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Abstract

It is conjectured by Vizing (1965) that every planar graphs graph G with maxi-
mum degree 6 < A < 7 is class one. The case A = 7 was confirmed independently
by Sanders and Zhao (2001), and by Zhang (2000). In this paper, we prove that
every planar graph G with A = 6 and without 7-cycles is class one.
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1 Introduction

In this paper, all graphs under consideration are simple and finite. A plane graph is a
particular drawing of a planar graph on the Euclidean plane. Let V(G), E(G), F(G) and
A(G) (or A for short) be the vertex set, edge set, face set, and maximum degree of a
given plane graph G, respectively. Let C,, denote a cycle of length n. We say that G is
C,-free if G' contains no C,, as a subgraph.

An edge k-coloring of a graph G is a function ¢ : E(G) — {1,2,...,k} such that any
two adjacent edges receive different colors. The edge chromatic number, denoted x'(G),
of a graph G is the smallest integer k such that G has an edge k-coloring. The celebrated
Vizing’s Theorem says that the edge chromatic number of a simple graph G is equal to A
or A+ 1. G is class one if x'(G) = A and class two if X'(G) = A+ 1. A class two graph
is critical if X'(G —e) < X/(G) for any edge e of G. A critical graph G is A-critical if it
has maximum degree A.
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In 1965, Vizing[6] proposed the following well-known Planar Graph Coloring conjec-
ture:

Conjecture 1 Every planar graph G with A = 6,7 is class one.

The case A = 7 was confirmed independently by Sanders and Zhao [4], and by Zhang
[9]. This result was further extended by Sanders and Zhao [5] to a graph with A =7
which can be embedded in a surface of characteristic zero. The case A = 6 remains open.

In[10], Zhou proved that every planar graph G with A = 6 is class one if it is Cs-free,
or Cy-free, or Cj-free. Li, Luo and Niu[2] generalized Zhou’s results to the surface of Euler
characteristic at least -3 or -1. Bu and Wang[1] proved that planar graphs G with A = 6
and without 6-cycles, or without two adjacent 3-cycles are class one. Wang and Chen [7]
proved that planar graphs with A = 6 and without a 5-cycle with a chord is class one.
More recently, Wang, Chen and Wang [8] further proved that planar graphs with A = 6
and without a 6-cycle with a chord is class one.

In this paper, we prove the following result, which extends a result in [1] and [10]:

Theorem 1. If G is a planar graph with A = 6 and without T-cycles, then X'(G) = A.

To show Theorem 1, we need to introduce some notation. For f € F(G), we use
b(f) to denote the boundary walk of f and write f = [ujug - - - ug] if uy, us, ..., uy are the
vertices of b(f) in a cyclic order. For z € V(G) U F(G), let d(x) denote the degree of x
in G. A vertex of degree k (at least k, at most k, respectively) is called a k-vertex (or
kT -vertex, k™ -verter, respectively). Similarly, we can define a k-face, kT-face and k™ -face.
Let v € V(G). If a k-vertex u is adjacent to v, then w is called a k-neighbor of v, and we
use di(v) to denote the number of k-neighbors of v. Similarly, we can define dj+(v) and
di-(v). For i > 3, let m;(v) denote the number of i-faces incident to v. Moreover, m;+(v)
and m;-(v) can be defined analogously. Let N(v) denote the set of neighbors of v, and
let Njv] = N(v)U{v}. For S C V(G), let N(S) = UyesN(u).

The following is the outstanding Vizing’s Adjacent Lemma (we denote it by VAL for
short).

Lemma 2. ([6]) IfG is a A-critical graph and xy is an edge of G, then d(x)+d(y) > A+2
and x is adjacent to at least (A — d(y) + 1) A-vertices. Furthermore, every vertez is
adjacent to at least two A-vertices.

Let G be a 6-critical graph and v € V(G). Then the assertions (P1) to (P5) below
follow automatically from Lemma 2.

(P1) If d(v) =2, then dg(v) = 2.

(P2) If d(v) = 3, then dy-(v) = 0 and ds(v) < 1

(P3) If d(v) =4, then d3-(v) = 0 and dy4(v) < 1; and if dy(v) =1, then dg(v) =

(P4) If d(v) = 5, then dy(v) = 0 and d3(v) < 1; moreover, dg(v) = 4 if d3(v)
and dg(v) > 3 if dy(v) > 1.

(P5) If d(v) = 6, then dy(v)
ds3(v) > 1, and dg(v) > 3 if dy(v) >

3

< 1; moreover, dg(v) = 5 if do(v) = 1, dg(v) > 4 if
1

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P17 2



G, G

Figure 1: The configurations in Claim 5, where v is a bad 6-vertex.

