3 \delta-3$, then G has a rainbow matching of size δ.
We begin by preprocessing the graph so that each edge is incident to at least one vertex with degree δ. To achieve this, arbitrarily order the edges in G and process them in order. If both endpoints of an edge have degree greater than δ when it is processed, delete that edge. In the resulting graph, every edge is incident to a vertex with degree δ. Furthermore, by Lemma 12 we may assume that $\Delta(G) \leqslant 3 \delta-3$; thus the degree sum of the endpoints of any edge is bounded above by $4 \delta-3$. After preprocessing, we begin the greedy algorithm.

In the i th step of the algorithm, a smallest color class is chosen (without loss of generality, color i), and then an edge e_{i} of color i is chosen such that the degree sum of the endpoints is minimized. All the remaining edges of color i and all edges incident with the endpoints of e_{i} are deleted. The algorithm terminates when there are no edges in the graph.

We assume that the algorithm fails to produce a matching of size δ in G; suppose that the rainbow matching M generated by the algorithm has size k. We let R denote the set of vertices that are not covered by M.

Let c_{i} denote the size of the smallest color class at step i. Since at most two edges of color $i+1$ are deleted in step i (one at each endpoint of e_{i}), we observe that $c_{i+1}+2 \geqslant c_{i}$. Otherwise, at step i color class $i+1$ has fewer edges. Let step h be the last step in the algorithm in which a color class that does not appear in M is completely removed from G. It then follows that $c_{h} \leqslant 2$, and in general $c_{i} \leqslant 2(h-i+1)$ for $i \in[h]$. Let f_{i} denote the number of edges of color i deleted in step i with both endpoints in R. Since $f_{i}<c_{i}$, we have $f_{i} \leqslant 2(h-i)+1$ for $i \in[h]$. Note that after step h, there are exactly $k-h$ colors remaining in G. By Lemma 11, color classes contain at most $2 \delta-2$ edges, and therefore the last $k-h$ steps remove at most $(k-h)(2 \delta-2)$ edges. Furthermore, for $i>h$, the degree sum of the endpoints of e_{i} is at most $2(\delta-1)$.

For $i \in[h]$, let x_{i} and y_{i} be the endpoints of e_{i}, and let $d_{i}(v)$ denote the degree of a vertex v at the beginning of step i. Let $\mu_{i}=\max \left\{0, d_{i}\left(x_{i}\right)+d_{i}\left(y_{i}\right)-2 \delta\right\}$; note that $2 \delta \leqslant 2 \delta+\mu_{i} \leqslant 4 \delta-3$. Thus, at step i, at most $2 \delta+\mu_{i}+f_{i}-1$ edges are removed from the
graph. Since the algorithm removes every edge from the graph, we conclude that

$$
\begin{equation*}
|E(G)| \leqslant(k-h)(2 \delta-2)+\sum_{i=1}^{h}\left(2 \delta+\mu_{i}+f_{i}-1\right) \tag{4}
\end{equation*}
$$

We now compute a lower bound for the number of edges in G. Since the degree sum of the endpoints of e_{i} in G is at least $2 \delta+\mu_{i}$, we immediately obtain the following inequality:

$$
\frac{n \delta+\sum_{i \in[h]} \mu_{i}}{2} \leqslant|E(G)| .
$$

If $f_{i}>0$ and $\mu_{i}>0$, then there is an edge with color i having both endpoints in R. Since this edge was not chosen in step i by the algorithm, the degree sum of its endpoints is at least $2 \delta+\mu_{i}$, and one of its endpoints has degree at least $\delta+\mu_{i}$. For each value of i satisfying $f_{i}>0$, we wish to choose a representative vertex in R with degree at least $\delta+\mu_{i}$. Since there are f_{i} edges with color i having both endpoints in R, there are f_{i} possible representatives for color i. Since a vertex in R with high degree may be the representative for multiple colors, we wish to select the largest system of distinct representatives.

