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Abstract

The n-card problem is to determine the minimal intervals [u, v] such that for
every n×n stochastic matrix A there is an n×n permutation matrix P (depending
on A) such that tr(PA) ∈ [u, v]. This problem is closely related to classical math-
ematical problems from industry and management, including the linear assignment
problem and the travelling salesman problem. The minimal intervals for the n-card
problem are known only for n 6 4.

We introduce a new method of analysis for the n-card problem that makes
repeated use of the Extreme Principle. We use this method to answer a question
posed by Sands (2011), by showing that [1, 2] is a solution to the n-card problem
for all n > 2. We also show that each closed interval of length n

n−1 contained in
[0, 2) is a solution to the n-card problem for all n > 2.

Keywords: stochastic matrix; permutation matrix; transversal sum; trace; Ex-
treme Principle; n-card problem

1 Introduction

Let n > 2 be an integer. An n×n stochastic matrix is an n×n matrix (aij) of non-negative
real numbers, each of whose row sums is 1. A transversal sum of (aij) is a sum of the form∑n

i=1 aσ(i),i, for some permutation σ of {1, 2, . . . , n}. A solution to the n-card problem is
an interval [u, v] such that every n×n stochastic matrix contains at least one transversal
sum in [u, v]. Equivalently, a solution to the n-card problem is an interval [u, v] such that
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for every n × n stochastic matrix A there is an n × n permutation matrix P such that
tr(PA) ∈ [u, v]. We wish to determine the minimal solutions to the n-card problem for
each n, namely those solutions [u, v] for which no proper subinterval of [u, v] is a solution.

The n-card problem is closely related to well-known mathematical problems with in-
dustrial and management applications, involving the possible values of tr(PA) for a per-
mutation matrix P and a fixed square matrix A. In particular, the linear assignment
problem, “one of the most famous problems in linear programming and in combinato-
rial optimization [BDM09],” is to minimize tr(PA) over all permutation matrices P (see
[BDM09, Chapter 4] for a detailed historical account of the development of algorithms for
its solution, and an equivalent formulation in terms of weighted bipartite matchings); the
travelling salesman problem is the special case in which the permutation corresponding
to P is cyclic [Flo56].

The terminology of the n-card problem reflects its original formulation [San01], [LS05]
involving a set of n cards, each containing n non-negative real numbers written in a
row and summing to 1, with the transversal sum representing the diagonal sum formed
when the cards are placed one below the other according to some permutation. In 2001,
Sands [San01] asked for a proof that

[
1
2
, 3
2

]
is a solution to the 3-card problem. Lenza and

Sands [LS05] introduced the generalization to the n-card problem in 2005.
The interval [0, 1] is a minimal solution to the n-card problem for all n > 2 [San11,

Lemma 3], but it is not the only minimal solution. Indeed, it is easily checked by hand
that the minimal solutions to the 2-card problem are

[0, 1], [1, 2]. (1)

The minimal solutions to the 3-card problem are [LS05]

[0, 1],
[
1
2
, 3
2

]
, [1, 2], (2)

and the minimal solutions to the 4-card problem are [LS05], [San11]

[0, 1],
[
1
3
, 4
3

]
,
[
2
3
, 5
3

]
, [1, 2]. (3)

The method of [LS05] and [San11] is to establish a particular interval [u, v] as a solution
to the n-card problem (for n = 3 or 4), by using intersecting permutations to show that
the number of transversal sums greater than v, plus the number of transversal sums less
than u, is always less than n!. The method has two drawbacks: it relies on a laborious
case analysis for n = 4, and does not extend to n > 5 [LS05, p.6].

In this paper we introduce a new method for analysing the n-card problem that makes
repeated use of the Extreme Principle [Zei07]. We believe that this method could shed
light on other problems involving tr(PA), where P is a permutation matrix and A is
a fixed square matrix. The Extreme Principle directs attention to the “largest” and
“smallest” elements of a problem. In the present context, we assume for a contradiction
that no transversal sum of an n×n stochastic matrix lies in some interval [u, v], and then
consider the smallest transversal sum d greater than v. Then, if a transversal sum is less
than d, it must be less than u. We seek such transversal sums, involving exactly n− 2 of
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the original summands of d, in order to reach a contradiction. We thereby obtain strong
new restrictions for all n > 5. In particular, we solve Problem 5 of [San11] as follows.

Theorem 1. For all n > 2, the interval [1, 2] is a solution to the n-card problem.

We also prove the following result.

Theorem 2. For all n > 2, each closed interval of length n
n−1

contained in [0, 2) is a
solution to the n-card problem.