The vertex v is called bad if either d(v) = 6, mz(v) = 4 and my(v) = 2, or d(v) =
ms(v) =5 and dg(v) = 2, or d(v) = mg(v) = 4. It is easy to see that a bad 5-vertex v
satisfies d5(v) = 3 by (P4).

Lemma 3. ( [9]) Let G be a A-critical graph. If xy € E(G) and d(x) + d(y) = A + 2,
then the following hold:

(1) Every vertex in N(xz,y)\{z,y} is a A-vertex.

(2) Every vertex in N(N(x,y))\{z,y} is of degree at least A — 1.

(3) If d(z),d(y) < A, then every vertex in N(N(x,y))\{z,y} is a A-vertez.

Lemma 4. ([3]) Let G be a critical graph and x be a 3-vertex in G. If x is adjacent to three
A-vertices, then at least one A-vertex in N(x) is adjacent to only one (A — 1)~ -vertex
which is x.

2 Proof of Theorem 1.1

Let G be a planar graph with A = 6 and without 7-cycles that is embedded in the plane.
Assume to the contrary that G is class two. Without loss of generality, we may assume
that G is 6-critical. Then G is 2-connected, implying that the boundary of each face forms
a cycle and every edge lies on the boundaries of two faces.

We first investigate structural properties of G and then use Euler’s formula and the
discharging technique to derive a contradiction. Given a k-vertex v € V(G), let vy, vy, -,
vr_1 be the neighbors of v in clockwise order. For 0 < ¢ < k — 1, let f; be the incident
face of v with vv; and vv;; as boundary edges, where indices are taken modulo k.

Claim 5. Let v be a 6-vertex with ms(v) = 4. Then one of the following cases holds:
(1) v is bad such that G(N[v]) = Gy or G1, as shown in Figure 1;
(2) my(v) =1 and mg+(v) = 1;
(3) ms(v) =1 and mg+(v) = 1;

(4) me+(v) = 2.

Proof. Since mg3(v) = 4, the proof is split into the following three cases by symmetry.
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Case 1 d(f;) =3fori=1,2,3,4.

Since G contains no 7-cycles, it is easy to see that voui,vovs ¢ E(G). Let f5 =
[vUsy1 - - Ypvo] and fo = [vvgzy - - - zgv1]. Then p,q > 1 and p,q # 4. By symmetry, we
may assume that ¢ > p. If p > 3, then (4) holds. If p = 2 and ¢ > 3, then (3) holds.
If p=1and g > 5, then (2) holds. Otherwise, it suffices to consider the following two
subcases to derive (1):

Subcase 1.1 p=1and 1< ¢ < 3.
Since G is Cy-free, it follows that y; € {vs, v3, v4}.
(1.1a) y; = vy, implying that d(vs) = 2.

e Assume that ¢ = 1. Then z; € {vq,v3,v4} as before. If z; = vy, then d(vy) = 2. If
21 = vy, then d(vy) = 2. Thus, N(v) has at least two 2-vertices in both cases, contradicting
(P5). If 21 = v3, we get a T-cycle C7 = vusvgvguzvaviv, a contradiction.

e Assume that ¢ = 2. Then at least one of 21, z5 belongs to {vq, v3} since otherwise we
get a 7-cycle C7 = vugz1 290109030, If 29 = vy, then d(vy) = 2, contradicting (P5). If 25 =
vs, then z; # vy, and we get C7 = vgz1v309v10V4vg. If 21 = vg, we get C; = vy 29U203V4U50.
If z; = vz, we have two possibilities. When zy = v, we have d(v;) = 2, contradicting
(P5). When 2y # vy, we get C7 = v1 2903040500201 .

e Assume that ¢ = 3. Then vy € {21, 29, 23}, for otherwise we take C7 = vvy21 222301 090.
If vy = z3, then d(vy) = 2, contradicting (P5). If vy = 29, we take C; = vv; 23090504050, If
vy = 21, then 2y, 23 ¢ N(v) by the planarity of G, hence we have C; = vy 23290903040.

(11b) Y1 = Us.

e Assume that ¢ = 1. Then z; € {vg, v3} by the planarity of G and the hypothesis that
G is Cr-free. If z; = vy, we get C7 = vv1v909v3v4v50. If 21 = v3, we have G(N[v]) = G,
hence the conclusion (1) holds.

e Assume that ¢ = 2. We note that at least one of 21, 2o belongs to {vy,v3} by the
planarity of G and the fact that G is Cr-free. If 21 = v9, we get C7 = vv12902U304V50.
If 2y = w3, we assert that zy # vq, otherwise it follows that d(v;) = 2 and d(v3) = 3,
contradicting (P5). Thus, we get C; = vvoviz9v3v4v5v. If 29 = vy, we derive by (P5)
that z; # vz, hence C7 = vvgzyvauzvgusv. If 29 = v, it is easy to deduce that d(vs) > 7,
contradicting the assumption that A = 6.

e Assume that ¢ = 3. Then vy € {z1, 29, 23} since G is Cr-free. If z3 = vy, then
29 # vz by (P5). When z; # vs, we get C7 = wvvgz12209v3040. When 2z = vz, we
get C7 = vv1v9290304u50. If 29 = w9, we get C7 = wvvyzgvavgvgusv. If 21 = vy, we get
C'7 = V01 2329U903040.

