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Abstract

In a recently proposed graphical compression algorithm by Choi and Szpankowski
(2012), the following tree arose in the course of the analysis. The root contains n
balls that are consequently distributed between two subtrees according to a simple
rule: In each step, all balls independently move down to the left subtree (say with
probability p) or the right subtree (with probability 1−p). A new node is created as
long as there is at least one ball in that node. Furthermore, a nonnegative integer d
is given, and at level d or greater one ball is removed from the leftmost node before
the balls move down to the next level. These steps are repeated until all balls are
removed (i.e., after n + d steps). Observe that when d = ∞ the above tree can
be modeled as a trie that stores n independent sequences generated by a binary
memoryless source with parameter p. Therefore, we coin the name (n, d)-tries for
the tree just described, and to which we often refer simply as d-tries. We study
here in detail the path length, and show how much the path length of such a d-trie
differs from that of regular tries. We use methods of analytic algorithmics, from
Mellin transforms to analytic poissonization.
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1 Introduction

In [1] an algorithm was described to compress the structure of a graph. The main idea
behind the algorithm is quite simple: First, a vertex of a graph, say v1, is selected and
the number of neighbors of v1 is stored in a binary string. Then the remaining n − 1
vertices are partitioned into two sets: the neighbors of v1 and the non-neighbors of v1.
This process continues by selecting randomly a vertex, say v2, from the neighbors of v1
and storing two numbers: the number of neighbors of v2 among each of the above two
sets. Then the remaining n − 2 vertices are partitioned into four sets: the neighbors of
both v1 and v2, the neighbors of v1 that are non-neighbors of v2, the non-neighbors of
v1 that are neighbors of v2, and the non-neighbors of both v1 and v2. This procedure
continues until all vertices are processed.

In the Erdős-Rényi model, a random graph has any pair of vertices connected by
an edge with probability p. It is proved in [1] that for large n our algorithm optimally
compresses any graph generated by the Erdős-Rényi model (and, in fact, it works well
in practice even for graphs not generated by the Erdős-Rényi model). To establish this
asymptotic optimality result, an interesting tree was used in the construction, that we
describe next.

The root of such a tree contains n balls (vertices of the underlying graph) that are
consequently distributed between two subtrees according to a simple rule: In each step,
all balls independently move down to the left subtree (say with probability p) or the right
subtree (with probability q = 1 − p), and a new node is created as long as there is at
least one ball in that node. Finally, a non-negative integer d is given so that at level d
or greater one ball is removed from the leftmost node before the balls move down to the
next level. These steps are repeated until all balls are removed (i.e., after n+d steps). Of
interest are such tree parameters as the depth, path length (sum of all depths), size, and
so forth. This is illustrated in Figure 1 in which the deleted ball is shown next to the
node from where it was removed.

The tree just described falls between two digital trees, namely tries and digital search
trees. In fact, when d = ∞ the tree can be modeled as a trie that stores n independent
sequences generated by a binary memoryless source with parameter p. Hence, we coin
the term (n, d)-trie (or simply d-trie) for the tree just described. In [1] lower and upper
bounds were proved for parameters of interest, by using known results for tries and digital
search trees [3, 19]. In this paper, we establish precise asymptotic results. In particular,
we show by how much the path length of a d-trie differs from the path length of the
corresponding regular trie.

Many parameters of a d-trie can be described by the following two dimensional recur-
rence

a(n, d) = f(n) +
n∑

k=0

(
n

k

)
pkqn−k[a(k, d− 1) + a(n− k, k + d− 1)], d ⩾ 1, (1)
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Figure 1: A (6, 1)-trie with six balls and d = 1, in which the deleted ball is shown next to the
node where it was removed.

with q = 1− p, and the boundary equation

a(n+ 1, 0) = f(n) +
n∑

k=0

(
n

k

)
pkqn−k[a(k, 0) + a(n− k, k)], (2)

for a known additive term f(n). For example, when f(n) = n, then a(n, d) represents the
path length. Recurrence (2) is equivalent to the following boundary condition

a(n, 1) = a(n+ 1, 0).

For d = ∞ recurrence (1) becomes a traditional recurrence arising in the analysis of tries
[19] whose solutions (exact and asymptotic) are well known. Thus, it is natural to study
the difference ã(n, d) := a(n,∞)−a(n, d), and that is our objective. In passing, we should
point out that recurrence (2) resembles the one used to analyze another digital search tree,
known as a digital search tree. In this paper we prove, however, that a (n, d)-trie more
closely resembles a trie, rather than a digital search tree.

Our main interest lies in solving recurrence (1) for d = O(1). In fact, for graph
compression we only need d = 0, and we focus on this case. We shall show that the term
in (1) involving the sum over a(n− k, k + d− 1) becomes exponentially small for n large
and d fixed. Then we shall approximate the recurrence for the excess quantity ã(n, d) by

ã(n, d) =
n∑

k=0

(
n

k

)
pkqn−kã(k, d− 1)

with an appropriate initial condition. The above we can solve asymptotically using Mellin
transform technique and depoissonization. In particular, for f(n) = n (that is, for the
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path length in a d-trie) we prove that the excess quantity ã(n, d) becomes asymptotically,
as n→ ∞ and d = O(1),

1

2h log(1/p)
log2 n− d

h
log n+

[
1

2h
− 1

h log p

(
γ + 1 +

h2
2h

+Ψ(logp n)

)]
log n

where Ψ(·) is the periodic function when log p/ log(1− p) is rational, and h is the entropy
rate.

