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Abstract

In a publication by Noy and Ribó, it was shown that recursively constructible
families of graphs are recursive. The authors also conjecture that the converse
holds; that is, recursive families are also recursively constructible. In this paper, we
provide two specific counterexamples to this conjecture, which we then extend to
an infinite family of counterexamples.

1 Introduction

The rank of a graph G = (V,E) is |V | − k(G) where k(G) is the number of connected
components of G; the Tutte polynomial of the same graph has the expansion

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A)

where r(A) is the rank of the spanning subgraph (V,A). An in-depth discussion of the
Tutte polynomial can be found in [2] and [4]. The Tutte polynomial is related to many
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other graph polynomials including the chromatic polynomial, reliability polynomial, and
rank polynomial [4]. We pay special attention to the rank polynomial here. The rank
polynomial of a graph G = (V,E) is defined by

R(G;x, y) =
∑
A⊆E

xr(E)−r(A)y|A|−r(A).

The rank polynomial is very closely related to the Tutte polynomial and their relationship
is given by

R(G;x, y) = T (G;x+ 1, y + 1).

A family of graphs {Gn}n>0 is said to be recursive if the Tutte polynomials (or the
analogous rank polynomials) satisfy a linear homogeneous recurrence relation; in other
words, the Tutte polynomials must satisfy

T (Gn;x, y) = α1T (Gn−1;x, y) + α2T (Gn−2;x, y) + · · ·+ αrT (Gn−r;x, y)

for all n > r where αi’s are polynomials in x and y with integer coefficients independent
of n. This definition was first given in [1], and all of the recursive graphs mentioned in [1]
have a unique property; they are all formed by starting with an initial graph and applying
a sequence of elementary operations to get from Gn−1 to Gn. In [7], the authors described
families of graphs formed in this manner as recursively constructible. To formally define
this idea, we first introduce the notation that NG(W ) is the set of vertices in G adjacent
to some vertex in W , and the definition is then given below.

Definition 1. A family of graphs {Gn}n>0 is recursively constructible if there exists a
positive integer r and a labeled graph M such that:

(a) V (G0) = W0 and V (Gn) = V (Gn−1) ∪Wn,

(b) NGn(Wn) ⊆ W0 ∪ (
⋃r
i=0Wn−i) for n > r,

(c) E(G0) = E0 and E(Gn) = (E(Gn−1) \ S) ∪ En, where S ⊆
⋃r
i=1En−i.

(d) The subgraph of Gn induced by (W0 ∪ (
⋃r
i=0Wn−i) equals M for n > r.

The word “equals” in condition (d) does not just mean that both graphs have exactly
the same vertices and exactly the same edges. We also need the condition that both graphs
are labeled exactly the same. More specifically, the subgraph of Gn that is induced by
the vertex set Wn is always the same labeled graph and |Wn| is constant for all n.

The basic idea is that we can construct Gn from Gn−1 by deleting some edges and
then adding some new vertices and edges so that the new vertices are only adjacent to
vertices in W0,Wn−1, . . . ,Wn−r+1 or Wn−r. Also during each subsequent construction, the
exact same elementary operations are performed. Because the same procedure is followed
each time, a transfer matrix technique proves useful for calculating the rank or Tutte
polynomial of Gn. Using this technique, the authors of [7] show that the rank polynomial
of Gn is then given by

R(Gn;x, y) = xr(Gn)Xt
0 · Λn · 1
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Figure 1: A double ladder graph.

where Λ is the transfer matrix whose entries are rational functions in x and y and X0

is a vector that depends only on G0. Because the family of graphs {Gn} is recursively
constructible, edges that are added in each step of the construction are incident to vertices
in W0 ∪ (

⋃r
i=1Wn−i) in the previous step. If m = |W0 ∪ (

⋃r
i=1Wn−i)|, the transfer matrix

Λ is a Bm × Bm matrix where Bm is the Bell number of m, or the number of partitions
of the set W0 ∪ (

⋃r
i=1Wn−i). It is worth noting that if r = 1 and W0 is not involved in

the construction, then m = |Wn−1| = |Wn|. The columns and rows of Λ are then labeled
by these partitions. The entries of Λ are explained in detail in [7] and for grid graphs in
[3]. We give a brief example below.

