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Abstract

We establish an extension of Spivey’s Bell number formula and its associated Bell
polynomial extension by using Hsu-Shiue’s generalized Stirling numbers. By means
of the extension of Spivey’s Bell number formula we also extend Gould-Quaintance’s
new Bell number formulas.
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1 Introduction

Stirling numbers of the second kind S(n, k) have played an important role in combinatorics
[7], and their sums Bn, the Bell numbers, which count the number of partitions of a set
of n elements, are given by

Bn =
n∑
k=0

S(n, k), n = 0, 1, . . . (1)

Another well-known expression for the Bell numbers is the following

Bn =
n−1∑
k=0

(
n− 1

k

)
Bk. (2)

Recently, Spivey [20] discovered an interesting formula for the (n+m)th Bell number:

Bn+m =
n∑
k=0

m∑
j=0

jn−kS(m, j)

(
n

k

)
Bk. (3)
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This new formula includes both (1) and (2) as special cases and Spivey’s proof was com-
binatorial. Gould and Quaintance [11] provided a generating function proof of Spivey’s
result and used Spivey’s formula to obtain a new formula for Bn. Furthermore, they
extended these results to ordinary single variable Bell polynomials. Independently from
Gould and Quaintance, Belbachir and Mihoubi [1] also obtained the same identity (15) in
[11] and their proof follows a different approach. More recently, by using Faà di Bruno’s
formula [9, 12] for higher order derivatives of composite functions, Xu and Cen [22] ob-
tained some recurrence sequences including the Bell polynomials.

In this short paper, following the technique of generating functions from Gould and
Quaintance [11], we establish an extension of Spivey’s Bell number formula and its Bell
polynomial extension by using Hsu-Shiue’s generalized Stirling numbers [14]. These re-
sults also generalize the identities for the Lah numbers discovered by Xu and Cen [22].
Moreover, we extend the new Bell number formulas due to Gould and Quaintance [11].

2 Generalized Stirling numbers and the associated

Bell numbers

We use (x)(k,θ) = x(x−θ) · · · (x−kθ+θ) to denote the generalized kth falling factorial of x
with increment θ. By starting with transformations between generalized factorial involv-
ing three arbitrary parameters α, β and r, Hsu and Shiue [14] introduced the generalized
numbers S(n, k;α, β, r) and unified those generalizations of the Stirling numbers due to
Riordan [19], Carlitz [3, 4], Howard [13], Charalambides-Koutras [6], Gould-Hopper [10],
Tsylova [21] and others. They defined a Stirling-type pair {S(n, k;α, β, r), s(n, k;α, β, r)}
by

(x)(n,α) =
n∑
k=0

S(n, k;α, β, r)(x− r)(k,β), (4)

(x)(n,β) =
n∑
k=0

s(n, k;α, β, r)(x+ r)(k,α). (5)

Especially, S(n, k; 0, 1, 0) is the classical Stirling number of the second kind which is de-
noted by S(n, k), S(n, k;−1, 1, 0) is the unsigned Lah number which is equal to n!

k!

(
n−1
k−1

)
,

and S(n, k; 0, 0, 1) is the binomial coefficient
(
n
k

)
. In [14], Hsu and Shiue systematically

investigated many basic properties including orthogonality relations, recurrence relations,
generating function and the Dobinski identity for their Stirling numbers. For more gen-
eralized Stirling numbers, one is referred to [2, 5, 8, 15].

Lemma 1 ([14]). The Stirling-type pair {S(n, k;α, β, r), s(n, k;α, β, r)} has the following
orthogonality relations

n∑
k=m

S(n, k;α, β, r)s(k,m;α, β, r) =
n∑

k=m

s(n, k;α, β, r)S(k,m;α, β, r) = δm,n, (6)

where δm,n is the Kronecker symbol.
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Lemma 2 ([14]). The sequence {S(n, k;α, β, r)} has the following exponential generating
function

∞∑
n=0

S(n, k;α, β, r)
tn

n!
=

1

k!
(1 + αt)r/α

(
(1 + αt)

β
α − 1

β

)k

. (7)

The generalized Bell numbers Bn;α,β,r and the polynomials Bn;α,β,r(x) are defined,
respectively, by the sums

Bn;α,β,r =
n∑
k=0

S(n, k;α, β, r), (8)

Bn;α,β,r(x) =
n∑
k=0

S(n, k;α, β, r)xk, n = 1, 2, . . . , (9)

with B0;α,β,r = 1 by convention. Using (7) we easily get the generating function for the
polynomials Bn;α,β,r(x) and the numbers Bn;α,β,r.