Digital trees such as tries and digital search trees have been intensively studied for
the last thirty years [2, 3, 5, 7, 11, 12, 13, 16, 17, 18, 19]. However, our two-dimensional
recurrence seems to be new and harder to analyze. It somewhat resembles the profile
recurrences for digital trees, which were studied for tries in [15] and digital search trees
in [4], and which are known to also be challenging.

The paper is organized as follows. In the Section 2 we precisely formulate our problem
and analyze it for f(n) = n. Proofs are presented in Section 3, where we also discuss
some asymptotics for d→ ∞.

2 Problem Statement

In this section, we first formulate some recurrences describing (n, d)-tries, then summarize
our main results, discuss some extensions, and present numerical results.

2.1 Main Results

Let us consider a (n, d)-trie with n balls and parameter d ⩾ 0. First, we analyze the
average path length b(n, d). It satisfies the following recurrence equations

b(n+ 1, 0) = n+
n∑

k=0

(
n

k

)
pkqn−k [b(k, 0) + b(n− k, k)] , for n ⩾ 2, (3)

and

b(n, d) = n+
n∑

k=0

(
n

k

)
pkqn−k [b(k, d− 1) + b(n− k, k + d− 1)] , for n ⩾ 2, d ⩾ 1. (4)

Recurrence (3) follows from the fact that starting with n+ 1 balls in the root node, and
removing one ball, we are left with n balls passing through the root node. The root
contributes n since each time a ball moves down it adds 1 to the path length. Those n
balls move down to the left or the right subtrees. Let us assume k balls move down to the
left subtree (the other n− k balls must move down to the right subtree); this occurs with
probability

(
n
k

)
pkqn−k. At level one, one ball is removed from those k balls in the root of

the left subtree. This contributes b(k, 0). There will be no removal from n−k balls in the
right subtree until all k balls in the left subtree are removed. This contributes b(n−k, k).
Similarly, for d > 0 we arrive at recurrence (4).
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Here 0 < p < 1 and q = 1− p, and we also use the boundary conditions

b(0, d) = b(1, d) = 0, d ⩾ 0; b(2, 0) = 0. (5)

By setting d = 1 in (4) and comparing the result to (3) we can replace (3) by the simpler
boundary condition

b(n, 1) = b(n+ 1, 0), for n ⩾ 0. (6)

We are primarily interested in estimating b(n, 0) for large n.
If we let d → ∞ in (4) and assume that b(n, d) tends to a limit b(n,∞), then (4)

becomes

b(n,∞) = n+
n∑

k=0

(
n

k

)
pkqn−k [b(k,∞) + b(n− k,∞)] , (7)

with b(0,∞) = b(1,∞) = 0. This is the same as the recurrence for the mean path length
in a trie, which was analyzed, for example, in [12, 19]. One form of the solution is given
by the alternating sum

b(n,∞) =
n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
ℓ

1− pℓ − qℓ
, (8)

and an alternative form is given by the generating function

∞∑
n=0

b(n,∞)
zn

n!
e−z =

1

2πi

∫
Br

z−s Γ(s+ 1)

1− p−s − q−s
ds, (9)

where Γ(·) is the Gamma function and Br is a vertical Bromwich contour on which
−2 < ℜ(s) < −1. The integral certainly converges for z real and positive.

The asymptotic expansion of b(n,∞) in (8) or (9) as n → ∞ may be obtained by a
combination of singularity analysis and depoissonization arguments (see [7, 8, 19]) and
we obtain

b(n,∞) =
1

h
n log n+

1

h

[
γ +

h2
2h

+ Φ(logp n)

]
n+ o(n), (10)

where h = −p log p− q log q, h2 = p log2 p + q log2 q, γ is the Euler constant, and Φ(x) is
the periodic function

Φ(x) =
∞∑

k=−∞,k ̸=0

Γ

(
−2kπir

log p

)
e2kπrix,

provided that log p/ log q = r/s is rational, with r and s being integers with gcd(r, s) = 1.
If log p/ log q is irrational, then the term with Φ is absent from the O(n) term of (10).

Our analysis requires a two-term asymptotic estimate of the difference b(n+ 1,∞)−
b(n,∞), whose generating function may be represented, similarly to (10), as the inverse
Mellin transform∑

n⩾0

[b(n+ 1,∞)− b(n,∞)]
zn

n!
e−z =

1

2πi

∫
Br

−sΓ(s+ 1)

1− p−s − q−s
z−s−1ds. (11)
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This integral has a double pole at s = −1, and we can obtain a two-term approximation
for z → ∞, which by depoissonization becomes

b(n+ 1,∞)− b(n,∞) =
1

h
log n+

1

h

(
γ + 1 +

h2
2h

)
+

1

h
Ψ(logp n) + o(1) (12)

where Ψ(·) is the periodic function in Theorem 1, which again appears only for rational
log p/ log q.

The o(1) term in (12), just as the term o(n) in (10), is difficult to characterize explicitly,
but our analysis requires only the first two terms of the asymptotic estimate in (12). Note
that to obtain the leading term O(log2 n) in Theorem 1, we only need the leading term
in (12).