For instance, consider the recursively constructible double ladder graph shown in Fig-
ure 1. The operations used to construct Gn from Gn−1 are the addition of the five edges
labeled a, b, c, d, and e and the three vertices Xn, Yn, and Zn. These edges are incident
to the vertices Xn−1, Yn−1 and Zn−1 in the graph Gn−1 and the vertices Xn, Yn and Zn
in the graph Gn. The transfer matrix Λ will be a 5 × 5 matrix with rows labels corre-
sponding to the partitions of {Xn−1, Yn−1, Zn−1} and column labels corresponding to the
partitions of {Xn, Yn, Zn}. The first column will be labeled {Xn, Yn, Zn}; the second col-
umn {Xn, Yn}, {Zn}; the third column {Xn, Zn}, {Yn}; the fourth column {Yn, Zn}, {Xn};
and the final column {Xn}, {Yn}, {Zn}.

The entries of Λ are formed as follows. Let B be a partition of {Xn−1, Yn−1, Zn−1}
and let S be a subset of the edges {a, b, c, d, e}. We consider how the addition of the
edges in S affects the rank of a subgraph of Gn−1. For this, it is only necessary to know
which of {Xn−1, Yn−1, Zn−1} are in the same connected component. This is referred to as
the state of the subgraph, which corresponds to a partition of {Xn−1, Yn−1, Zn−1}, and
it is enough to study the effect of adding S to each state. In our example, consider the
subset S = {a, b} and the partition B = {Xn−1, Yn−1}, {Zn−1}; in other words, consider
Xn−1 and Yn−1 being in the same connected component and Zn−1 being in a different
component in some subgraph of Gn−1. By adding the two edges in S to the subgraph of
Gn−1, our new subgraph of Gn will have Xn and Yn in the same connected component and
Zn in a different component. We will call this new state B′S. Let δ(B, S) be the change
in the rank of B produced by adding the edges S. For this particular B and S, we have
δ(B, S) = 2. Then, in the row labeled B and the column labeled B′S, we add the term

x−δ(B,S)y|S|−δ(B,S).

the electronic journal of combinatorics 19(2) (2012), #P9 3



In this particular example, we would add the term x−2y0. We continue this process for
every partition of the vertices Xn−1, Yn−1, Zn−1 and all subsets of the set of added edges.
Each family of recursively constructible graphs also has an initial vector that corresponds
to the contributions of the states from the initial graph. For the double ladder graph, the
initial vector corresponds to the path of length two and is given by(

x−2 x−1 0 x−1 1
)t
.

Besides describing transfer matrices for recursively constructible graphs, the main
theorem presented in [7] is that recursively constructible graphs are recursive. The authors
go on to conjecture that the converse is true up to Tutte equivalence. Two graphs are
Tutte equivalent if they have the same Tutte polynomial. Formally, their conjecture is
stated as follows.

Conjecture 2. If a family of graphs {Gn} is recursive, then there exists a recursively
constructible family of graphs {Hn} so that T (Gn;x, y) = T (Hn;x, y).

In the remainder of this paper we give some counterexamples to this conjecture and
strengthen the hypotheses of this conjecture in order to exclude these counterexamples.

2 The Counter-Examples

The following definition provides us with the appropriate language for discussing our first
counter-example of the conjecture.

Definition 3. Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint graphs with v1 ∈ V1 and
v2 ∈ V2. The one-point join of G1 and G2 with respect to v1 and v2, denoted G1 ·G2 is the
graph produced by merging the vertices v1 and v2 into a single vertex v while preserving
edge incidences.

It is well-known that T (G1 · G2;x, y) = T (G1;x, y)T (G2;x, y); however, in [6], it is
also shown that any irreducible factors of the Tutte polynomial must arise from blocks.
A graph is considered Tutte unique if every graph having the same Tutte polynomial is
isomorphic to the graph itself. Thus, if a Tutte polynomial of a graph G can be factored
into irreducible terms so that each factor is the Tutte polynomial of a Tutte unique graph,
then the graph G is only Tutte equivalent to graphs that have the same blocks as itself.

