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Abstract

In this paper we prove that the set of non-crossing forests together with a cyclic
group acting on it by rotation and a natural q-analogue of the formula for their
number exhibits the cyclic sieving phenomenon, as conjectured by Alan Guo.
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1 Introduction

1.1 Non-crossing trees and forests

A non-crossing graph on n vertices is a graph whose vertices are arranged on a circle and
whose edges are straight line segments that do not cross. A tree is a connected acyclic
graph and a forest is an acyclic graph or, alternatively, a graph whose components are
trees. The number of non-crossing forests on n vertices with k components is

fn,k =
1

2n− k

(
n

k − 1

)(
3n− 2k − 1

n− k

)
. (1)

A proof using Lagrange inversion can be found in [1].
We obtain a natural q-analogue of (1) by replacing integers, factorials and binomial

coefficients in fn,k by their q-analogues:

fn,k(q) =
1

[2n− k]q

[
n

k − 1

]
q

[
3n− 2k − 1

n− k

]
q

, (2)

where

[n]q = 1 + q + q2 + · · · qn−1 =
1− qn

1− q
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Figure 1: A non-crossing forest on n = 12 vertices with k = 7 components.

[n]q! = [n]q[n− 1]q · · · [1]q[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

1.2 Cyclic Sieving Phenomenon

In 2004 Victor Reiner, Denis Stanton and Dennis White introduced the cyclic sieving
phenomenon in [3]. To define this concept we need a finite set X , a cyclic group C of
order n acting on X and a polynomial with nonnegative integer coefficients X(q).

Definition 1.1. The triple (X , C,X(q)) exhibits the cyclic sieving phenomenon if for all
c ∈ C we have

X(ωo(c)) = |X c| ,

where o(c) denotes the order of c in C, ωd is a dth primitive root of unity and X c =
{x ∈ X : c(x) = x} denotes the set of fixed points of X under the action of c ∈ C.

Definition 1.2. Fn,k is the set of non-crossing forests on n vertices with k components.
Fdn,k is the subset of Fn,k which contains forests which are invariant under rotation by 2π

d

which we call d-invariant forests.

The following statement is the main theorem of this article. It was conjectured by
Alan Guo [2].

Theorem 1.3. Let 〈ρ〉 be the cyclic group of order n acting on Fn,k by rotation and the
polynomial fn,k(q) defined as above. Then the triple (Fn,k, 〈ρ〉, fn,k(q)) exhibits the cyclic
sieving phenomenon.

In the following sections we verify this by direct calculation of the left and right hand
side in the condition of Definition 1.1.
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2 The left hand side: evaluating the polynomial

This section is devoted to the proof of the following Lemma which gives the evaluation of
fn,k(q) at roots of unity.

Lemma 2.1. Suppose d | n. And let ω be a dth primitive root of unity

• If d = 1, then fn,k(ω) = fn,k.

• If d > 2, d | k, let n′ = n
d
, k′ = k

d
, then

fn,k(ω) = (n′ − k′ + 1) fn′,k′.

• If d = 2, k odd, let n′ = n
d
, k′ = k+1

d
, then

fn,k(ω) =
(
n′

k′−1

)(
3n′−2k′
n′−k′

)
.

• Otherwise fn,k(ω) = 0.

A useful tool for the evaluation of q-binomial coefficients at roots of unity is the
q-Lucas theorem:

Lemma 2.2 (q-Lucas theorem). Let a and b be nonnegative integers and ω a dth primitive
root of unity. Then [

a

b

]
ω

=

(ba
d
c

b b
d
c

)[
a− dba

d
c

b− db b
d
c

]
ω

.

In particular, if d divides b then [
a

b

]
ω

=

(ba
d
c
b
d

)
.

Proof. A proof can be found in [4].

We will also frequently use the following Lemma whose proof is a straightforward
calculation.