Next we set
b(n, d) = b(n,∞)− b̃(n, d) (13)

so that b̃(n, d) = b(n,∞)− b(n, d) measures how the path lengths in the d-trie differ from
those in a trie. From (4) and (7), we then obtain

b̃(n, d) =
n∑

k=0

(
n

k

)
pkqn−k

[
b̃(k, d− 1) + b̃(n− k, k + d− 1)

]
, for n ⩾ 2, d ⩾ 1, (14)

which unlike (4) is a homogeneous recurrence. Then from (6) and (13) we have the
boundary condition

b̃(n+ 1, 0)− b̃(n, 1) = b(n+ 1,∞)− b(n,∞). (15)

From (5) and (7) we also have b̃(0, d) = b̃(1, d) = 0 for d ⩾ 0.
We further define b∗(n, d) to be the solution of

b∗(n, d) =
n∑

k=0

(
n

k

)
pkqn−kb∗(k, d− 1), for n ⩾ 2, d ⩾ 1, (16)

and
b∗(n+ 1, 0)− b∗(n, 1) = b(n+ 1,∞)− b(n,∞). (17)

Note that (16) differs from (14) in that the former neglects the term involving b̃(n −
k, k + d− 1). We will show that this term in (14) is asymptotically negligible for n→ ∞
with d = O(1), so that b̃(n, d) ∼ b∗(n, d). The recurrence (16) is much easier to solve by
transform methods [7, 19] than is (14).

We summarize our main result below. In Section 3 we establish Theorem 1 along with
some other exact and asymptotic results for (3)–(6) and (14)–(17).

Theorem 1 For n → ∞ and d = O(1) the difference b(n,∞) − b(n, d) = b̃(n, d), which
is the difference in path length between the present tree and a standard trie, is of order
O(log2 n) for n→ ∞. More precisely

b̃(n, d) =
log2 n

2h log(1/p)
− d log n

h
+

[
1

2h
− 1

h log p

(
γ + 1 +

h2
2h

+Ψ(logp n)

)]
log n+O(1),
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where Ψ(·) is the periodic function

Ψ(x) =
∞∑

k=−∞,k ̸=0

[
1 +

2kπir

log p

]
Γ

(
−2kπir

log p

)
e2kπirx

and log p/ log q = r/t is rational. If log p/ log q is irrational, the term involving Ψ is
absent.

We see that b(n,∞) − b(n, d) = O(log2 n), which shows that the (n, d)-tries studied
in [1] are in some sense more similar to tries than to digital search trees (DST). In [1],
it was shown that b(n, 0) was bounded above by average path lengths in tries and below
by average path lengths in DST’s. It was also conjectured that b(n,∞)− b(n, d) is O(n),
but our result shows that this difference is in fact much smaller.

2.2 Related Recurrence Equations

The method presented in the next section, allow us to analyze a class of recurrences of
the type (3) with inhomogeneous terms other than n. For example, suppose we define
a(n, d) by

a(n, d) = f(n) +
n∑

k=0

(
n

k

)
pkqn−k[a(k, d− 1) + a(n− k, k + d− 1)] (18)

where f(n) is a given sequence. The boundary condition is again of the type (3), or
equivalently,

a(n, 1) = a(n+ 1, 0),

and we have a(0, d) = a(1, d) = 0. Also, let a(n,∞) satisfy (18) with the second argument
of a(·, ·) replaced by infinity. This recurrence can be solved by generating functions and
Mellin transforms, and we can then establish that a(n,∞)− a(n, d) = ã(n, d), will satisfy

ã(n, d) =
n∑

k=0

(
n

k

)
pkqn−k[ã(k, d− 1) + ã(n− k, k + d− 1)] (19)

and
ã(n+ 1, 0)− ã(n, 1) = a(n+ 1,∞)− a(n,∞). (20)

The asymptotic behavior of ã(n, d) for d = O(1) and n→ ∞ can be obtained in a manner
completely analogous to the case f(n) = n, discussed in the next section.

For example, the case
f(n) = ⌈log(n+ 1)⌉

arose in analyzing the compression algorithm in [1]. In [1] it was shown that a(n,∞) has
the asymptotic form

a(n,∞) =
n

h
A∗(−1) + o(n), n→ ∞ (21)

the electronic journal of combinatorics 19(3) (2012), #P15 7



0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

n

b̃(n, 0)
b∗(n, 0)

Asymptotic estimate of b̃(n, 0)

Figure 2: Numerical values of b̃(n, 0), b∗(n, 0), and asymptotic estimate of b̃(n, 0) with p = 0.5.

where

A∗(−1) =
∞∑
ℓ=2

⌈log(ℓ+ 1)⌉
ℓ(ℓ− 1)

if log p/ log q is irrational. If log p/ log q = r/s is rational, the constant A∗(−1) in (21)
must be replaced by the oscillatory function

A∗(−1) +
∞∑

k=−∞,k ̸=0

A∗

(
−1 +

2kπir

log p

)
e2kπir logp n (22)

where

A∗(s) =
∑
n⩾2

⌈log (n+ 1)⌉
n!

Γ(n+ s).

By analyzing (19) and (20) for n→ ∞ we can show that the difference a(n,∞)− a(n, d)
is O(log n), and more precisely

ã(n, 0) = a(n,∞)− a(n, 0) ∼ −A∗(−1)

h log p
log n.

Again if log p/ log q is rational we must replace A∗(−1) by the Fourier series in (22).