(1.1c) y1 = vo.

e If ¢ = 1, then 2z; = vy by the planarity of G and the hypothesis that G is C;-free.
Hence d(vy) = d(vg) = 2, contradicting (P5).

e Assume that ¢ = 2. By the planarity of G, vs & {21, 22}. If vo & {21, 22}, G contains
a 7-cycle C7 = vvgzy 290109030, If 21 = vg, we get C7 = vy 29v9v3v4050. If 29 = 1o, We get
C'7 = VU211 V90304U5D.
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e Assume that ¢ = 3. Then vy € {21, 29,23} since G is Cr-free. If 23 = vy, we
get C7 = vvgz12900u3040. If 29 = w9, we get C7 = vvizgvouzvgvsv. If 21 = vy, we get
C'7 = VU1 2329U90304.

Subcase 1.2 p=qg=2.

Since G is Cr-free, we see that at least one of y;,ys belongs to {vs,v4}, and at least
one of z1, z3 belongs to {vg, v3}. Furthermore, ys # vy and 2z, # vs.

o If yo = vy, then we get C7 = vusy v4vsvaviv. If 27 = v9, we have a similar proof. So
assume that z; # vs.

e Assume that y; = vs. Then d(vs) = 2. If yo = v3, then d(v4) = 3, contradicting
(P5). If yo = vy, then z5 = vy and d(vy) = 2, contradicting (P5). If yo ¢ {va, vs3}, we get
C7 = vUgYa4V3V201 V.

If 29 = vy, we have a similar proof. Hence assume that zo # vs.

e Assume that y; = vs. If 2o = v3, then d(v3) > 7, a contradiction. If z; = v, then
we get C7 = v 29U304V50.

e Assume that ys = v3. Then we get C'; = vv1VU3Y1V5V40.

Case 2 d(f;)) =3fori=1,23,5.

Since G is Cr-free, we see vgvy, Ugvy, V105, V405 ¢ E(G). Let fy = [vvgys - - - y,vs] and
fo = [vvoz1 - - - Z4v1] such that ¢ > p > 1 and p, ¢ # 4. If one of (2)-(4) holds, we are done.
Otherwise, similar to Case 1, it suffices to consider the following two subcases:

Subcase 2.1 p=1and 1 <q¢<3.
Since G is Cr-free, it follows that y; € {vg, v3}.

(2.1a) y; = vs, implying that d(vy) = 2. Then z; # wvs, for otherwise d(vy) = 2,
contradicting (P5).

e Assume that ¢ = 1. Then z; € {vg,v3} by the same reason. If z; = vy, then
d(v1) = 2, contradicting (P5). If z; = vs, then G(N[v]) = Gy, hence (1) holds.

e Assume that ¢ = 2. Since G is Cr-free, at least one of 2z, z5 coincides with vy or vs.
If zo = vy, then d(v1) = 2, contradicting (P5). If z; = vy, we get C7 = vvgusvsvezeviv. If
2o = v3, we get C7 = vusv9210309010. If 21 = w3, we get C7 = vgv5U32201V90.

e Assume that ¢ = 3. Then vy € {21, 29, 23} by the previous analysis. If z3 = vg, then
d(v1) = 2, contradicting (P5). If zo = vy, we get C7 = vvgusvzvazzviv. If 21 = vy, we get
C'7 = vU5V3V92923010.

(21b) Y1 = Us.

e Assume that ¢ = 1. By the planarity of G and the foregoing argument, 2z; ¢
N(v)\{va}. If 21 = vg, we have G(N[v]) = G and therefore (1) holds.

e Assume that ¢ = 2. It follows that vy € {z1, 20} since G is Cr-free. If z; = vy, then
d(ve) > 7, a contradiction. If zy = vg, then z; # vs, and we get C7 = VU5V(21V9V3V40.

e Assume that ¢ = 3. Then vy € {21, 29, 23}. If 21 = vg, we get C7 = V123290203040,
If z3 = w9, we get C; = vvgz129v0v3v4v. If 29 = vy, we have two possibilities. When
21 # vs, we get Cr = vvsv9210203040. When 27 = vs, we have d(vg) = 2 and d(vs) = 3,
contradicting (P5).
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Subcase 2.2 p=g=2.

