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Abstract

We establish an extension of Spivey’s Bell number formula and its associated Bell
polynomial extension by using Hsu-Shiue’s generalized Stirling numbers. By means
of the extension of Spivey’s Bell number formula we also extend Gould-Quaintance’s
new Bell number formulas.

Keywords: Stirling number; Generating function; Bell number

1 Introduction

Stirling numbers of the second kind S(n, k) have played an important role in combinatorics
[7], and their sums B, the Bell numbers, which count the number of partitions of a set
of n elements, are given by

B,=)Y S(nk), n=01,... (1)
k=0

Another well-known expression for the Bell numbers is the following

B, = ni (”; 1) By 2)

k=0

Recently, Spivey [20] discovered an interesting formula for the (n+m)th Bell number:

B = 325574t () e 3

k=0 j=0
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This new formula includes both (1) and (2) as special cases and Spivey’s proof was com-
binatorial. Gould and Quaintance [11] provided a generating function proof of Spivey’s
result and used Spivey’s formula to obtain a new formula for B,. Furthermore, they
extended these results to ordinary single variable Bell polynomials. Independently from
Gould and Quaintance, Belbachir and Mihoubi [1] also obtained the same identity (15) in
[11] and their proof follows a different approach. More recently, by using Faa di Bruno’s
formula [9, 12] for higher order derivatives of composite functions, Xu and Cen [22] ob-
tained some recurrence sequences including the Bell polynomials.

In this short paper, following the technique of generating functions from Gould and
Quaintance [11], we establish an extension of Spivey’s Bell number formula and its Bell
polynomial extension by using Hsu-Shiue’s generalized Stirling numbers [14]. These re-
sults also generalize the identities for the Lah numbers discovered by Xu and Cen [22].
Moreover, we extend the new Bell number formulas due to Gould and Quaintance [11].

2 Generalized Stirling numbers and the associated
Bell numbers

We use (z)*9 = z(zx—0) - (x—k0+0) to denote the generalized kth falling factorial of x
with increment #. By starting with transformations between generalized factorial involv-
ing three arbitrary parameters «, 8 and r, Hsu and Shiue [14] introduced the generalized
numbers S(n, k; v, B, 7) and unified those generalizations of the Stirling numbers due to
Riordan [19], Carlitz [3, 4], Howard [13], Charalambides-Koutras [6], Gould-Hopper [10],
Tsylova [21] and others. They defined a Stirling-type pair {S(n, k; o, 8, 7), s(n, k; o, B,7) }
by

(@) = 3 S ks, By — 7)), n
k=0

(@009 = 3 s, ks B 4+ r) 5 5)
k=0

Especially, S(n, k;0,1,0) is the classical Stirling number of the second kind which is de-
noted by S(n, k), S(n,k; —1,1,0) is the unsigned Lah number which is equal to %(Zj),
and S(n, k;0,0,1) is the binomial coefficient (Z) In [14], Hsu and Shiue systematically
investigated many basic properties including orthogonality relations, recurrence relations,
generating function and the Dobinski identity for their Stirling numbers. For more gen-

eralized Stirling numbers, one is referred to [2, 5, 8, 15].

Lemma 1 ([14]). The Stirling-type pair {S(n, k;c, B,7), s(n, k; «, 5,r)} has the following
orthogonality relations

n

> S(nkia, B,r)s(k,mion Bor) = > s(n ki, B,7)S(k,mi o, B,1) = 6y (6)
k=m

k=m

where Oy, s the Kronecker symbol.
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Lemma 2 ([14]). The sequence {S(n,k;«, 5,7)} has the following exponential generating
function

ZS n ks, B,r)— (1 + at)r/ (%) . (7)

The generalized Bell numbers B,,., 3, and the polynomials By, g.(z) are defined,
respectively, by the sums

Br.opr = ZSnkaﬁ (8)

Bi.apr(x ZSnka izt n=1,2..., (9)

with By, s, = 1 by convention. Using (7) we easily get the generating function for the
polynomials B, g, (z) and the numbers B, 5.,

Lemma 3 ([14]). The sequence {Bp.ap.,(x)} has the following exponential generating
function

]
t" e | (Fat)a—1)%
E Brapr(T —,:(1+at)/e( >ﬁ. (10)
In particular, the generating function for the generalized Bell numbers By, g, 15

B
+at)a —1

ZBnaﬂr ' ].+Oét>r/a B . (].1)

3 Some extensions of Spivey’s Bell number formula

In this section, we will present our main results.