2.3 Numerical Data

To confirm our results, we numerically computed some of the quantities discussed above.
In Figure 2, we plot the values of b̃(n, 0) (defined in (13)), b∗(n, 0) (defined by (16) and
(17)), and our asymptotic estimate of b̃(n, 0) shown in Theorem 1, with p = 1/2. We
computed this asymptotic estimate up to the log n term without the periodic function
Ψ(·), that is,

1

2h log(1/p)
log2 n− d

h
log n+

[
1

2h
− 1

h log p

(
γ + 1 +

h2
2h

)]
log n.
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Table 1: Numerical values of b̃(n, 0) and b∗(n, 0)

p = 1/2 p = 1/3

n b̃(n, 0) b∗(n, 0) b̃(n, 0)− b∗(n, 0) b̃(n, 0) b∗(n, 0) b̃(n, 0)− b∗(n, 0)

1 0 0 0 0 0 0

2 4 4 0 4.5 4.5 0

3 6 5 1 7 5 2

4 8.321 6.696 1.625 9.507 6.248 3.259

5 10.305 8.121 2.184 11.652 7.369 4.283

10 16.472 13.267 3.205 17.659 11.466 6.193

20 23.034 19.752 3.282 22.521 16.260 6.261

30 27.406 24.124 3.282 25.802 19.494 6.308

50 33.489 30.207 3.282 30.150 23.891 6.259

100 42.724 39.442 3.282 36.849 30.550 6.298

We also present the numerical values of b̃(n, 0), b∗(n, 0), and their difference for p = 1/2
and p = 1/3 (then log(p)/ log(q) is irrational) in Table 1, which confirms that b̃(n, 0) ∼
b∗(n, 0), and suggests that the difference is O(1) for n → ∞ (which we shall establish
analytically).

3 Analysis

We first discuss some exact solutions of recurrence (4) for small values of n and arbitrary
d, then we prove our Theorem 1, and finally provide solutions of (4) for other ranges of
(n, d), where d→ ∞.

3.1 Some Exact Solutions

We first consider (4) for small values of n and arbitrary d. Using (5) we rewrite (4) as

b(n, d) = n+
n∑

k=2

(
n

k

)
pkqn−kb(k, d− 1) +

n−2∑
k=0

(
n

k

)
pkqn−kb(n− k, k + d− 1). (23)

When n = 2, (23) yields b(2, d) = 2 + (p2 + q2)b(2, d− 1) and since b(2, 0) = 0 we have

b(2, d) =
1

pq
+

(
2− 1

pq

)
(p2 + q2)d−1 for d ⩾ 1.

Note that b(2,∞) = (pq)−1 by (8). Setting n = 3 in (23) and solving the resulting
equation leads to, after some calculation,

b(3, d) =
2

pq
+

3

pq
(2pq2 − 1)(p2 + q2)d +

(
2 +

1

pq
− 6q

)
(p3 + q3)d for d ⩾ 0.
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We can then continue solving b(n, d) for increasing n, and it is clear that b(n, d) will
have the form

b(n, d) = b(n,∞)−
n∑

J=2

(pJ + qJ)dB(n, J), (24)

where b(n,∞) is the trie path length in (8) and (9). It follows that b(n, d) − b(n,∞) =
O
[
(p2 + q2)d

]
for n fixed and d → ∞. We can characterize the double sequence B(n, J)

by using (24) in (23) and equating coefficients of (pJ + qJ)d. For J ⩾ 2 this leads to

B(n, J) =
1

pJ + qJ

n∑
k=J

(
n

k

)(
pkqn−k + qk[p(pJ + qJ)]n−k

)
B(k, J). (25)

From (6) and (24) we find that

b(n,∞) +
n+1∑
J=2

B(n+ 1, J) = b(n+ 1,∞) +
n∑

J=2

B(n, J)(pJ + qJ). (26)

We can transform (25) into another equation by introducing the generating function

FJ(z) =
∞∑
n=0

B(n, J)
zn

n!
=

∞∑
n=J

B(n, J)
zn

n!
. (27)

Using (27) in (25) leads to the functional equation

FJ(z) =
1

pJ + qJ

(
FJ(pz)e

qz + FJ(qz)e
p(pJ+qJ )z

)
for J ⩾ 2.

Then if FJ(z) = ezGJ(z) we obtain

(pJ + qJ)GJ(z) = GJ(pz) + GJ(qz)e
p(pJ+qJ−1)z. (28)

Again this appears difficult to solve explicitly (however, see [10]).
We can take the analysis somewhat further in the symmetric case where p = q = 1/2,

as then (28) simplifies to

GJ(z)2
1−J = GJ

(z
2

)(
1 + exp

[
(21−J − 1)

z

2

])
. (29)

Solving (28) and inverting the transform over z leads ultimately to

B(n, J) =
B(J, J)

J !

n!

2πi

∮
ez

zn+1−J

∞∏
L=0

(
1 + e(2

1−J−1)2−L−1z

2

)
dz. (30)

Thus the double sequence B(n, J) is known up to the single sequence B(J, J). To de-
termine B(J, J) we must still use (26). Thus putting (30) in (26) will lead to a single
variable recurrence for B(J, J).
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Next we return to general p, q and estimate B(n, 2) in (25) for n → ∞. Let us set
C(n) = B(n, 2) and we recall that, by (24),

b̃(n, d) ∼ C(n)(p2 + q2)d; d→ ∞, n = O(1). (31)

While we mainly want to estimate b̃(n, d) for n → ∞ and d = O(1), it is useful to try to
understand the full asymptotic structure of b̃(n, d), for n and/or d large.