Lemma 2.3. Let a and b be positive integers and ω a dth primitive root of unity. Then

1. [a]q has a simple zero at ω if and only if d 6= 1 and d | a.

2. [a]ω = 1 if a ≡ 1 mod d.

3. if a ≡ b mod d then

[a]ω
[b]ω

=

{
a
b

if a ≡ b ≡ 0 mod d

1 if a ≡ b 6≡ 0 mod d

Proof of Lemma 2.1. The case d = 1 follows directly from the definition of the q-ana-
logues. For d > 2 the evaluation of fn,k(q) at ω splits in two subcases.
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The case where d divides k

Let n′ = n
d

and k′ = k
d
. Then

fn,k(ω) =
1

[2n− k]ω

[
n

k − 1

]
ω

[
3n− 2k − 1

n− k

]
ω

=
[k]ω

[2n− k]ω

1

[n+ 1]ω

[
n+ 1

k

]
ω

[
3n− 2k − 1

n− k

]
ω

.

Applying the q-Lucas Theorem 2.2 to the q-binomial coefficients and the facts from
Lemma 2.3 to the factor in front, we obtain

k′

2n′ − k′

(
n′

k′

)(
3n′ − 2k′ − 1

n′ − k′

)
= (n′ − k′ + 1)

1

2n′ − k′

(
n′

k′ − 1

)(
3n′ − 2k′ − 1

n′ − k′

)
= (n′ − k′ + 1)fn′,k′ .

The case where d does not divide k

We have to distinguish two subcases, depending on whether d divides k − 1 or not. If d
does not divide k− 1 applying the q-Lucas Theorem to the first q-binomial coefficient we
obtain [

n

k − 1

]
ω

=

( n
d

bk−1
d
c

)[
0

k − 1− dbk−1
d
c

]
ω

= 0,

because k − 1− dbk−1
d
c 6= 0. Since [2n− k]ω 6= 0 the polynomial vanishes at ω.

If d divides k − 1 the q-Lucas Theorem shows that[
n

k − 1

]
ω

=

( n
d

k−1
d

)
.

We can rewrite the remaining as follows:

1

[2n− k]ω

[
3n− 2k − 1

2n− k − 1

]
ω

=
1

[2n− k]ω

[3n− 2k − 1]ω · · · [n− k + 1]ω
[2n− k − 1]ω · · · [1]ω

=
1

[2n− k]ω

1

[2n− k − 1]ω

[3n− 2k − 1]ω · · · [n− k + 2]ω
[2n− k − 2]ω · · · [1]ω

[n− k + 1]ω
1

=
[n− k + 1]ω

[2n− k]ω[2n− k − 1]ω

[3n− 2k − 1]ω · · · [n− k + 2]ω
[2n− k − 2]ω · · · [1]ω
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In the second fraction the factors above each other have all the same remainder modulo
d. Hence, by Lemma 2.3, this fraction is non-zero. In the first fraction we evaluate the
factors separately:

[n− k + 1]ω = [n− (k − 1)]ω = 0

[2n− k]ω = 1

[2n− k − 1]ω

{
= 0, if d | k + 1

6= 0 else

Altogether we have fn,k(ω) 6= 0, if and only if d | k−1 and d | k+ 1 which is only possible
if d = 2. In this case

fn,k(ω) =

( n
2

k−1
2

)(3n−2k−2
2

n−k−1
2

)
as desired.

3 The right hand side: counting forests invariant un-

der rotation

Lemma 3.1. Let Φ ∈ Fdn,k and let ρ be the rotation by 2π
d

of Φ. Then ρ maps every tree
τ in Φ onto a copy of itself, the vertices being disjoint from those of τ , or onto itself. The
latter case only occurs if d = 2 and k is odd.

The case where d divides k

Definition 3.2. For two vertices u and v the distance `(u, v) from u to v is the number of
consecutive vertices when going clockwise from u to v. Equivalently, when the vertices are
labelled clockwise from 1 to n, the distance is the unique number in {1, 2, . . . , n} which
is congruent to v − u mod n.

