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Abstract

Mohar and Vodopivec [Combinatorics, Probability and Computing (2006) 15,
877-893] proved that for every integer k (k > 1 and k 6= 2), there exists a snark which
polyhedrally embeds in Nk and presented the problem: Is there a snark that has a
polyhedral embedding in the Klein bottle? In the paper, we give a positive solution
of the problem and strengthen Mohar and Vodopivec’s result. We prove that for
every integer k (k > 2), there exists an infinite family of snarks with nonorientable
genus k which polyhedrally embed in Nk. Furthermore, for every integer k (k > 0),
there exists a snark with nonorientable genus k which polyhedrally embeds in Nk.

Keywords: polyhedral embedding; snark; nonorientable surface; nonorientable
genus; Euler genus

1 Introduction

During a conference in 1968, Grünbaum [5] conjectured that each cubic graph with a
polyhedral embedding in an orientable surface is 3-edge-colourable. A positive solution
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of this conjecture would generalize the dual form of the Four-Color-Theorem to every
orientable surface. The conjecture holds for the sphere from the results of Tait [16] and
Apple and Haken [1]. In [9], Kochol disproved the conjecture by showing that there exist
infinitely many snarks with polyhedral embeddings in Sk (k > 5). The smallest of the
counterexamples found by Kochol is a snark of order 74. With the aid of computer,
Mohar and Vodopivec [14] proved that for every cubic graph with fewer than 30 vertices,
the conjecture holds true. Furthermore, they proved that for every integer k (k > 1 and
k 6= 2), there exists a snark which polyhedrally embeds in Nk, and proposed the following
problem:

Problem 1. (Problem 5.3 of [14]) Is there a snark that has a polyhedral embedding in the
Klein bottle?

In the paper, we give a positive solution of Problem 1 and strengthen Mohar and
Vodopivec’s result. Actually, we prove that for every integer k (k > 2), there exists an
infinite family of snarks with nonorientable genus k which polyhedrally embed in Nk.
Furthermore, for every integer k (k > 0), there exists a snark with nonorientable genus k

which polyhedrally embeds in Nk.

2 Preliminary

All graphs considered in this paper are connected. For some terminologies without de-
scription here, we may refer the reader to [4, 6, 13].

A surface is a compact closed 2-dimensional manifold without boundary. In topology,
surfaces are classified into the orientable surface Sm, with m handles (m > 0) and the
nonorientable surface Nk, with k crosscaps (k > 0). A graph embedding into a surface
means a cellular embedding, so that every face of the embedding is an open topological
disk. The orientable genus γ(G) of a graph G is the smallest integer k such that G

cellularly embeds into Sk. Similarly, the nonorientable genus γ̃(G) of a graph G is the
smallest integer k such that G cellularly embeds into Nk. The Euler genus γ(G) of a graph
G is defined as min{2γ(G), γ̃(G)}. Also note that γ(G) = min{2 − χ(S) | G cellularly
embeds into a surface S}, where χ(S) denotes the Euler characteristic of a surface S. By
the well-known formula γ̃(G) 6 2γ(G) + 1, either γ̃(G) = γ(G) or γ̃(G) = γ(G) + 1.

A graph G is called a k-amalgamation of two graphs G1 and G2, denoted by G =
G1

⋃
k G2, if G = G1

⋃
G2 and G1

⋂
G2 is a set of k vertices. In [2], Archdeacon proved

the following theorem:

Lemma 2. ([2], Theorem 1.1)

2 − 2k 6 γ(G1) + γ(G2) − γ(G1

⋃
k
G2) 6 k2 − 4.

An embedding of a graph G is called polyhedral if all facial walks are cycles, and any
two of them are either disjoint, intersect in one vertex, or intersect in one edge. If G is
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a cubic graph, then any two facial walks are either disjoint or intersect in precisely one
edge.

A snark is a cyclically 4-edge-connected cubic graph of girth at least 5 with no 3-edge-
coloring. A graph is called a 4-snark if it dose not admit a nowhere-zero Z2 ×Z2-flow. It
is well known that a nowhere-zero Z2 × Z2-flow in a cubic graph G corresponds to a 3-
edge-coloring of G. Thus snarks form a proper subclass of 4-snarks. Kochol [8] introduced
a general method to construct a 4-snark. It is based on the following two steps.