Theorem 4. The generalized Bell polynomials B, ., (x) satisfy the following recurrence
relation

n—k—1

Butmie(@ 22<)xﬂ‘Bk;a,ﬁ,Am)S(m,j;a,ﬁr [ G8-(m+ia). (12)

k=0 j=0 i=0

Proof. For simplicity, we denote by ®(t;x) the generating function for the generalized
Bell polynomials on the right hand side of Eq. (10). On one hand, by the Taylor theorem
we have

o0 m

O(u+v;x) = Z D" (u; x)%

m=0
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Applying (10) in the above yields

m

O(u+ v;7) Z Brtmapr(T —'. (13)

n,m=0

On the other hand, we have

14+ au
: () 1)
av [y | B + i) —
=0(u;z) (1 —(1 o’ tov
(u,:c)( —|—1+au> ]Z:O:j!( + au)ex 5
Applying (10) and (7) we obtain
@ B PN anEe S L sm, v )"
(U+U I Z kaﬁr( )FZ( +au)ax Z% (majvaaﬁvr) 1+ au
k=0 7=0 m=0
:ZBlﬁaﬂﬂ”(:E)_! Z %(14_@“)& Z S(m>];a>ﬁar)v
k=0 m,j=0
u 1 . m W m i1
:kX;BkaBT(m)_'m;()%S(m’J;a’ ,T)LC]U ;(a i )au

The Cauchy product rule gives

P(u+vyx) = Z ZS m, j;a, B, 1) ( )Bk;aﬂ,r(aj) | [ (48— (m+1i)a).

n,m= 0 k=0

Equating the coefficients of “:2% in (13) and (14) implies that (12) is true and this
completes the proof. O

Example 5. Letting « = 0,8 =1 and r = 0 in Eq. (12) we immediately obtain
Buin() =3 (7)o Bulorsom, i
k=0 5=0
which is a Bell polynomial extension of Eq. (3); see [1, 11].

Example 6. Let us denote the unsigned Lah number by L(m, j) = (m 1) and ¥, (x) =
Yoito L(m,i)x". Setting @ = —1,8 =1 and r = 0 in (12), we redlscover the recurrence
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relation for 1, (x) associated with the Lah numbers. The sequence {t,,(z)} satisfies the
following recurrence relation

brem(@) = 23 () et om0 1 (7).

k=0 5=0

In [22], the authors gave a proof by using Faa di Bruno’s formula [9, 12] for higher
derivatives of a composite function.

Example 7. Letting « = =0 and r = 1 in (12), we have

(1+2)™™ = (1+2)" zm: (7;) 2.

j=0
Letting x = 1 in Eq. (12) we have the generalized Spivey’s Bell number formula.

Corollary 8. The generalized Bell numbers By g, satisfy the following recurrence rela-
tion

n—k—1

Butmass = ZZ()BMT (m i Br) [] G- (m+ia). (15

k=0 j=0 i=0

It is obvious that (3) is a special case of (15) with & = 0,8 = 1 and r = 0. It is
worth noting that (3) can be extended to the r Bell number [18]. In a recent paper,
Mez6 [17] gave an r-Stirling extension of Spivey’s formula which is a variant of (15) with
a = 0,8 = 1. As another special case r = 0, = —a and = b, we rediscover Theorem
5.3 given by Mansour et. al [16]. They gave a nice and attractive combinatorial proof
which is very different from ours.

In the following, we are particularly interested in the case @ = 0. In this case, there
holds

Brimo,pr(x ZZ ( )xka;o,ﬁ,Ax)S(m,j; 0,8,r)(iB)" " (16)
k=0 7=0
As a consequence, we have the following Lemma.

Lemma 9. Letn > 0 and p > 0. We have

n

Z Bn+m;0,,3,r ($)3(p7 m; 07 Bv T) = x? (Z) Bn—k;O,,B,r (x)(p/B)k (17)
m=0

k=0
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Proof. By Eq. (16) we can show that
P
Z Bner;O,,B,r(x)S(pa m; 07 57 7a)
m=0

:kio (Z)Bn kO,B'r szjsm j O Ba ) (p,m;07ﬁ,7“)jk

= m=0 j=0
n n ‘
= (k’) n— kO/Br ﬁkzl] sz pamoﬁv ) (m,j;O,B,T).
0 =J

According to Eq. (6) with a = 0, we have

p n
n
Z Bn+m;0,,6’,r (x)s(p, m; 07 Ba 70) = P (k) ank;[),ﬁ,r (.Z') (pﬁ)ka
m=0

k=0
and this completes the proof. ]
Making use of (16) we immediately get a new identity for B0, (2).

Theorem 10. Letn > 0 and p > 0. We have

n

Bn;oﬁjr(fﬂ) =qa P Z<—p6)nik (Z) Z Bker;O,ﬂ,r(m)s(pa m; 07 67 7“). (18)
m=0

k=0
Proof. Replacing k by n — k in (17) yields

n

)" mz_o Buimopr(x)s(p,m;0,6,r) = 2P (Z) Brosr(z)(pB) 7"

k=0

Since f(n) = Y, (1) g(k) is equivalent to g(n) = Y_p_o(=1)"7*(}) f(k), by letting
f(n) = (B)™" >0 —0 Butmopr(x)s(p,m; 0, 8,7) and g(k) = Bio,5,(2)(pB) ™" we have

B 5 (2)(pB) " = 3 (—1) ( ) ZBWW (o3 0, B.7),

k=0
which is equivalent to (18). This completes the proof. O

It is worth noticing that, if we let 5 =1 and r = 0 in (16), (17) and (18), we get the
Bell polynomial extensions of Spivey’s Bell number formula [11].
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