As a first counter-example to the conjecture, we consider the following family of graphs.
Let G0 be a 3-cycle, G1 a 4-cycle, and G2 the complete graph on four vertices. We also
define G to be a 3-cycle. The rest of the family of graphs is constructed recursively so
that Gn = Gn−3 · G for all n > 3 (see Figure 2). We note that G0, G1, G2 and G are
all Tutte unique. The graph Gn has d(n − 2)/3e blocks isomorphic to G and one block
isomorphic to Gi for some i = 0, 1, or 2. Thus, if Gn is connected, it is Tutte equivalent
only to other graphs made by one-point joining d(n−2)/3e copies of G and one of G0, G1,
or G2.
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Figure 2: The family of graphs {Gn} is not recursively constructible but is recursive.

We also notice that the Tutte polynomials of the family of graphs {Gn} satisfy the
following recurrence relation

T (Gn+3;x, y) = (x2 + x+ y)T (Gn;x, y)

with Tutte polynomials for the initial graphs

T (G0) = x2 + x+ y, T (G1) = x3 + x2 + x+ y,

T (G2) = x3 + y3 + 3x2 + 3y2 + 4xy + 2x+ 2y.

Thus, the family of graphs {Gn} is recursive. To see that this family is not recursively
constructible notice that |V (G4)| − |V (G3)| = 1 while |V (G5)| − |V (G4)| = 0, thus there
does not exist a set of vertices Wn as required in part (a) of Definition 1.

This same construction can be used to find a multitude of counter-examples. We will
call families of graphs constructed in such a manner one-point periodically recursively
constructible.

The one-point periodically recursively constructible families are not the only coun-
terexamples to the conjecture of Noy and Ribó. The next counter-example we show arises
from considering two important families of graphs. A prism graph, Yn, is a graph on 2n
vertices that is the graph cartesian product of K2 and the cycle graph Cn. The Mobius
ladder graph, Mn, is a graph on 2n vertices that is is the prism graph with a twist (see
Figure 3).

In [1], the authors provide a recurrence relation obeyed by the Tutte polynomials of
both the family {Yn} and {Mn}. This recurrence relation is the same for both families
and is given by

T (Yn;x, y) = α1T (Yn−1;x, y) + · · ·+ α6T (Yn−6;x, y)

and
T (Mn;x, y) = α1T (Mn−1;x, y) + · · ·+ α6T (Mn−6;x, y)

where αi’s are polynomials in x and y independent of n.
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Figure 3: Graphs H2k are the prism graphs Yk+4. Graphs H2k+1 are the Mobius graphs
Mk+4. The family of graphs {Hn} is not recursively constructible but is recursive.

Consider the family of graphs {Hn} where H2k = Yk+4 and H2k+1 = Mk+4 (see Figure
3). We see that the family of graphs {Hn}n>1 satisfies the recurrence relation

T (Hn;x, y) = α1T (Hn−2;x, y) + · · ·+ α6T (Hn−12;x, y)

where the αi’s are the same as above.

This family is not recursively constructible because |V (H1)| − |V (H0)| = 0 while
|V (H2)| − |V (H1)| = 2. The key characteristic of this counter-example is that the family
of graphs {H2k+1}k>0 = {Mn}n>4 and the family of graphs {H2k}k>0 = {Yn}n>4 have the
exact same recurrence relation on their respective Tutte polynomials. Thus the recurrence
relation on the Tutte polynomials for the entire family {Hn} is very similar; it simply uses
every other graph. This counter-example motivates the following definitions.

Definition 4. A family of graphs {Hn}n>0 is periodically recursively constructible if there
exist recursively constructible families of graphs

{G0,n}n>0, {G1,n}n>0, . . . , {Gm−1,n}n>0,

where Hr+qm = Gr,q and there exists one labeled graph M that satisfies the conditions in
Definition 1 for all the families {Gi,n}. When m is the least integer for which this holds,
we say that {Hn} is m-periodically recursively constructible.