We thus examine how (31) behaves when n also becomes large. Setting J = 2 in (25)
leads to

(p2 + q2)C(n) =
n∑

k=2

(
n

k

)
pkqn−kC(k) +

n−2∑
k=0

(
n

k

)
pkqn−k(p2 + q2)kC(n− k) (32)

for n ⩾ 3 with C(2) = (p−1q−1 − 2)/(p2 + q2) = (pq)−1.
We argue intuitively that C(n) will behave algebraically for n → ∞ (we shall prove

this fact shortly). Then we use the fact that the “kernel” in (32) behaves(
n

k

)
pkqn−k → δ(k − np), n→ ∞

where δ(·) is the delta function. Then for algebraically or logarithmically varying smooth
f(k) (for k → ∞) we have (see [6, 9] for rigorous proofs)

n∑
k=0

(
n

k

)
pkqn−kf(k) = f(np) +O(nf ′′(np)), n→ ∞.

Then the term involving (p2+q2)kC(n−k) will lead to terms that are exponentially smaller
than those arising from C(k), and (32) may be replaced by the asymptotic relation

C(n)(p2 + q2) ∼ C(np), n→ ∞. (33)

A general solution to (33) has the form

C(n) = nνC̄(n) (34)

where C̄(np) = C̄(n) and pν = p2 + q2 so that

ν =
log(p2 + q2)

log p
> 0. (35)

Thus C̄(·) is a periodic function of logp n of period 1, which we can write as the Fourier
series

C̄(n) = c(0)(p) +
∞∑

ℓ=−∞,ℓ̸=0

c(ℓ)(p)e2πiℓ logp n. (36)
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It again appears difficult to identify explicitly the Fourier coefficients c(ℓ)(p), but we can
do this in the symmetric case p = q = 1/2. Then we set

∑∞
n=0C(n)z

n/n! = F2(z) as in
(27) and from (30) obtain

C(n) =
2n!

2πi

∮
ez

zn−1

∞∏
ℓ=1

(
1 + e−z2−ℓ−1

2

)
dz. (37)

To obtain the large n behavior of the integral in (37) we first expand the integral for
z → ∞ and apply a depoissonization argument. Setting ℓ = log2 z + J we have 2ℓ = 2Jz
and

∞∏
ℓ=1

(
1 + e−z2−ℓ−1

2

)

= exp

[
∞∑
ℓ=1

log

(
1 + e−z2−ℓ−1

2

)]

= exp

 ∞∑
J=1−log2 z

log

(
1 + e−2−J−1

2

)
= exp

[
∞∑
J=0

log

(
1 + e−2−J−1

2

)
+

log2 z−1∑
J=1

log

(
1 + e−2J−1

2

)]

∼ exp

[
log(

1

2
)(log2 z − 1) +

∞∑
J=0

log

(
1 + e−2−J−1

2

)
+

∞∑
J=1

(
1 + e−2J−1

)]
=

2

z
K∗

where

K∗ =
∞∏
J=0

(
1 + e−2−J−1

2

)
∞∏
J=1

exp
(
1 + e−2J−1

)
= 1.

Thus C(n) ∼ 4n!/(n − 1)! = 4n as n → ∞. This shows that c(0)(1/2) = 4 and a more
careful calculation can be used to identify the other Fourier coefficients c(ℓ)(1/2) in (36)
(then we would set ℓ = ⌊log2 z⌋+ J = log2 z + J − {log2 z} so that 2ℓ = 2Jz2−{log2 z}. We
omit the details.

In Table 2 we consider various values of p and estimate C̄(n) ≈ c(0)(p) numerically, by
computing C(n)n−ν from (32), for large n. This shows that as a function of p, |c(0)(p)|
is minimal when p is between 0.6 and 0.7, and becomes large as either p → 0 or p → 1.
For p → 0 the oscillatory terms in (36) become more numerically significant. Table 2
indicates this when p = 0.1, by giving a range of values of C(n)n−ν .

To justify the approximation in (33) we first inductively show that for all n

C(n) ⩽ Anν+ϵ (38)
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Table 2: Values of the zeroth Fourier coefficient.

p C(n)n−ν |n→∞ ≈ c(0)(p)
0.5 4
0.4 5.664
0.3 9.728
0.25 14.03
0.2 22.5
0.1 98 to 105

0.6 3.331
0.7 3.276
0.75 3.479
0.8 3.903
0.9 6.423

for all ϵ > 0 and A > 0. By isolating the terms in the sums in (32) with k = n and k = 0
we obtain, for n > 2,

C(n) =
1

p2 + q2 − pn − qn

[
n−1∑
k=2

(
n

k

)
pkqn−kC(k) +

n−2∑
k=1

(
n

k

)
pkqn−k(p2 + q2)kC(n− k)

]
.

(39)
Assuming inductively that (38) holds for C(k) for k = 1, 2, · · · , n− 1 we then have

n−1∑
k=2

(
n

k

)
pkqn−kC(k) ⩽

n−1∑
k=2

(
n

k

)
pkqn−kAkν+ϵ

⩽ A(np)ν+ϵ.

Using a similar estimate for the second sum in (39) we are led to

C(n) ⩽ A

p2 + q2 − pn − qn
[
(np)ν+ϵ + nν+ϵ(p(p2 + q2) + q)n

]
= Anν+ϵ

[
p2 + q2

p2 + q2 − pn − qn
pϵ +

(p(p2 + q2) + q)n

p2 + q2 − pn − qn

]
, (40)

as C(n−k) ⩽ A(n−k)ν+ϵ ⩽ Anν+ϵ and pν = p2+q2. Since p(p2+q2)+q < p+q = 1, the
second term in (40) is asymptotically negligible for n large and (38) follows by induction.