The length n
n−1

in Theorem 2 is the smallest possible for a general interval, because the

n×n stochastic matrix having one row
(
0, 1

n−1
, 1
n−1

, . . . , 1
n−1

)
and n−1 rows (1, 0, 0, . . . , 0)

has transversal sums of 0 and n
n−1

only.
On the other hand, the known complete set of minimal solutions (2) for n = 3 and (3)

for n = 4 shows that the interval length in Theorem 2 can be reduced to 1 for specific
intervals. By reference to particular n × n stochastic matrices, Sands [San11] showed
that every solution to the n-card problem for n > 2 must contain a length 1 interval[

k
n−1

, 1 + k
n−1

]
for some k ∈ {0, 1, . . . , n − 1}. Problem 3 of [San11] asks whether each

such length 1 interval is itself a solution to the n-card problem, which would imply that
the complete set of minimal solutions to the n-card problem comprises these n intervals.
This question remains open for n > 4.

2 The interval [1,2]

In this section we prove Theorem 1. We firstly establish some preliminary lemmas.

Lemma 3. Let (aij) be an n × n stochastic matrix, all of whose transversal sums lie
outside an interval [u, v] containing 1. Then (aij) has at least one transversal sum less
than u, and at least one transversal sum greater than v.

Proof. Each entry of (aij) is contained in exactly (n− 1)! transversal sums, so the mean
of all transversal sums is (n− 1)!(

∑
i,j aij)/n! = 1. Therefore at least one transversal sum

is at most 1, and so by assumption less than u. Similarly, at least one transversal sum is
greater than v.

An immediate consequence of Lemma 3 is that, as noted earlier, [0, 1] is a solution to
the n-card problem for all n > 2.

The rows and columns of an n×n stochastic matrix can be permuted without changing
the set of its n! transversal sums. Our method relies on examining the effect of transposing
two rows of an n × n stochastic matrix, and thereby bounding the matrix entries. We
now show that if an n × n stochastic matrix has a sufficiently large diagonal sum then
there must be a transposition of two rows that decreases this diagonal sum. We prove
this result for the following slightly more general case of an n × n substochastic matrix
(each of whose row sums is at most 1).
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Lemma 4. Let (aij) be an n × n substochastic matrix. Suppose (aij) has diagonal sum
greater than 1. Then

akk + a`` > ak` + a`k for some k, `.

Proof. Suppose, for a contradiction, that aii+ajj 6 aij+aji for all i, j. Sum this inequality
over all i, j to obtain 2n

∑
i aii 6 2

∑
i,j aij 6 2n, since by assumption the row sums of

(aij) are each at most 1. This implies that the diagonal sum satisfies
∑

i aii 6 1, giving
the required contradiction.

We next give conditions under which the sum of two diagonal entries of an n × n
stochastic matrix can be bounded from below.

Lemma 5. Let (aij) be an n× n stochastic matrix with diagonal sum d, and suppose all
transversal sums of (aij) lie outside the interval [u, d). Then, for all i, j,

aii + ajj > aij + aji implies aii + ajj > d− u.

Proof. Suppose aii + ajj > aij + aji. Then the positive quantity aii + ajj − aij − aji is the
decrease in the diagonal sum caused by transposing rows i and j of the matrix, and so by
assumption is greater than d−u. We therefore have aii+ajj > aii+ajj−aij−aji > d−u.

Define an n× n stochastic matrix (aij) to be diagonally ordered if its diagonal entries
are in non-increasing order:

a11 > a22 > . . . > ann.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We know from (1) and (2) that the result holds for n = 2 and 3,
so we may take n > 4. Suppose, for a contradiction, that (aij) is an n × n stochastic
matrix whose transversal sums all lie outside the interval [1, 2]. Then by Lemma 3, (aij)
has a transversal sum greater than 2 and a transversal sum less than 1. Let 2 + ε be
the smallest transversal sum greater than 2, and reorder the rows and columns of (aij) so
that the summands of this transversal sum occur on the matrix diagonal and so that the
matrix is diagonally ordered. By Lemma 5 with d = 2 + ε and u = 1,

aii + ajj > aij + aji implies aii + ajj > 1 + ε. (4)

Now the (n − 1) × (n − 1) submatrix of (aij) formed by deleting the first row and
column has diagonal sum 2 + ε − a11 > 1. Apply Lemma 4 to this submatrix to show
that, for some distinct k > 1 and ` > 1,

akk + a`` > ak` + a`k.

We therefore have akk + a`` > 1 + ε by (4), and so

a22 + a33 > 1 + ε (5)
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since the matrix is diagonally ordered and k, ` are distinct. Since the diagonal sum of
(aij) is 2 + ε, we have

aii + a11 6 2 + ε− a22 − a33 for all i > 3,

and therefore aii + a11 < 1 for all i > 3, by (5). Then, since the matrix is diagonally
ordered,

aii + ajj < 1 for all i, j with i > 3,

which in turn implies by (4) that

aii + ajj 6 aij + aji for all i, j with i > 3. (6)

We complete the proof by showing that (5) and (6) force the sum of the entries of (aij)
to be too large. We have∑

i,j

aij >
∑
i63

aii +
∑
i>3

aii +
∑

i>3, j63

(aij + aji)

> (n− 2)
∑
i63

aii + 4
∑
i>3

aii

by substitution from (6). Therefore∑
i,j

aij > (n− 2)
∑
i63

aii + 2
∑
i>3

aii

= (n− 4)
∑
i63

aii + 2
∑
i

aii

> (n− 4)(1 + ε) + 2(2 + ε)

by (5), using n > 4. Therefore
∑

i,j aij > n, which is a contradiction because each row
sum of (aij) is 1.