Suppose v is a vertex of a graph G and a graph G′ is obtained from G by the following
process. Replace v by a graph Hv so that each edge e of G having one end v now has one
end from Hv. If e is a loop incident with v, then both ends of e will now be from Hv. We
call G′ a vertex superposition of G.

Suppose e is an edge of G with ends u and v and a graph G′ is constructed from G as
follows: replace e by a graph He having at least two vertices. In other words, we delete e

from G, pick two distinct vertices u′, v′ of He, and identify u′ with u and v′ with v. We
call G′ an edge superposition of G. If He is a 4-snark, then G′ is called a 4-strong edge
superposition of G.

A graph G′ is called a (4-strong)superposition of a graph G if G′ is obtained from G by
some vertex and (4-strong) edge superpositions. Kochol [8] proved the following lemma:

Lemma 3. ([8], Lemma 4.4) Let G be a 4-strong superposition of a 4-snark, then G is a
4-snark.

3 Main theorem

The Petersen graph P is the smallest snark and has a polyhedral embedding in the
projective plane, indicated in part (b) of Figure 1.

(a) (b)

e e

Figure 1: (a) the Petersen graph P and (b) the Petersen graph P polyhedrally embeds in
the projective plane
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· · ·

Figure 2: The graph G8k+2 resulting from k copies of the Petersen graph polyhedrally
embeds in Nk

· · ·

Figure 3: The snark S12k−2 polyhedrally embeds in Nk

Theorem 4. For every integer k (k > 2), there exists an infinite family of snarks with
nonorientable genus k which polyhedrally embed in Nk.

Proof. The proof comprises the following two parts:
(a). For every integer k (k > 2), we construct an infinite family of snarks with

polyhedral embeddings in Nk;
(b). For every integer k (k > 2), we prove that the snarks which are constructed in

part (a) have nonorientable genus k.
The Petersen graph P has a polyhedral embedding in N1 as shown in part (b) of

Figure 1. By applying 4-strong edge superposition (k − 1) times so that the edge e is
recurrently replaced by the copy of P , we get the graph G8k+2 of order 8k + 2, shown in
Figure 2. Replacing all vertices of degree 5 in G8k+2 by the paths of order 3, we obtain
the graph S12k−2 of order 12k − 2 (see Figure 3). By Lemma 3, S12k−2 is a 4-snark. Then
S12k−2 has no 3-edge-coloring. Since S12k−2 is a cubic graph, it has a 4-edge-coloring by
Vizing theorem. Because the Petersen graph is cyclically 4-edge-connected and has girth
5, S12k−2 is cyclically 4-edge-connected and has girth 5. So S12k−2 is a snark. It has a
polyhedral embedding in Nk, indicated in Figure 3.

In G8k+2, replace all vertices of degree 5 by paths of order 3 or by graphs Ci,5 (i > 1),
drawn in Figure 4. Dashed lines indicate the edges incident with a vertex of degree 5 in
G8k+2. The resulting graphs are vertex superpositions of G8k+2 and are snarks by Lemma
3. Thus we construct an infinite family of snarks with polyhedral embeddings in Nk.
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C1,5 C2,5

Figure 4: The graph Ci,5 (i = 1, 2)

Now, we prove part (b). Let k = 2 in Lemma 2, we get

γ(G1

⋃
2
G2) > γ(G1) + γ(G2). (1)

Since the Petersen graph P has orientable genus 1 and nonorientable genus 1, γ(P ) = 1
from the Euler genus definition. Recurrently computing γ(G8i+2) from i = 2 to i = k (see
Figure 2), we can deduce γ(G8k+2) > k according to the inequality (1). For every graph
G, γ̃(G) = γ(G) or γ̃(G) = γ(G) + 1. Thus we get γ̃(G8k+2) > k. Since G8k+2 has an
embedding in Nk (see Figure 2), γ̃(G8k+2) = k is deduced.

When replacing all vertices of degree 5 in G8k+2 by paths of order 3 or by graphs Ci,5

(i > 1), the resulting graphs are snarks according to the previous argument. It is clear
that the obtained snarks have nonorientable genus k because γ̃(G8k+2) = k and paths of
order 3 or graphs Ci,5 (i > 1) are all planar graphs.

Corollary 5. For every integer k (k > 0), there exists a snark with nonorientable genus
k which polyhedrally embeds in Nk.

Proof. This is directly deduced from Theorem 4 and the fact that the Petersen graph has
a polyhedral embedding in the projective plane.
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