Suppose that the largest system of distinct representatives has size t, and let T be the set of indices of the colors that have representatives. For each color $i \in T$ there is a distinct vertex in R with degree at least $\delta+\mu_{i}$. Thus we may increase the edge count of G as follows:

$$
\begin{equation*}
\frac{n \delta+\sum_{i \in[h]} \mu_{i}+\sum_{i \in T} \mu_{i}}{2} \leqslant|E(G)| . \tag{5}
\end{equation*}
$$

We let $\left\{f_{i}^{\downarrow}\right\}$ denote the sequence $\left\{f_{i}\right\}_{i \in[h]}$ sorted in nonincreasing order. Since $f_{i} \leqslant 2(h-$ $i)+1$, we conclude that $f_{i}^{\downarrow} \leqslant 2(h-i)+1$. Because there is no system of distinct representatives of size $t+1$, the sequence $\left\{f_{i}^{\downarrow}\right\}$ cannot majorize the sequence $\{t+1, t, t-1, \ldots, 1\}$. Hence there is a smallest value $p \in[t+1]$ such that $f_{p}^{\downarrow} \leqslant t+1-p$. Therefore, the maximum value of $\sum_{i=1}^{h} f_{i}^{\downarrow}$ is bounded by the sum of the sequence $\{2 h-1,2 h-3, \ldots, 2(h-p)+3, t+1-$ $p, \ldots, t+1-p\}$. Summing we attain

$$
\sum_{i \in[h]} f_{i} \leqslant(p-1)(2 h-p+1)+(h-p+1)(t+1-p)
$$

Over p, this value is maximized when $p=t+1$, yielding $\sum_{i \in[h]} f_{i} \leqslant t(2 h-t)$. Since $h \leqslant \delta-1$, we then have $\sum_{i \in[h]} f_{i} \leqslant 2(\delta-1) t-t^{2}$.

We now combine bounds (4) and (5):

$$
\frac{n \delta+\sum_{i \in[h]} \mu_{i}+\sum_{i \in T} \mu_{i}}{2} \leqslant(k-h)(2 \delta-2)+\sum_{i=1}^{h}\left(2 \delta+\mu_{i}+f_{i}-1\right)
$$

Hence, since $k \leqslant \delta-1$,

$$
\begin{aligned}
\frac{n \delta}{2} & \leqslant(2 \delta-1)(\delta-1)+\frac{1}{2} \sum_{[h] \backslash T} \mu_{i}+\sum_{i \in[h]} f_{i} \\
& \leqslant(2 \delta-1)(\delta-1)+(\delta-1-t)(\delta-3 / 2)+2(\delta-1) t-t^{2} \\
& \leqslant 3 \delta^{2}-\frac{11}{2} \delta+\frac{5}{2}+\left(\delta-\frac{1}{2}\right) t-t^{2} .
\end{aligned}
$$

This bound is maximized when $t=\left(\delta-\frac{1}{2}\right) / 2$. Thus

$$
n \leqslant \frac{13}{2} \delta-\frac{23}{2}+\frac{41}{8 \delta}
$$

contradicting our choice for the order of G.
It remains to show that this proof provides the framework of a $O\left(\delta(G)|V(G)|^{2}\right)$-time algorithm that generates a rainbow matching of size $\delta(G)$ in a properly edge-colored graph G of order at least $\frac{13}{2} \delta-\frac{23}{2}+\frac{41}{8 \delta}$. Given such a G, we create a sequence of graphs $\left\{G_{i}\right\}$ as follows, letting $G=G_{0}, \delta=\delta(G)$, and $n=|V(G)|$. First, determine $\delta\left(G_{i}\right), \Delta\left(G_{i}\right)$, and the maximum size of a color class in G_{i}; this process takes $O\left(n^{2}\right)$-time. If $\Delta\left(G_{i}\right) \leqslant 3 \delta\left(G_{i}\right)-3$ and the maximum color class has at most $2 \delta\left(G_{i}\right)-2$ edges, then terminate the sequence and set $G_{i}=G^{\prime}$. If $\Delta\left(G_{i}\right)>3 \delta\left(G_{i}\right)-3$, then delete a vertex v of maximum degree and then process the edges of $G_{i}-v$, iteratively deleting those with two endpoints of degree at least $\delta\left(G_{i}\right)$; the resulting graph is G_{i+1}. If $\Delta\left(G_{i}\right) \leqslant 3 \delta\left(G_{i}\right)-3$ but a maximum color class C has at least $2 \delta\left(G_{i}\right)-1$ edges, then delete C and then process the edges of $G_{i}-C$, iteratively deleting those with two endpoints of degree at least $\delta\left(G_{i}\right)$; the resulting graph is G_{i+1}. Note that $\delta\left(G_{i+1}\right)=\delta\left(G_{i}\right)-1$. If this process generates G_{δ}, we set $G^{\prime}=G_{\delta}$ and terminate. Generating the sequence $\left\{G_{i}\right\}$ consists of at most δ steps, each taking $O\left(n^{2}\right)$-time.