3 Intervals of length n
n−1

In this section we prove Theorem 2.

Proposition 6. Let n > 4 and let (aij) be a diagonally ordered n× n stochastic matrix.
Suppose the diagonal sum d of (aij) satisfies d ∈ (1, 2]. Then (aij) has a transversal sum
lying in the interval [d− n

n−1
, d).

Proof. Suppose, for a contradiction, that no transversal sum of (aij) lies in the interval
[d− n

n−1
, d). Then by Lemma 5 with u = d− n

n−1
,

aii + ajj > aij + aji implies aii + ajj >
n

n− 1
. (7)
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Since d > 1, Lemma 4 gives

akk + a`` > ak` + a`k for some distinct k, `,

and it follows from (7) that akk + a`` >
n
n−1

. Since the matrix is diagonally ordered and
k, ` are distinct, this implies

a11 + a22 >
n

n− 1
(8)

and

a11 >
1

2
· n

n− 1
. (9)

We now claim that

aii + ajj 6
n

n− 1
for all distinct i > 1 and j > 1. (10)

Suppose otherwise, for a contradiction, so that arr + ass >
n
n−1

for some distinct r > 1
and s > 1. Since the matrix is diagonally ordered, this gives

a22 + a33 >
n

n− 1
. (11)

Therefore, for all i > 3, we have aii + a11 6 d− a22 − a33 < n−2
n−1

because d 6 2. Since the
matrix is diagonally ordered, we then have

aii + ajj <
n− 2

n− 1
for all i, j with i > 3,

which by (7) implies

aii + ajj 6 aij + aji for all i, j with i > 3. (12)

Write ∑
i,j

aij >
∑
i63

aii +
∑

i>3,j63

(aij + aji)

> (n− 2)
∑
i63

aii + 3
∑
i>3

aii

by substitution from (12), so that∑
i,j

aij > (n− 2)
∑
i63

aii

> (n− 2) · 3

2
· n

n− 1

from (9) and (11). Since
∑

ij aij = n and n > 4, this is a contradiction and proves the
claim (10).
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It then follows from (7) that

aii + ajj 6 aij + aji for all distinct i > 1 and j > 1.

Summing over all i, j satisfying 1 < i < j, we find that

(n− 2)
∑
i>1

aii 6
∑
1<i<j

(aij + aji). (13)

Now let m be the largest integer i such that a11 + aii >
n
n−1

. Note that m > 2, by (8).
By (7) we have a11 + aii 6 a1i + ai1 for i > m, so that

a11 6 a1i + ai1 for i > m. (14)

We now show that (13) and (14) force the entries of (aij) to be too large. We have∑
i,j

aij > a11 +
∑
i>1

aii +
∑
i>m

(a1i + ai1) +
∑
1<i<j

(aij + aji)

> (n−m+ 1)a11 + (n− 1)
∑
i>1

aii

by substitution from (13) and (14). Therefore∑
i,j

aij > (n−m+ 1)a11 + (n− 1)
∑

1<i6m

aii

> (n−m+ 1)a11 + (n− 1)(m− 1)

(
n

n− 1
− a11

)
by definition of m and the diagonal ordering of (aij), and so∑

i,j

aij > n
(
m− 1− (m− 2)a11

)
.

Since m > 2 and a11 6 1, this implies the contradiction
∑

i,j aij > n and so completes the
proof.

We now combine Proposition 6 with Theorem 1 to prove Theorem 2.

Proof of Theorem 2. We know from (1) and (2) that the result holds for n = 2 and 3, so
we may take n > 4. Suppose, for a contradiction, that (aij) is an n× n stochastic matrix
whose transversal sums all lie outside the interval

[
u, u+ n

n−1

]
for some u ∈

[
0, n−2

n−1

)
. Since

this interval contains 1, by Theorem 1 the matrix (aij) therefore has a transversal sum in
the interval

(
u+ n

n−1
, 2
]
. Let d be the smallest such transversal sum. Reorder the rows

and columns of (aij) so that the summands of this transversal sum occur on the matrix
diagonal and so that the matrix is diagonally ordered. Then by Proposition 6, (aij) has a
transversal sum lying in the interval

[
d− n

n−1
, d
)
. By choice of d, this gives the required

contradiction.
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