We have thus obtained some exact expressions for b(n, d) for small values of n, a
general asymptotic result for d → ∞ with n = O(1), and then examined how this result
behaves when n also becomes large. However, this cannot be used to infer the behavior
of b(n, d) for n→ ∞ with d = O(1), which we examine next.
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3.2 Main Asymptotic Result for b(n, d)

We first give an intuitive derivation of the asymptotics of b(n, d) for fixed d ⩾ 0 and
n → ∞, and in particular of b(n, 0). Starting from (14) we again argue that the second
sum is negligible for n → ∞ and that the first is asymptotic to b̃(np, d− 1) so that (14)
becomes

b̃(n, d) ∼ b̃(np, d− 1), n→ ∞ (41)

and, in particular,
b̃(n, 1) ∼ b̃(np, 0), n→ ∞ (42)

which when added to (15) leads to

b̃(n+ 1, 0)− b̃(np, 0) ∼ b(n+ 1,∞)− b(n,∞). (43)

The right side of (43) may be estimated from (10) or by (9). Using (9) we can show that
term by term differentiating of the asymptotic series in (10) is permissible, and thus (43)
becomes, for n→ ∞,

b̃(n+ 1, 0)− b̃(np, 0) =
1

h
log n+

1

h

(
γ + 1 +

h2
2h

)
+

1

h
ψ(logp n) + o(1), (44)

where ψ(·) is the periodic function

ψ(x) =
∞∑

k=−∞,k ̸=0

[
1 +

2kπir

log p

]
Γ

(
−2kπir

log p

)
e2kπirx, (45)

where we note that ψ and Φ are related by ψ(x) = Φ(x) + (log p)−1Φ′(x).
Now (44) suggests that b̃(n, 0) admits an asymptotic expansion of the form

b̃(n, 0) = A log2 n+B log n+ C + o(1), n→ ∞ (46)

and then

b̃(n+ 1, 0)− b̃(np, 0) = −2A(log p) log n− A log2 p−B log p+ o(1). (47)

Comparing (44) to (47) we conclude that A = −(2h log p)−1 and then

B =
1

2h
− 1

h log p

[
γ + 1 +

h2
2h

+ ψ(logp n)

]
. (48)

We have thus formally derived the result in Theorem 1 for b̃(n, 0). For any fixed d > 0
we can extend this argument by asymptotically solving (41) by an expansion of the form

b̃(n, d) = A(d) log2 n+B(d) log n+ C(d) + o(1) (49)

to find from (41) that A(d) = A(d−1) and B(d) = B(d−1)+2 log pA(d−1). Then using
(49) in (43) or (44) we find that A(d) = A(0) = −(2h log p)−1 and B(d) − B(d − 1) =
2 log pA(d− 1) = −h−1 so that B(d) = B(0)− h−1d, where B(0) = B is as in (48).
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We proceed to provide a rigorous derivation of the theorem. Using arguments com-
pletely analogous to (38)–(40), we can inductively establish the bound

b̃(n, d) ⩽ A0n
ν+ϵ(p2 + q2)d; n ⩾ 2, d ⩾ 0 (50)

where again ν is given by (35). When n = 2 we have (exactly)

b̃(2, d) =

(
1

pq
− 2

)
(p2 + q2)d−1,

so (50) clearly holds. Assuming that (50) holds for all (N,D) with N +D < n+ d we can
estimate the first sum in the right side of (13) by

n−2∑
k=0

(
n

k

)
pkqn−kb̃(k, d− 1) ⩽ A0

n∑
k=0

kν+ϵ(p2 + q2)d−1pkqn−k

(
n

k

)
⩽ A0(np)

ν+ϵ(p2 + q2)d−1

= A0n
ν+ϵ(p2 + q2)d,

and the second sum (14) by

n−2∑
k=0

(
n

k

)
pkqn−kb̃(n− k, k + d− 1) ⩽ A0

n∑
k=0

(n− k)ν+ϵ(p2 + q2)k+d−1pkqn−k

(
n

k

)
⩽ A0n

ν+ϵ(p2 + q2)d−1

n∑
k=0

(
n

k

)[
p(p2 + q2)

]k
qn−k

= A0n
ν+ϵ(p2 + q2)d−1

[
q + p(p2 + q2)

]n
which is o(b̃(n, d)) (by an exponentially small factor).

Now let bdiff (n, d) = b̃(n, d)− b∗(n, d). Then from (14)–(17) we see that

bdiff (n, d) =
n∑

k=0

(
n

k

)
pkqn−kbdiff (k, d− 1) +

n∑
k=0

(
n

k

)
pkqn−kb̃(n− k, k + d− 1) (51)

with bdiff (n + 1, 0) = bdiff (n, 1). Using an inductive argument analogous to that used to
obtain (50) we can show that bdiff (n, d) is O(1), since the second sum in (51) may be
estimated to be exponentially small for n → ∞. We shall show below that b∗(n, d) =
O(log2 n) for a fixed d and n→ ∞, and hence b̃(n, d) ∼ b∗(n, d).

We proceed to analyze (16), with (17), and thus re-establish Theorem 1. Introducing
the exponential generating function

B∗
d(z) =

∞∑
n=2

b∗(n, d)
zn

n!
= ezAd(z), (52)

where b∗(n, d) is defined from (16), we find that

B∗
d(z) = B∗

d−1(pz)e
qz
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or, since Ad(z) = B∗
d(z)e

−z,
Ad(z) = Ad−1(pz). (53)

This can be solved by iteration to yield

Ad(z) = A0(p
dz).

