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Abstract

Let G be a graph. A zero-sum flow of G is an assignment of non-zero real
numbers to the edges of G such that the sum of the values of all edges incident with
each vertex is zero. Let k be a natural number. A zero-sum k-flow is a flow with
values from the set {±1, . . . ,±(k − 1)}. It has been conjectured that every r-regular
graph, r > 3, admits a zero-sum 5-flow. In this paper we provide an affirmative
answer to this conjecture, except for r = 5.

1. Introduction

Nowhere-zero flows on graphs were introduced by Tutte [8] in 1949 and since then
have been extensively studied by many authors. A great deal of research in the area has
been motivated by Tutte’s 5-Flow Conjecture which states that every 2-edge connected
graph can have its edges directed and labeled by integers from {1, 2, 3, 4} in such a way
that Kirchhoff’s current law is satisfied at each vertex. In 1983, Bouchet [4] generalized
this concept to bidirected graphs. A bidirected graph G is a graph with vertex set V (G)
and edge set E(G) such that each edge is oriented as one of the four possibilities:

�-s s , --s s , - �s s , ��s s .
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Let G be a bidirected graph. For every v ∈ V (G), the set of all edges with tails
(respectively, heads) at v is denoted by E+(v) (respectively, E−(v)). The function
f : E(G) −→ R is a bidirected flow of G if for every v ∈ V (G), we have

∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e).

If f takes its values from the set {±1, . . . ,±(k − 1)}, then it is called a nowhere-zero

bidirected k-flow.

Bouchet proposed the following interesting conjecture.

Bouchet’s Conjecture. [4, 9] Every bidirected graph that has a nowhere-zero bidirected

flow admits a nowhere-zero bidirected 6-flow.

Bouchet showed that his conjecture is true if 6 is replaced by 216. Then Zyka [10]
reduced 216 to 30. Also, DeVos [5] proved Bouchet’s Conjecture with 6 replaced by 12.

Let G be a graph. A k-regular graph is a graph where each vertex is of degree k. A
zero-sum flow of G is an assignment of non-zero real numbers to the edges of G such that
the sum of the values of all edges incident with each vertex is zero. Let k be a natural
number. A zero-sum k-flow is a flow with values from the set {±1, . . . ,±(k − 1)}. The
following conjecture was posed on the zero-sum flows in graphs.

Zero-Sum Conjecture (ZSC). [1] If G is a graph with a zero-sum flow, then G admits

a zero-sum 6-flow.

The following theorem shows the relation between Bouchet’s Conjecture and ZSC.

Theorem 1. [2] Bouchet’s Conjecture and ZSC are equivalent.

The following conjecture is a stronger version of ZSC for regular graphs.

Conjecture A. [2] Every r-regular graph (r > 3) admits a zero-sum 5-flow.

Motivated by Bouchet’s Conjecture and along with Theorem 1 we focused our attention
to establish the Conjecture A. In the next section, except for the case r = 5, we prove
Conjecture A. The following two results show the validity of this conjecture for some
special cases.

Theorem 2. [1] Let r be an even integer with r > 4. Then every r-regular graph has a

zero-sum 3-flow.

Theorem 3. [2] Let G be an r-regular graph. If r is divisible by 3, then G has a zero-sum

5-flow.
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Remark. There are some regular graphs with no zero-sum 4-flow. To see this consider
the graph given in Figure 1. Assume, to the contrary, that this graph has a zero-sum
4-flow. Since the sum of the values of all three edges incident with a vertex is zero, not
all can be odd, so −2 or 2 should appear on (exactly) one edge incident to the vertex. On
the other hand two numbers with absolute value 2 cannot appear in the neighborhood of
a vertex. So the edges of G with values ±2 form a perfect matching. But by a celebrated
Theorem of Tutte [3, p.76], G has no perfect matching, a contradiction.