Definition 5. A family of graphs {Gn} is periodically recursive if the Tutte polynomials
satisfy

T (Gn;x, y) = α1T (Gn−m;x, y) + α2T (Gn−2m;x, y) + · · ·+ αrT (Gn−rm;x, y)

for all n > rm where r and m are positive integers and αi’s are polynomials in x and y
with integer coefficients independent of n.
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Recall that every recursively constructible family of graphs is recursive. From these
definitions we see that a recursively constructible graph is 1-periodically recursively con-
structible and periodically recursive. We extend this result to all periodically recursively
constructible families of graphs.

Theorem 6. Periodically recursively constructible families of graphs are periodically re-
cursive.

Proof. Let {Hn}n>0 be an m-periodically recursively constructible family of graphs. Then
there exist recursively constructible families of graphs

{G0,n}n>0, {G1,n}n>0, . . . , {Gm−1,n}n>0,

where the sequence of operations to get from Gi,n to Gi,n+1 is the same for all i, such that
Hr+qm = Gr,q. In [7], the authors show that every recursively constructible family has a
transfer matrix Λ with entries that are rational in x and y. Because all the families {Gi,n}
have the same M from Definition 1, the rank generating function of the families {Gi,n} is
given by

xr(Gi,0)Xt
i,0(I − x|Wn|zΛ)−11

with Λ and |Wn| not depending on i. The expression (I−x|Wn|zΛ)−1 is a rational function,
whereas xr(Gi,0)Xt

i,0 has only rational entries. Hence, the rank generating function is

rational, and its denominator is given by (I−x|Wn|zΛ)−1 for all i. (There could potentially
be some cancellations due to the term xr(Gi,0)Xt

i,0, but if so we do not perform them.)
As the denominator of a rational generating function determines the recurrence relation
satisfied by its coefficients, all the families {Gi,n}n>0 obey the same recurrence relation

T (Gk,n;x, y) = α1T (Gk,n−1;x, y) + α2T (Gk,n−2;x, y) + · · ·+ αpT (Gk,n−p;x, y)

for all k from 0 to m− 1. Thus we have that

T (Hk+mn;x, y) = α1T (Hk+m(n−1);x, y) + · · ·+ αpT (Hk+m(n−p);x, y)

= α1T (Hk+mn−m;x, y) + · · ·+ αpT (Hk+mn−pm;x, y)

Since this holds for all k from 0 to m− 1 and n > 0 we see that {Hn}n>0 is periodically
recursive.

Of course periodically recursive implies recursive, so as a corollary we have the follow-
ing.

Corollary 7. Periodically recursively constructible families of graphs are recursive.

We could find many more examples of non-recursively constructible recursive families
in this same manner. We note that the first counter-examples provided (using the one-
point joins) are in fact periodically recursively constructible as well. Given the above
considerations we provide the following conjecture, a slightly modified version of the
original conjecture of Noy and Ribó.

Conjecture 8. If a family of graphs {Gn} is recursive but not periodically recursive with
period greater than 1, then there exists a recursively constructible family of graphs {Hn}
such that T (Gn;x, y) = T (Hn;x, y).

the electronic journal of combinatorics 19(2) (2012), #P9 7



Acknowledgements

The authors would like the thank an anonymous referee for suggestions for the proof of
Theorem 1.

References

[1] N. L. Biggs, R.M. Damerell, D.A. Sands, Recursive Families of Graphs, J. of Com-
binatorial Theory Ser. B 12 (1972) 123-131.

[2] T. Brylawski and J. Oxley, The Tutte polynomial and its application. Matroid appli-
cations, 123-225, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge,
1992.

[3] N. Calkin, C. Merino, S. Noble, M. Noy, Improve bounds for the number of forests
and acyclic orientations in the square lattice, Electronic Journal of Combinatorics
10 (2003) #R4.

[4] J.A. Ellis-Monaghan and C. Merino, Graph polynomials and their applications I:
The Tutte polynomial, invited chapter for Structural Analysis of Complex Networks,
Matthias Dehmer, ed., Birkhouser (2010).

[5] de Mier and Noy, On graphs determined by their Tutte polynomials, Graphs and
Combinatorics 20 (2004) 105-119.

[6] C. Merino, A. de Mier and M. Noy, Irreducibility of the Tutte polynomial of a
connected matroid, J. Combin. Theory Ser. B 83 (2001), 298-304.
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