Then setting

G∗(z) =
∞∑
n=2

b(n,∞)
zn

n!

and noting that
∞∑
n=1

b∗(n+ 1, 0)
zn

n!
=

d

dz
B∗

0(z),

(17) leads to
d

dz
B∗

0(z)−B∗
1(z) = −G∗(z) + G ′

∗(z). (54)

If G∗(z) = ezG̃(z), from the integral representation in (9) we conclude that the Mellin
transform of G̃(z) is ∫ ∞

0

G̃(z)zs−1dz =
Γ(s+ 1)

1− p−s − q−s
, (55)

Using the definitions of Ad(·) and G̃(·), (54) becomes

A′
0(z) + A0(z)− A0(pz) = G̃ ′(z). (56)

We introduce the negative Mellin transform of A0(z)

M(s) = −
∫ ∞

0

A0(z)z
s−1dz (57)

and use (57) in (56) to obtain the functional equation

−(s− 1)M(s− 1) + (1− p−s)M(s) =
(s− 1)Γ(s)

1− p1−s − q1−s
. (58)

Next we set
M(s) = Γ(s)N (s) (59)

with which (58) becomes

−N (s− 1) + (1− p−s)N (s) =
s− 1

1− p1−s − q1−s
. (60)

To solve (60) we let

N (s) =
∞∏
k=0

[
1− pk+2

1− pk−s

]
N1(s) (61)
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and then (60) becomes

N1(s)−N1(s− 1) =
∞∏
k=1

[
1− pk−s

1− pk+1

]
s− 1

1− p1−s − q1−s
. (62)

Now, for s → −∞ the right side of (62) behaves as (s − 1)
∏∞

k=1(1 − pk+1)−1, with an
exponentially small error. Letting

N1(s) =
s(s− 1)

2

∞∏
k=1

(
1

1− pk+1

)
+N2(s) (63)

the equation for N2(·) becomes

N2(s)−N2(s− 1) =
s− 1∏∞

k=1 (1− pk+1)

[
1

1− p1−s − q1−s

∞∏
k=1

(1− pk−s)− 1

]
(64)

whose right hand side is, unlike that of (62), exponentially small for s → −∞. The
solution to (64) is

N2(s) = N2(−∞) +
∞∑
i=0

[ ∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

]
s− 1− i∏∞

k=1(1− pk+1)
. (65)

From (52) we see that Ad(z) = O(z2) as z → 0 so that M(s) in (57) must be analytic
at s = −1. From (59) we then conclude that N (−1) = 0. From (61) we have N1(−1) = 0
and from (63) and (65) we thus obtain an expression for N2(−∞):

N2(−∞)
∞∏
k=1

(1− pk+1) + 1−
∞∑
i=0

(i+ 2)

[∏∞
k=1(1− pk+i+1)

1− p2+i − q2+i
− 1

]
= 0. (66)

We have thus obtained the final expression for M(s) in (59) as

M(s) =
Γ(s)∏∞

L=0(1− pL−s)

(
s(s− 1)

2
+ β +

∞∑
i=0

(s− i− 1)

[ ∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

])
,

(67)
where

β = N2(−∞)
∞∏
k=1

(1− pk+1)

can be computed from (66). Inverting the transform in (57) we obtain the generating
function of b∗ as

∞∑
n=0

zn

n!
b∗(n, d) =

−1

2πi

∫
Br

(pdz)−sM(s)ds. (68)

The final step is to expand b∗(n, d) (∼ b̃(n, d)) for n → ∞ with d fixed. Inverting
the generating function over z can be done asymptotically by a standard depoissonization
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argument, which amounts to simply replacing z by n for large n. Thus we need only
evaluate the integral in (68) for z large and positive. The functionM(s) in (67) has a triple
pole at s = 0, and there are other double poles on the imaginary s-axis if 1− p1−s − q1−s

has zeros there, which occurs only if log p/ log q is rational, say r/t where r and t are
integers. First we compute the contribution from s = 0. Using the expansion Γ(s) =
[1− γs+O(s2)]/s as s→ 0, with γ being the Euler constant, (67) becomes

M(s) =
1

s
[1− γs+O(s2)](1− p−s)−1

∞∏
L=1

(1− pL−s)−1

×

(
s− 1

1− p1−s − q1−s

∞∏
k=1

(1− pk−s)− (s− 1) +
s(s− 1)

2
+ β

+
∞∑
i=1

(s− i− 1)

[ ∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

])
. (69)

Now

1− p−s = s log p− 1

2
s2(log p)2 +O(s3)

and

1− p1−s − q1−s = −hs− h2
2
s2 +O(s3).

Also, using the expression in (66) to compute β + 1 the expansion of (69) for s → 0
becomes

M(s) =
1

s3
1− γs

log p

[
1 +

s

2
log p+O(s2)

]{1− s

h

[
1− h2

2h
s+O(s2)

]
+O(s2)

}
=

1

s3
1

h log p
+

1

s2

[
− γ

h log p
− 1

h log p

(
1 +

h2
2h

)
+

1

2h

]
+O

(
1

s

)
. (70)

It follows that the integrand p−dsz−sM(s) in (68) has the residue

Ress=0

{
p−dsz−sM(s)

}
=

1

2

log2 z

h log p
+
d

h
log z + log z

[
1

log p

(
γ + 1

h
+

h2
2h2

)
− 1

2h

]
+O(1)

(71)
where the O(1) refers to terms that are O(1) for z → ∞, and these can be evaluated by
explicitly computing the O(s−1) term(s) in (70). Then the expansion of b̃(n, d) ∼ b∗(n, d)
follows by setting z = n in (71), and we have thus regained the formula in Theorem 1. If
log p/ log q is rational we must also compute the contribution from the double poles along
the imaginary axis at such points p−s = q−s = 1 and p1−s + q1−s = 1. These poles lead
to the oscillatory terms in Theorem 1, as can be seen by computing their residues from
(67).