We see that at least one of y1,ys (21, 22, respectively) coincides with vy or vs.

e Assume that y; = vs. Then d(vy) = 2. By the previous discussion, yo # v;. If
y2 = vp, then d(vs) = 2, contradicting (P5). If yo = vq, then d(v3) = 3, contradicting
(P5). This shows that ys & {vo, v1,v2}, hence we get C; = vvgUsY2v3V20710.

If zo = vy, we have a similar proof.

e Assume that ys = v3. If 21 = vy, we get C7 = vvi20vv3y1v4v. If 21 = v3, we get
Cr7 = vugy1v3zavivau. If 25 = wvs, we claim that z; # vs, for otherwise d(vy) = 2 and
d(vs) = 3, contradicting (P5). Thus, we get C; = vusv02103Y1040.

If z;1 = v9, we have a similar proof.

e Assume that one of yi,ys coincides with v,. By the planarity of G, none of zi, z5
coincides with vs. Thus, we get C'; = vvy2z1 220102030

Case 3 d(f;)) =3 fori=1,2,4,5.

Since G is Cr-free, we see that vovy, vous, v1vs, v3v4 ¢ E(G). Let f3 = [vvsyy - - - ypva]
and fo = [vvgz - - - z,01] such that ¢ > p > 1 and p, ¢ # 4. If one of (2)-(4) holds, we are
done. Otherwise, it suffices to consider the following two subcases:

Subcase 3.1 p=1and 1 <q<3.

Since G is Cr-free, it follows that y; € {vy, v5}. Without loss of generality, we assume
that y; = vy. Then d(v3) = 2.

o If ¢ =1, then 2, € {vy, v} similarly, so d(vy) = 2 or d(vg) = 2, contradicting (P5).

e Assume that ¢ = 2. We note that vs ¢ {21, 22} by the plane embedding of G.
Thus, vy € {21, 20}. If 21 = vy, we get C7 = vVUsV4Vazov1V. If 25 = vy, then d(v)) = 2,
contradicting (P5).

e Assume that ¢ = 3. Then vy € {21, 29, 23}. If 23 = vy, then d(v;) = 2, contradicting
(P5). If 21 = vq, we get C7 = vusv4v22223v10. If 25 = vy, we get C7 = vugUsV4V2230V1.

Subcase 3.2 p=q=2.

If y1,y2 & {vo,v5}, we get Cr = v0ausy1Yovavsv. If 21, 20 & {va,v5}, we get a similar
7-cycle. Otherwise, by symmetry, we assume that the following two possibilities:

e Assume that y; = ve. Then d(vs) = 2. Obviously, yo # vy since vivy ¢ E(G). If
y2 = vs, then d(vy) = 2, contradicting (P5). If yo # vg, we get C7 = vugusv4Y2v2010. So
suppose that ys = vp. In this case, we must have vy € {21, 22}. If 25 = vy, then d(v;) = 2,
contradicting (P5). If z; = vy, we get C7 = vvy2902UgU5V40.

e Assume that yo = v9. We get C7 = vvsyv9v4v5000. O

For a bad 6-vertex v, Claim 5 asserts that G(N[v]) = Gy or Gy, see Figure 1. We
say that a 6-vertex in the induced subgraph G[N(v)] other than v is a master of v, and
v is the slave of its master. Clearly, if u is a master of some 6-vertex, then mg(u) = 2,
my4(u) = 2, and u has only one slave.

Claim 6. Let v be a 6-vertex with mg(v) = 3. If my(v) = 3, then ds-(v) = 0.
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Proof. Assume to the contrary that ds-(v) > 0. If f; is a 4-face, we let f; = [vv;y;vi41],
where indices are taken modulo 6.

Case 1 d(f;) =3 fori=1,3,5.

Then d(f;) = 4 for j = 0,2,4. We note that if y; € {v;_1,v;42}, then d(v;) = 2 or
d(vj+1) = 2 for each j = 0,2,4. By (P5), at least two of y;s, say y» and y4, do not coincide
with vj_1 and v;4o. If yo = vs, we get C7 = vU1V2V5Y4V4v3v. I Y4 = Vo, we have a similar
proof. If ys # yy, we get C'; = vuoysv3v4ysv5v. Assume that yo = y4, which implies that
Yo & {vo,v1}. If yo € {vo,v5}, say yo = ve, then we get C7 = vusvguayavsvav. Otherwise,
Yo & {ve,vs}, we have two possibilities. If yo # yo, then we get C7 = vugyoviv2y2v3v.
If yo = yo, i-€., Yo, Y2, ys4 identify to one vertex, then it is easy to see that d(v;) > 3 for
all i = 0,1,---,5. Since d3-(v) > 0, we may assume, without loss of generality, that
d(v1) = 3. By (P2), d(v2) > 5. However, vy is a cut vertex of G, contradicting the fact
that G is 2-connected.