Definition 3.3. Let u and v be vertices with `(u, v) < `(v, u). Then u is in front of
v and v is behind u. In particluar, if `(u, v) = 1 u is the predecessor of v and v is the
successor of u

Definition 3.4. Let us label the vertices of a forest in Fn′,k′ clockwise from 1 to n′

beginning with the base vertex. For any tree not containing the base vertex 1 we call the
vertex with minimal label a bad vertex. All n′ − k′ + 1 other vertices are good.

Lemma 3.5. Let τ be a tree in a forest Φ ∈ Fdn,k and let ρ(τ) be its image under rotation

by 2π
d

. Then there is a unique vertex v ∈ τ such that there are no vertices of τ between v
and any vertex of ρ(τ). Subsequently, v is called the last vertex of τ .

Similarly, let ρ−1(τ) be the preimage of τ under rotation by 2π
d

. Then there is a unique
vertex u ∈ τ such that there are no vertices of τ between any vertex of ρ−1(τ) and u.
Subsequently, u is called the first vertex of τ .
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Figure 2: The non-crossing forest of Figure 1 drawn as a list with good vertex 4.

Thus, between the first and the last vertex of a tree τ there cannot be any vertex of
an image of τ . In particular, the number of components of Φ is a multiple of d and the
distance between the first and the last vertex of any tree τ is at most n′ = n

d
.

Proof. Follows directly from Lemma 3.1 together with the fact that Φ is non-crossing.

Lemma 3.6. Suppose d | n. Let n′ = n
d

and k′ = k
d
. If d divides k the number of

non-crossing forests with n vertices and k components invariant under rotation by 2π
d

is
(n′ − k′ + 1)fn′,k′.

To prove this we will show that the following mapping is in fact a bijection.

Mapping 3.7. Suppose d > 2 and d divides k and let n′ = n
d
, k′ = k

d
. Abusing notation,

let Fn,k ×G be the set of pairs (φ, v) such that φ ∈ Fn,k and v is a good vertex in φ.
Construction: The function Cd : Fn′,k′ ×G → Fdn,k maps (φ, v) ∈ Fn′,k′ ×G onto a

d-invariant forest Φ ∈ Fdn,k as follows:
We arrange the vertices of φ in a list beginning with the vertex v such that the prede-

cessor of v ∈ φ is the last vertex in the list. Then we construct a new list on n vertices
by placing d copies of this list next to each other such that for 1 6 i < d the first vertex
in the (i+ 1)st sublist is the right neighbour of the last vertex in the ith sublist.

Now, we arrange the vertices of this list on a circle such that the first vertex of the
list becomes the successor of the last vertex in the list. Finally, any of the vertices corre-
sponding to the base vertex of φ becomes the base vertex of the so constructed d-invariant
forest.

Decomposition: the function Dd : Fdn,k → Fn′,k′ × G maps a d-invariant forest

Φ ∈ Fdn,k onto a pair (φ, v) ∈ Fn′,k′ ×G as follows:
We choose the list of n′ consecutive vertices in Φ beginning with the first vertex v in

front of the base vertex such that there is no edge in Φ connecting a vertex in this list
with a vertex not in this list. Lemma 3.8 shows that such a vertex exists and that the base
vertex is in this list.

We then arrange the vertices of this list on a circle. The vertex corresponding to the
base vertex in Φ becomes the base vertex in the constructed forest.

Lemma 3.8. Dd is well defined.
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Figure 3: The image of the non-crossing forest of Figure 1 under C2 with good vertex 4.

Proof. We need to prove that in every Φ ∈ Fn,k a list of n′ = n
d

consecutive vertices
exists, such that no edge in Φ connects a vertex corresponding to a vertex in this list with
a vertex not in this list.