Given that $G^{\prime}=G_{i}$, the algorithm from the proof of Theorem 2 takes $O\left(\delta n^{2}\right)$-time to generate a matching of size $\delta-i$ in G^{\prime}. The preprocessing step and the process of determining a smallest color class and choosing an edge in that class whose endpoints have minimum degree sum both take $O\left(n^{2}\right)$-time. This process is repeated at most δ times.

A matching of size $\delta-(i+1)$ in G_{i+1} is easily extended in G_{i} to a matching of size $\delta-i$ using the vertex of maximum degree or maximum color class. The process of extending the matching takes $O(\delta)$-time. Thus the total run-time of the algorithm generating the rainbow matching of size δ in G is $O\left(\delta n^{2}\right)$.

It is worth noting that the analysis of the greedy algorithm used in the proof of Theorem 2 could be improved. In particular, the bound $c_{i+1} \geqslant c_{i}-2$ is sharp only if at step i there are an equal number of edges of color i and $i+1$ and both endpoints of e_{i} are incident to edges with color $i+1$. However, since one of the endpoints of e_{i} has degree at most δ, at most $\delta-1$ color classes can lose two edges in step i. Since the maximum size of a color class in G is at most $2 \delta-2$, if G has order at least 6δ, then there are at least $3 \delta / 2$ color classes. Thus, for small values of i, the bound $c_{i} \leqslant 2(k-i+1)$ can likely be improved. However, we doubt that such analysis of this algorithm can be improved to yield a bound on $|V(G)|$ better than 6δ.

References

[1] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, UK, 1991.
[2] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[3] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
[4] A. Itai, M. Rodeh, and S. Tanimoto, Some matching problems for bipartite graphs, J. Assoc. Comput. Mach. 25 (1978), no. 4, 517-525.
[5] A. Kostochka and M. Yancey, Large rainbow matchings in edge-colored graphs, In Preparation.
[6] M. Kano and X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs - a survey, Graphs Comb. 24 (2008), 237-263.
[7] V. B. Le and F. Pfender, Complexity results for rainbow matchings, In Preparation.
[8] T. D. LeSaulnier, C. Stocker, P. S. Wenger, and D. B. West, Rainbow matching in edge-colored graphs, Electron. J. Combin. 17 (2010), \#N26.
[9] H. J. Ryser, Neuere Probleme der Kombinatorik, in "Vorträge über Kombinatorik Oberwolfach", Mathematisches Forschungsinstitut Oberwolfach, July 1967, 24-29.
[10] S. K. Stein, Transversals of Latin squares and their generalizations, Pacific J. Math. 59 (1975), no. 2, 567-575.
[11] G. Wang, Rainbow matchings in properly edge colored graphs, Electron. J. Combin. 18 (2011), \#P162.
[12] G. Wang and H. Li, Heterochromatic matchings in edge-colored graphs, Electron. J. Combin. 15 (2008), \#R138.
[13] G. Wang, J. Zhang, and G. Liu, Existence of rainbow matchings in properly edge-colored graphs, Front. Math. China 7 (2012), no. 3, 543-550.
[14] I. M. Wanless, Transversals in Latin squares: a survey, Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Series 392 (2011), 403-437.

[^0]: ${ }^{1}$ Dept. of Mathematical and Statistical Sciences, Univ. of Colorado Denver, Denver, CO; email addresses: jennifer.diemunsch@ucdenver.edu, michael.ferrara@ucdenver.edu, casey.moffatt@ucdenver.edu, paul. wenger@ucdenver.edu.
 ${ }^{2}$ School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK, s.a.lo@bham.ac.uk
 ${ }^{3}$ Institut für Mathematik, Univ. Rostock, Rostock, Germany; Florian.Pfender@uni-rostock.de.
 ${ }^{4}$ Research supported in part by UCD GK12 Transforming Experiences Project, NSF award \# 0742434.
 ${ }^{5}$ Research supported in part by Simons Foundation Collaboration Grant \# 206692.
 ${ }^{6}$ Research supported in part by Eurupean Research Council Grant \# 258345.