Case 2 d(f;)) =3fori=1,24.

Then d(f;) =4 for j =0,3,5. If y3 ¢ N(v), we get C7 = vv10203Y304050. So assume
that y3 € N(v). We have the following subcases:

o If y3 = vy, we get C = vV1V2U3VHV4V5V.

e Assume that y3 = vy, then d(vy) = 2. If yo & N(v), we get C7 = VYoV V2V3V5V.
Otherwise, yg € {vq,v3,v5} by the plane embedding of G. If yg = vy, then d(vy) = 2,
contradicting (P5). If yo = vs, then it follows that y5 ¢ N(v) by the plane embedding of
G, hence we construct C7 = vvgysvsvsvaviv. So assume that yo = vs. If y5 # v3, we get
C7 = vugysvsv3v9010. If y5 = v3, then d(vg) = 2, contradicting (P5).

e Assume that y3 = vo. Then d(v3) = 2. If y5 ¢ N(v), we get Cr = vVY5VU504V201 0.
Otherwise, we have ys € {v1,v9,v4} by the planarity of G. If y5 = vy, then d(vs) = 2,
contradicting (P5). If y5 = vy, or y5 = vy, then yy ¢ N(v) by (P5) and the planarity of
G, thus we have C'; = vvgyou1v20405v.

e Assume that y3 = v;. If ys ¢ N(v), we get C7 = vvgysvsvsv1v90. Otherwise,
ys € {v1,v4} by the planarity of G. If y5 = vy, then d(vs) = 2. When yy = vy, we have
d(vg) = 2, contradicting (P5). When yy # vy, we get C; = vogvgyovivauzv. If y5 = vy,
then it is easy to see that yo ¢ N(v), and hence d(vy) > 7, a contradiction.

Case 3 d(f;)) =3fori=1,2,3.

Then d(f;) =4 for j = 0,4,5. If y, ¢ N(v), we get C7 = vu5y404v3v2v10. Otherwise,
it suffices to handle the case y, € {vg, vy, v2,v3}.

o If yy = vy, we get C7 = vvvu3v4v9Usv. If Y9 = v5, we have a similar proof.

e Assume that ys = vs, then d(vy) = 2. If y5 & N(v), we get C7 = vVY5V5V3V201 V.
Otherwise, suppose that y5 € {vi,ve,v3} by the plane embedding of G. If y5 = v3, then
d(vs) = 2, contradicting (P5). If y5 = vy, then yo ¢ N(v), we get C7 = vyYov10203040.
Finally, suppose that ys = vy. If yo = vg, then d(vg) = 2, contradicting (P5). Otherwise,
we can construct a 7-cycle as above.

If yo = v9, we have a similar proof.
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e Assume that yy = v1. If y5 & N(v), we get C7 = vugysvsvivav3v. Otherwise, ys = vy
by the planarity of G. Noting that yo ¢ N(v), we can construct a 7-cycle as above.

If yg = vy, we have a similar proof.

o If y; = vy, then yy = v3 by symmetry, which is impossible by the planarity of G. [

Claim 7. If v is a 6-vertex adjacent to a bad 5-vertez, then mg+(v) > 2.

Proof. Assume that vy, vy, ..., vs are the neighbors of v in clockwise order, and vy is a bad
5-vertex. Then mg(vy) = 5, dg(v1) = 2 and d5(v;) = 3 by definition. This implies that
v1ve, 1109 € FE(G). Let x and y be the other two neighbors of v; such that v, vy, x, y, vg
are arranged around v in clockwise order. The proof is split into three cases as follows:

Case 1l v; =u.

Since G is Cr-free, it is easy to inspect that neither v, nor v is adjacent to a vertex in
{z,v0}. Moreover, since G is simple and G is embedded in the plane, both v4 and vs can
not identify to x, hence vivy, v1v5 ¢ E(G). Our goal is to show that d(f;) > 8 for i = 3, 5.

Let f3 = [vzuy - - - usvy]. Obviously, d(f3) = s+ 3 = 4, and vy, ve,y & {us, ug, -+, us}.
If s =1, we get C7 = voguizviyvou. If s =2, we get C7 = vogusuizyvov. If s = 3, we get
C7 = vuguzuguizviv. Since G is Cr-free, s # 4. Therefore, s > 5, that is d(f3) > 8.