Lemma 3 ([14]). The sequence {Bn;α,β,r(x)} has the following exponential generating
function

∞∑
n=0

Bn;α,β,r(x)
tn

n!
= (1 + αt)r/αe

(
(1+αt)

β
α−1

)
x
β . (10)

In particular, the generating function for the generalized Bell numbers Bn;α,β,r is

∞∑
n=0

Bn;α,β,r
tn

n!
= (1 + αt)r/αe

(1+αt)
β
α−1

β . (11)

3 Some extensions of Spivey’s Bell number formula

In this section, we will present our main results.

Theorem 4. The generalized Bell polynomials Bn;α,β,r(x) satisfy the following recurrence
relation

Bn+m;α,β,r(x) =
n∑
k=0

m∑
j=0

(
n

k

)
xjBk;α,β,r(x)S(m, j;α, β, r)

n−k−1∏
i=0

(jβ − (m+ i)α). (12)

Proof. For simplicity, we denote by Φ(t;x) the generating function for the generalized
Bell polynomials on the right hand side of Eq. (10). On one hand, by the Taylor theorem
we have

Φ(u+ v;x) =
∞∑
m=0

Dm
u Φ(u;x)

vm

m!
.
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Applying (10) in the above yields

Φ(u+ v;x) =
∞∑

n,m=0

Bn+m;α,β,r(x)
un

n!

vm

m!
. (13)

On the other hand, we have

Φ(u+ v;x) =Φ(u;x)

(1 +
αv

1 + αu

) r
α

e
x
β
(1+αu)

β
α

(
(1+ αv

1+αu)
β
α−1

)
=Φ(u;x)

(
1 +

αv

1 + αu

) r
α
∞∑
j=0

1

j!
(1 + αu)

jβ
α xj

(1 + αv
1+αu

) β
α − 1

β

j

.

Applying (10) and (7) we obtain

Φ(u+ v;x) =
∞∑
k=0

Bk;α,β,r(x)
uk

k!

∞∑
j=0

(1 + αu)
jβ
α xj

∞∑
m=0

1

m!
S(m, j;α, β, r)

(
v

1 + αu

)m
=
∞∑
k=0

Bk;α,β,r(x)
uk

k!

∞∑
m,j=0

1

m!
(1 + αu)

jβ
α
−mxjS(m, j;α, β, r)vm

=
∞∑
k=0

Bk;α,β,r(x)
uk

k!

∞∑
m,j=0

1

m!
S(m, j;α, β, r)xjvm

∞∑
i=0

( jβ
α
−m
i

)
αiui.

The Cauchy product rule gives

Φ(u+ v;x) =
∞∑

n,m=0

un

n!

vm

m!

∞∑
j=0

S(m, j;α, β, r)xj
n∑
k=0

(
n

k

)
Bk;α,β,r(x)

n−k−1∏
i=0

(jβ − (m+ i)α).

(14)

Equating the coefficients of un

n!
vm

m!
in (13) and (14) implies that (12) is true and this

completes the proof.

Example 5. Letting α = 0, β = 1 and r = 0 in Eq. (12) we immediately obtain

Bn+m(x) =
n∑
k=0

m∑
j=0

(
n

k

)
xjBk(x)S(m, j)jn−k,

which is a Bell polynomial extension of Eq. (3); see [1, 11].

Example 6. Let us denote the unsigned Lah number by L(m, j) =
(
m−1
j−1

)
m!
j!

and ψm(x) =∑m
i=0 L(m, i)xi. Setting α = −1, β = 1 and r = 0 in (12), we rediscover the recurrence
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relation for ψm(x) associated with the Lah numbers. The sequence {ψm(x)} satisfies the
following recurrence relation

ψn+m(x) =
n∑
k=0

m∑
j=0

(
n

k

)
xjψk(x)L(m, j)(n− k)!