We have thus established Theorem 1 rigorously, though the intuitive derivation in
(41)–(49) is much simpler, and more revealing of the basic asymptotic structure of the
equations (14) and (15).

the electronic journal of combinatorics 19(3) (2012), #P15 18



3.3 Other Asymptotic Ranges

Here we briefly discuss b̃(n, d) when n and d are simultaneously large, and try to identify
what ranges of n and d lead to different asymptotic expansions. We recall that (31)
applies for n fixed and d → ∞, while Theorem 1 applies for d fixed and n → ∞. We
confine ourselves here to an intuitive discussion.

The form of the expansion in (31) (with C(n) given by (34) and (36)) suggests that
an important scale is n, d → ∞ with d− log1/p(n) = O(1). Note that then the algebraic

growth of nν as n → ∞ is balanced by the geometric decay of (p2 + q2)d in (31). We
introduce the new variable ξ with

d =
log n

log(1/p)
+ ξ, ξ = O(1) (72)

with
b̃(n, d) = B(n, ξ) = B(n, d− log1/p(n)), (73)

and we note that
b̃(np, d− 1) = B(np, ξ). (74)

We again argue that for n → ∞ the second sum in (14) is negligible and approximate
(14) by

b̃(n, d) = b̃(np, d− 1) +O[nb̃′′(np, d− 1)]. (75)

In view of (73) and (74) a general asymptotic solution of (75) is any function that satisfies
B(n, ξ) = B(np, ξ) which we can write as a Fourier series, with

B(n, ξ) = B0(ξ) +
∞∑

ℓ=−∞,ℓ̸=0

e2πiℓ logp(n)Bℓ(ξ). (76)

Thus (76) gives an approximation to b̃(n, d) for n, d → ∞ with ξ = O(1), but we cannot
explicitly determine the Fourier coefficients Bℓ(ξ), which are now functions of ξ. If we
require B(n, ξ) to asymptotically match to (31), we would equate the large n behavior
(31) to the expansion of B(n, ξ) for ξ → +∞, and this yields

B0(ξ) ∼ c(0)eξ log(p
2+q2), ξ → +∞, (77)

and a similar matching condition can be obtained for Bℓ(ξ) for ℓ ̸= 0, by comparing (76)
and (34) with (36). Thus (77) shows that B0(ξ) will decay exponentially for ξ → +∞.

Next we examine b̃(n, d) for d = O(log n) by defining ω from

d = ω log n, 0 < ω <
1

log(1/p)
(78)

and then set
b̃(n, d) = log2(n)F(ω). (79)
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Then we approximate (14) again by b̃(n, d) ∼ b̃(np, d− 1) which in view of (79) becomes

log2(n)F(ω) ∼ log2(np)F
(

d− 1

log(np)

)
∼ (log n+ log p)2F

(
ω − 1

log n
− ω log p

log n
+O(log−2 n)

)
. (80)

From (80) we obtain the following limiting ODE:

0 = −F ′(ω)(1 + ω log p) + 2 log pF(ω). (81)

The solution to (81) is
F(ω) = (1 + ω log p)2F∗ (82)

where F∗ is a constant. For ω → 0, the expansion in (79) behaves as F∗ log
2(n) and if we

match the ω-scale result to the d = O(1) result in Theorem 1, we conclude that

F∗ =
1

2h

1

log(1/p)
.

Finally, by asymptotically matching (79) as ω → [log(1/p)]−1 to the approximation in
(73) and (76), for ξ → −∞, we conclude that

B0(ξ) ∼
1

2h
log2(p)ξ2, ξ → −∞.

Note that ξ and ω are related by

1 + ω log p =
log p

log n
ξ

so that when 0 < ω < [log(1/p)]−1 we have ξ < 0.
To summarize the formal results in this subsection, our analysis suggests that the

asymptotics of b̃(n, d) are different for the three cases:

(i) n = O(1), d→ ∞ (where (31) holds),

(ii) ξ = d− log1/p(n) = O(1) where (76) holds, and

(iii) d = O(log n) where b̃(n, d) ∼ (2h)−1(1 + ω log p)2 log2 n/(− log p) with d = ω log n
and 0 < ω < [log(1/p)]−1.

The result in Theorem 1 appears to be a limiting case of the d = O(log n) expansion,
when it is expanded for ω → 0. However, Theorem 1 also gives the second term (O(log n))
in the asymptotic series for d = O(1).

We have only given the asymptotic behaviors of B0(ξ) as ξ → ±∞. To get a more
explicit expression for b̃(n, d) ∼ B(n, ξ) in (76) we again argue that b̃(n, d) ∼ b∗(n, d)
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holds for ξ = O(1) (in fact this relation fails only for n = O(1) and d→ ∞). If instead of
defining ξ from (72) we let

d = ⌊log1/p(n)⌋+ ξ′ = log1/p(n) + ξ′ − {log1/p(n)}, (83)

where {·} denotes the fractional part, then

pdn = pξ
′
exp[−d log(1/p){log1/p(n)}]

and for n→ ∞ with ξ, ξ′ = O(1) the limiting form of (68) is

−1

2πi

∫
Br

p−sξ′M(s)psd{log1/p(n)}ds (84)

with M(·) as in (67). We therefore conjecture that the right side of (76) is given explicitly
by (84), with ξ in (76) replaced by ξ′ in (83).
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