Let f5 = [vvszy - - ziv0). Then d(fs) =1+3 >4, 1 # 4, and vy, v,y & {21, 22, -+ , 21}
If Il =1, we get C7 = vuszivgviyvu. If I = 2, we get C; = vuszi20v9v109v. If | = 3, we
get C7 = vus2z12923v0v10. Therefore, s > 5, that is d(f3) > 8.

If v5 = y, we have a similar discussion.

Case 2 v3 =1y.

By Case 1, we assume that vs # y. We are going to show that d(f;) > 8 for i = 2, 5.

Firstly, we show that d(fs) > 8. If d(fz) = 3, then d(vy) = 3, contradicting the
definition of a bad 5-vertex. So assume that fo = [vvouy - - - usy], where s > 1 and s # 4.
Note that vy, v,z & {us,ug, -+ ,us}. If s =1, we get C7 = vvpryuiveviv. If s = 2, we
get C7 = vvxyusuivov. If s = 3, we get C7 = vviyususuivev. This shows that s > 5,
namely d(f2) > 8.

Secondly, we show that d(fs) > 8. If vs = z, then we can show that d(f;) > 8 as
above. Otherwise, assume that vs # z. Since vovs ¢ F(G), we see that d(f5) > 4. Again,
let f5 = [vvszy -+ zivp) with [ > 1. Then vy, vy & {21,292, -+, z} by the planarity of G.
It suffices to inspect that [ ¢ {1,2,3}. In fact, if [ = 3, we get C7 = vvs2z12923v9v 0. If
[ =2, we get C7 = vu5212009001090. So assume that [ = 1. Since zvs ¢ E(G), we derive
that z; # x. We get C'; = vvs2109201020.

If v5 = x, we have a similar proof.

Case 3 v3,v5 ¢ {x,y}.

To show that d(f;) > 8 for i = 2,5, it suffices to inspect d(fs) by symmetry. If
d(f2) = 3, then C7 exists obviously. So assume that d(fy) > 4, and let fo = [vvouy « - - uyv3)
with £ > 1 and k # 4. We first note that vy & {uy,ug, -+ ,ur}. If &k = 3, we get
C7 = vvyvguiugugvsv. If k= 1, then wuy is identical to at most one of x,y, vy, so C7 can
be always constructed. Assume that k£ = 2. If u; = y, then d(vy) = 3, contradicting the
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definition of v;. Thus, suppose that uy # y. If us # y, we get C; = voyvsuiugvgv. If
us =y, then u; & N(vy), we get C7 = vvyvouyzvgv. Thus, k > 5, that is, d(fy) > 8. O

Claim 8. If v is a 5-vertex adjacent to a bad 4-vertex, then ms(v) < 4; moreover, if
mg(v) =4, then mg+(v) > 1.

Proof. Assume that vy, vy,...,vs are the neighbors of v in clockwise order, and v; is
a bad 4-vertex. Then mg(v;) = 4, implying that both f, and f; are 3-faces, hence
v1ve, 1109 € E(G). Let x be the neighbors of vy different from vy, v1,ve. By symmetry,
the proof can be split into two cases below.

Case 1 = ¢ {vs,v4}.

We are going to show that mg(v) < 3 in this case. Assume to the contrary that
ms(v) > 4. Without loss of generality, we assume that d(f;) = 3 (otherwise, d(fy) = 3.)
Then at least one of f3 and fy is a 3-face. If d(f5) = 3, we get C7 = vvgrvivevzvgv. If
d(fs4) = 3, we get C7 = vugvgzvivv3v. We always obtain a contradiction.

Case 2 v; = 1.

Clearly, vy # x as G is simple. If d(fz) = 3, then d(ve) = 3, contradicting (P3). Thus,
d(f2) = 4, and therefore it follows that ms(v) < 4. To complete the proof, assume that
mg(v) = 4. This implies that both f; and f; are 3-faces, hence vovy, vz € E(G). Let

fo = [vvguy - - - upz] with k > 1 and k # 4. Tt is easy to see that vy, vy, v4 & {uq, ug, -+, ug}
by the planarity of G. If £ = 1, we get C; = vugvgvizuivgv. If k = 2, we get C7 =
Vg1 TUu V. If k= 3, we get C7 = vuyzuguguivov. Thus, k > 5, ie., d(fy) = 8. O

Claim 9. No two bad 5-vertices are adjacent.