We can construct such a list containing the base vertex as follows: Draw a straight
line r from the center of the circle to the base vertex. If r crosses an edge in Φ, then there
is a unique tree τ containing the edge e such that the crossing of e and r is the closest
crossing to the center.

We then choose the list of consecutive vertices such that first(τ) is the first vertex
in the list and last(τ) is the last vertex in the list. By construction the base vertex 1 is
between first(τ) and last(τ). Hence, the label of last(τ) is smaller than the label of first(τ)
and thus first(τ) is a good vertex.

If r does not cross any edge, let τ be the tree containing the base vertex. In this case
first(τ) is automatically a good vertex.

By Lemma 3.5, the number of vertices in this list is at most n′.
If it is smaller than n′, choose the tree σ in Φ where first(σ) is the successor of the

vertex corresponding to the last vertex in the list. Since σ and the image of τ under
rotation are disjoint, the list beginning at first(τ) and ending at last(σ) contains not more
than n′ vertices.

Then we repeat the last step till our list contains n′ vertices.

Lemma 3.9. Cd is a bijection between Fdn,k and Fn′,k′ ×G.

Proof. We will prove that the Cd and Dd are compositional inverses of each other.
Let Φ ∈ Fdn,k and Dd(Φ) = (φ, v). Then Cd(Dd(Φ)) = Φ since both the list in the

decomposition and the list in the construction begin with v and represent the same forest
φ.

Conversely, let (φ, v) ∈ Fn′,k′ × G and Cd(φ, v) = Φ. To prove that Dd(Cd(φ, v)) =
(φ, v) we have to show that the vertex returned by the decomposition is v. By construction
of Φ no edge connects a vertex in the list of n′ consecutive vertices beginning with a vertex
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corresponding to v with a vertex not in this list. Thus, it remains to show that v is the
first vertex in front of the base vertex having this property.

This is certainly the case if v ∈ φ is in the tree containing the base vertex.
Else, if v is in a tree τ not containing the base vertex, then v is not the vertex with

minimal label in τ , since v is a good vertex. Thus, τ contains vertices with smaller label
than v, and τ contains vertices in front of and behind the base vertex. Since a list of
n′ consecutive vertices beginning with a vertex between v and the base vertex contains
the vertices of τ which are behind the base vertex, a path in Φ connects a vertex in
this list with v which is not in the list. Hence, v is the first vertex in front of the base
vertex with the required property such that both the lists in the construction and in the
decomposition are beginning with v and representing the same forest φ.

Proof of Lemma 3.6. We have a bijection between Fdn,k and Fn′,k′ ×G. Since for each of
the fn′,k′ elements in Fn′,k′ we have n′ − k′ + 1 good vertices, the number of elements in
in Fdn,k is fdn,k = (n′ − k′ + 1)fn′,k′ .

The case where d = 2 and k odd

Lemma 3.10. Let d = 2, n even and k odd and let n′ = n
2

and k′ = k+1
2

. Then the
number of non-crossing forests under rotation by π is (3n′ − 2k′)fn′,k′

The proof is similar to the one of Lemma 3.6. We define a bijection between F2
n,k

where k is odd and Fn′,k′ with additional information.

Mapping 3.11. Abusing notation let Fn′,k′×G be the set of forests φ ∈ Fn′,k′ with either
one of the n′ vertices marked or one of the n′ − k′ edges and an incident vertex marked.

Construction: the function C2 : Fn′,k′×G→ F2
n,k maps a forest φ with coloring onto

a 2-invariant forest Φ as follows:
We draw a diameter from top to bottom in a circle. Then we arrange the vertices of

φ clockwise on the right hand side of the circle such that the marked vertex v becomes the
upper vertex of the diameter.

We have to distinguish whether an edge is marked or not. If no edge is marked, we
ignore the lower vertex of the diameter and draw all edges incident to v in φ such that
they are incident to the upper vertex of the diameter.