Figure 1: A 3-regular graph with no zero-sum 4-flow

2. The Main Result

In this section we prove that every r-regular graph, r > 3, r 6= 5, admits a zero-sum
5-flow. Before establishing our main result we need some notations and definitions.

A factor of a graph is a spanning subgraph. A k-factor is a factor which is k-regular.
In particular a 2-factor is a disjoint union of cycles that cover all the vertices. Let G be
a graph with vertex set V (G) and edge set E(G). A k-factorization of G is a partition of
the edges of G into disjoint k-factors. For integers a and b, 1 6 a 6 b, an [a, b]-factor of
G is defined to be a factor F of G such that a 6 dF (v) 6 b, for every v ∈ V (G). For any
vertex v ∈ V (G), let NG(v) = {u ∈ V (G) | uv ∈ E(G) }.

Below we state two known theorems about the factorization of graphs.

Theorem 4. [7] Every 2k-regular multigraph admits a 2-factorization.

Theorem 5. [6] Let r > 3 be an odd integer and let k be an integer such that 1 6 k 6
2r
3
.

Then every r-regular graph has a [k − 1, k]-factor each component of which is regular.

Lemma 6. Let G be an r-regular graph. Then for every even integer q, 2r 6 q 6 4r, there
exists a function f : E(G) → {2, 3, 4} such that for every u ∈ V (G),

∑

v∈NG(u) f(uv) = q.
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Proof. For every edge e = uv, we add a new edge e′ = uv to the graph G and call the
resulting graph G′. Clearly, G′ is a 2r-regular multigraph. By Theorem 4, G′ admits a
2-factorization with 2-factors F1, . . . , Fr. Now, for every e ∈ Fi, 1 6 i 6 r, we define a
function g : E(G′) → {1, 2} as follows:

g(e) =

{

2, 1 6 i 6 q−2r
2

;
1, q−2r

2
< i.

Therefore, for each u ∈ V (G′),
∑

v∈N
G′ (u)

g(uv) = q. Now, define a function f :

E(G) → {2, 3, 4} such that for every e = uv ∈ E(G), f(e) = g(e) + g(e′), where e′ = uv

in G′. Then for every u ∈ V (G),
∑

v∈NG(u) f(uv) = q, as desired. 2

Now, we are in a position to prove our main theorem.

Theorem 7. Let r > 3 and r 6= 5. Then every r-regular graph has a zero-sum 5-flow.

Proof. If r = 3, then by Theorem 3, the assertion holds. First we prove the theorem
for r = 7. Let G be a 7-regular graph. Then, by Theorem 5, G is a disjoint union of
a 3-regular graph H1 and a 4-regular graph H2. By Theorem 4, H2 can be decomposed
into two 2-factors H ′

2 and H ′′

2 . Assign 1 and 2 to all edges of H ′

2 and H ′′

2 , respectively. By
Lemma 6, there exists a function f : E(H1) → {2, 3, 4} such that for every u ∈ V (H1),
∑

v∈NH1
(u) f(uv) = 8. Now, assign −2 to every edge in E(G) \ E(H) and we are done.

Now, let r > 9 be an odd integer. By Theorem 5, for every k, k 6
2r
3
, G has a [k−1, k]-

factor whose components are regular. Let k = ⌊2r
3
⌋, k′ = r−k, and H be a [k−1, k]-factor

of G such that H1 is the union of the (k−1)-regular components of H and H2 = H \H1. It
can be easily checked that k 6 2k′ 6 2k − 4. Hence by Lemma 6, there exists a function
f : E(H1) −→ {2, 3, 4} such that for every u ∈ V (H1),

∑

v∈NH1
(u) f(uv) = 4k′ + 4.

Also by Lemma 6, there exists a function f : E(H2) −→ {2, 3, 4} such that for every
v ∈ V (H2),

∑

v∈NH2
(u) f(uv) = 4k′. Finally assign −4 to every edge of E(G) \ E(H).

Now, by Theorem 2 the proof is complete. 2
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