Proof. Assume that v is a bad 5-vertex with neighbors vy, vy, -+ ,v4 in clockwise order

which is adjacent to a bad 5-vertex, say v;. Let x and y be the other neighbors of v;

such that v, vy, x,y, vy are arranged around v; in clockwise order. If at least one of x and

y does not belong to N(v), then a 7-cycle is easily established. Otherwise, it is easy to

derive that z = v3 and y = vy, which is impossible by the planarity of G. O
Using Euler’s formula |V(G)| — |E(G)| + |F(G)| = 2, we have

> Bdw)=8)+ > (d(f)—8)=—16. (1)
veV(Q) fEF(Q)

We define an initial weight function w by w(v) = 3d(v) — 8 for a vertex v € V(G),
and w(f) = d(f) — 8 for a face f € F(G). It follows from equality (1) that the total
sum of weights is —16. Then, we will define appropriate discharging rules and redistribute
weights accordingly. Once the discharging is finished, a new weight function w’ is pro-
duced. However the total sum of weights is kept fixed when the discharging is in process.
Nevertheless, we can show that w'(z) > 0 for all x € V(G) U F(G). This leads to the
following obvious contradiction:

0< Z w'(z) = Z w(z) = —16,

2eV(G) U F(G) 2eV(G) U F(G)
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and hence demonstrates that no such counterexample can exist.
Our discharging rules are defined as follows.

(R1) Every vertex v sends 2 to each incident 3-face, 1 to each incident 4-face, 2 to
each incident 5-face, and % to each incident 6-face.

(R2) Every 6-vertex v sends % to each adjacent 2-vertex, d; to each
. . . . . . 3(v)+da(v)+ds(v)
adjacent 3-, 4- or 5-vertex, with one exception: if v is adjacent to a 3-vertex z and a

5-vertex y with 2y € E(G), then v sends 2 to  and 3 to .
(R3) Every master sends 1 to its slave.

Let a(v) denote the resultant weight of a vertex v after (R1)-(R3) are carried out.
Then we do the following additional assignments:

a(v)
ds (v)+d4 (’U)
a(v)

(R5) Every 6-vertex v with a(v) > 0 sends ds((v) to each adjacent bad 5-vertex.

(R4) Every 5-vertex v with a(v) > 0 sends to each adjacent 3- or 4-vertex.

For z,y € V(G) U F(G), let 7(z — y) denote the amount of weights transferred from
x to y according to our discharging rules. A vertex x is called smallif 2 < d(z) < 5.

Observation 1 Under (R2), every 6-vertex sends at most % to its adjacent small vertices.

Proof. Let v be a 6-vertex in GG, and let s(v) denote the sum of weights that v has sent
to its small adjacent vertices according to (R2). It suffices to inspect that s(v) < %.

If v is adjacent to a 2-vertex u, then dg(v) =5 by (P5), i.e., d3(v) + ds(v) + ds(v) = 0.
By (R2), v sends # to u and nothing to other neighbors. Therefore, s(v) = £. Otherwise,
assume that do(v) = 0. If v is adjacent to a 3-vertex x and a 5-vertex y with zy € E(G),
then v cannot be adjacent to other small vertices by (P5). That is, d3(v) = d5(v) = 1 and
dy(v) = 0. By (R1), s(v) = 7(v = x) + 7(v = y) = 2+ § = L. If v is not adjacent to
such vertices x and y, then s(v) < 2 by (R2). O

Observation 2 Let v be a 6-vertex and u a small vertex adjacent to v. Then, after (R2)
was carried out, we have the following:

) Ifd(u) =3, then (v — u) > 1.

) If d(u) =4, then (v — u) > 2.

) Ifd(u) =5 and v is adjacent to a S-vertex x such that ux € E(G), then (v —
1 1

37/

- otherwise T(v — u) > 3.

(1
(2
(3
u) =

Proof. Suppose that v is a 6-vertex adjacent to a vertex u with 3 < d(u) < 5.

(1) Assume that d(u) = 3. By (P5), we see that da(v) = 0, dg(v) > 4, hence
d3(v) + dy(v) + ds(v) < 2. If v is adjacent to a 5-vertex y such that uy € E(G), we have
7(v — u) = 2 by (R2). Otherwise, 7(v = u) = 2/(d3(v) + ds(v) + ds(v)) > 1.

(2) Assume that d(u) = 4. It is easy to see that dy(v) = 0 by (P5). If ds(v) > 1
then it follows from the proof of (1) that 7(v — w) > 1. Thus, assume that d3(v) = 0
Since dy(v) > 1, (P5) asserts that dg(v) > 3, which implies that dy(v) + ds(v) < 3
Consequently, 7(v — u) = 2/(ds(v) + d5(v)) > 3.