In contrast, if an edge is marked, going clockwise starting at v we draw all vertices
adjacent to v till we reach the vertex incident to the marked edge. This vertex becomes the
first vertex adjacent to the lower vertex of the diameter. All consecutive vertices adjacent
to v become adjacent to the lower vertex of the diameter. Thus, the marked vertex is the
first edge drawn incident to the lower vertex.

Finally, the remainder of the forest is completed so that the result becomes symmetric.
Decomposition: the function D2 : F2

n,k → Fn′,k′ × G maps a 2-invariant forest Φ
with odd number of components onto a forest φ ∈ Fn′,k′ with coloring as follows:

The diameter separates the circle into two segments. We call the side with the base
vertex the right hand side. Then we disregard the vertices in the left hand side of Φ such
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Figure 4: A non-crossing forest on n = 8 vertices with k = 3 components.
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Figure 5: The image of the non-crossing forest of Figure 4 when marking vertex 8.

that only the diameter and the right hand side remain. Consequently, we call the vertices
of the diameter the upper vertex and the lower vertex.

Then going clockwise starting at the upper vertex we choose the first vertex adjacent
to the lower vertex and mark the edge between the two vertices.

Finally, we obtain a φ by contracting the diameter which becomes the marked vertex.

Lemma 3.12. C2 is a bijection C2 and D2 are compositional inverses of each other.

Proof of Lemma 3.10. C2 is a bijection between F2
n,k and Fn′,k′ ×G. For all φ ∈ Fn′,k′ we

have (3n′−2k′) different colorings since we have n′ options to mark a vertex and 2(n′−k′)
options to mark an edge and an incident vertex. Hence, the number of of elements in F2

n,k

is f 2
n,k = (3n′ − 2k′)fn′,k′
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Figure 6: The image of the non-crossing forest of Figure 4 when marking vertex 8 and
the edge (5, 8).

4 Polynomiality and nonnegativity of fn,k(q)

We prove that fn,k(q) is a polynomial with nonnegative integer coeffients, as required
in Definition 1.1. Let a(q) =

[
n
k−1

]
q
, b(q) =

[
3n−2k−1
n−1

]
q

and c(q) = [2n − k]q so that

fn,k(q) = a(q)b(q)
c(q)

and let ω be a dth primitive root of unity. Then fn,k(q) ∈ Q [q], if for all

d ∈ N the multiplicity of a zero at ω in a(q)b(q) is greater or equal than in c(q). Note
that c(q) can have only simple zeros by Lemma 2.3. As a result of Section 2 we know
that fn,k(ω) is an integer if d divides n, and in this case the multiplicity of a zero at ω is
not smaller in a(q)b(q) than in c(q). Since c(q) has a simple zero if and only if d | 2n− k,
it remains to consider the case d - n and d | 2n− k. In this case d - k and n 6≡ k mod d.
Let n = dqn + rn and k = dqr + rk with 0 < rn, rk < d. If rk = 1 then rn 6= 0, rn 6= 1 and
by q-Lucas Theorem

b(ω) =

(
· · ·
· · ·

)[
rn − rk − 1

rn − rk

]
ω

= 0

If rk > 1

a(ω) =

(
· · ·
· · ·

)[
rn

rk − 1

]
q

= 0, if rn < rk − 1

b(ω) =

(
· · ·
· · ·

)[
d− 2

d− 1

]
ω

= 0, if rn = rk − 1

b(ω) =

(
· · ·
· · ·

)[
rn − rk − 1

rn − rk

]
ω

= 0, if rn > rk − 1.

Thus, if c(q) vanishes at least one of a(q) and b(q) vanish, too. Since a(q) and b(q) are
polynomials in N [q] with symmetric, unimodal coefficient sequences, their product is as
well symmetric and unimodal. Finally, fn,k(q) ∈ N [q] follows from [3, Proposition 10.1].
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