(
−j −m
n− k

)
.

In [22], the authors gave a proof by using Faà di Bruno’s formula [9, 12] for higher
derivatives of a composite function.

Example 7. Letting α = β = 0 and r = 1 in (12), we have

(1 + x)n+m = (1 + x)n
m∑
j=0

(
m

j

)
xj.

Letting x = 1 in Eq. (12) we have the generalized Spivey’s Bell number formula.

Corollary 8. The generalized Bell numbers Bn;α,β,r satisfy the following recurrence rela-
tion

Bn+m;α,β,r =
n∑
k=0

m∑
j=0

(
n

k

)
Bk;α,β,rS(m, j;α, β, r)

n−k−1∏
i=0

(jβ − (m+ i)α). (15)

It is obvious that (3) is a special case of (15) with α = 0, β = 1 and r = 0. It is
worth noting that (3) can be extended to the r Bell number [18]. In a recent paper,
Mező [17] gave an r-Stirling extension of Spivey’s formula which is a variant of (15) with
α = 0, β = 1. As another special case r = 0, α = −a and β = b, we rediscover Theorem
5.3 given by Mansour et. al [16]. They gave a nice and attractive combinatorial proof
which is very different from ours.

In the following, we are particularly interested in the case α = 0. In this case, there
holds

Bn+m;0,β,r(x) =
n∑
k=0

m∑
j=0

(
n

k

)
xjBk;0,β,r(x)S(m, j; 0, β, r)(jβ)n−k. (16)

As a consequence, we have the following Lemma.

Lemma 9. Let n > 0 and p > 0. We have

p∑
m=0

Bn+m;0,β,r(x)s(p,m; 0, β, r) = xp
n∑
k=0

(
n

k

)
Bn−k;0,β,r(x)(pβ)k. (17)
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Proof. By Eq. (16) we can show that

p∑
m=0

Bn+m;0,β,r(x)s(p,m; 0, β, r)

=
n∑
k=0

(
n

k

)
Bn−k;0,β,r(x)βk

p∑
m=0

m∑
j=0

xjS(m, j; 0, β, r)s(p,m; 0, β, r)jk

=
n∑
k=0

(
n

k

)
Bn−k;0,β,r(x)βk

m∑
j=0

jkxj
p∑

m=j

s(p,m; 0, β, r)S(m, j; 0, β, r).

According to Eq. (6) with α = 0, we have

p∑
m=0

Bn+m;0,β,r(x)s(p,m; 0, β, r) = xp
n∑
k=0

(
n

k

)
Bn−k;0,β,r(x)(pβ)k,

and this completes the proof.

Making use of (16) we immediately get a new identity for Bn;0,β,r(x).

Theorem 10. Let n > 0 and p > 0. We have

Bn;0,β,r(x) = x−p
n∑
k=0

(−pβ)n−k
(
n

k

) p∑
m=0

Bk+m;0,β,r(x)s(p,m; 0, β, r). (18)

Proof. Replacing k by n− k in (17) yields

(pβ)−n
p∑

m=0

Bn+m;0,β,r(x)s(p,m; 0, β, r) = xp
n∑
k=0

(
n

k

)
Bk;0,β,r(x)(pβ)−k.

Since f(n) =
∑n

k=0

(
n
k

)
g(k) is equivalent to g(n) =

∑n
k=0(−1)n−k

(
n
k

)
f(k), by letting

f(n) = (pβ)−n
∑p

m=0Bn+m;0,β,r(x)s(p,m; 0, β, r) and g(k) = Bk;0,β,r(x)(pβ)−k we have

xpBn;0,β,r(x)(pβ)−n =
n∑
k=0

(−1)n−k
(
n

k

)
(pβ)−k

p∑
m=0

Bk+m;0,β,r(x)s(p,m; 0, β, r),

which is equivalent to (18). This completes the proof.

It is worth noticing that, if we let β = 1 and r = 0 in (16), (17) and (18), we get the
Bell polynomial extensions of Spivey’s Bell number formula [11].
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