Y
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(3) Assume that d(u) = 5. Again, (P5) guarantees that dy(v) = 0. If v is adjacent

a 3-vertex z such that uz € E(G), then 7(v — u) = 5 by (R2). Otherwise, when
dg(v) +dy(v) = 1, the result follows from the proofs of Cases (1) and (2). So assume that
ds(v) = dy4(v) = 0. By VAL, dg(v) > 2, so ds(v) < 4. This shows 7(v — u) = 2/d5(v) >
i [
i We carry out (R1)-(R5) in G. Let w’ denote the resultant weight function after
discharging was finished. It remains to verify that w'(x) > 0 for all z € V(G) U F(G).

Let f € F(G). Since G is 2-connected, b(f) forms a cycle. This means that f is
incident to d(f) distinct vertices. Since G is Cr-free, d(f) # 7. If d(f) = 3, then each of
its boundary vertices gives it exactly 2 by (R1). Thus, w'(f) =3 —-8+4+3x 2 =0. If4 <
d(f) < 6, we have a similar examination. If d(f) > 8, then w'(f) = w(f) =d(f) —8 > 0.

Let v € V(G). Then 2 < d(v) < 6. Let vy, vy, -+ ,v4)—1 denote the neighbors of v
in clockwise order. For 0 < ¢ < d(v) — 1, we use f; to represent the incident face of v
with vv; and vv; 41 as boundary edges, where indices are taken modulo d(f). The proof
is divided into the following five cases.

(1) d(v) = 2.

It is easy to see that dg(v) = 2 by (P5), ms(v) < 1 since G is simple. By (R1) and

1=

(R2), we get that w'(v) > (3 x2—-8)+2x £ —2 0.
(2) d(v) = 3.
Then w(v) = 1. By (P2), dy~(v) = 0, hence ds(v) + dg(v) = 3. Without loss of

generality, assume that d(v;) < d(vg) < d( ) By VAL, d(vy) > 5 and d(vy) = d(vg) = 6.

If d(vy) = 6, then each v;, for i = 0,1,2, is adjacent to at most two 5~ -vertices by
VAL, and at least one v; is adjacent to only one 5~ -vertex by Lemma 4. Thus, by (R1),
(R2) and Observation 2(1), w'(v) > 1+2+2x1—-3x 2 =0.

Assume that d(v;) = 5. Then dg(vy) = 4. If mg(v) =0, then w'(v) > 142x1-3=0
by (R1) and Observation 2(1).

e Assume that mg(v) = 1. If f; is a 3-face, then 7(vy — v) = 2 by (R2). If fy is a
3-face, then 7(vo — v) = 2 by (R2). It turns out that w'(v) > 1+2+1-3-2x1=
by (R1) and Observation 2(1). If f, is a 3-face, then ms(v;) < 3. After (R1)-(R3
a(vy) = (3x5—8)+4x:—3x2—2x1=2by Observation 2(3). By (R4), 7(v; — v) >
Hence w'(v) 2 14+2x1+2—-2-2x1=3

e Assume that mg(v) > 2. If both fy and f, are 3-faces, then 7(v; — v) = 2 for
i = 0,2 by (R2), hence w'(v) > 142 x 2—3 x 2 = 0. Otherwise, we may suppose that
d(f1) = d(f2) = 3 and d(fy) = 4 by symmetry. By (R2), 7(vy — v) = 2. Since ms(vy) < 4,
after (R1)-(R3), we obtain that a(vy) > 7—4x 2 —1+43 x 1 = 2 by Observation 2(3).
By (R4), 7(vy = v) > 2. Therefore, w'(v) > 1+2+2+1-2x 3 -1=1.

(3) d(v) = 4.

Then w(v) = 4, and ds(v) = d3(v) = 0 by (P3). By VAL, dg(v) > 2. If ms(v) < 2,
then w'(v) >4+2x 2 —-2x 2 —-2x1=0by (R1) and Observation 2(2).

e Assume that mg(v) = 3, say d(f;) = 3 for i = 1,2,3, and d(fy) > 4. If dg(v) > 3,
then w'(v) > 4+3x 2—-3x2—1=0. So suppose that ds(v) = 2 by VAL, which implies
that ds(v) = 2. By symmetry, we need to consider the following four possibilities:

If d(vy) = d(vy) = 5, then dg(v1) = 3, ds(v1) = dy(v1) = 1, and dz(vy) = 0. After

Wl

~—

Y

o
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(R1)-(R3), () 7—4><§—1+3><%:%. By (R4), 7(v; — v) > 2 and hence
wv) 24+2x2+2-3x2-1= % by (R1) and Observation 2(2).

If d(vg) = d(vl) =5, then de(v;) = 3, d3(v;) = 0, and dy(v;) < 2 for i = 0,1. After
(R1)-(R3), a(v;) 27—4><§—1—|—3><%: 2 By (R4), 7(v; = v) > 3 for i = 0, 1. Hence
wv) 24+2x2+2x 2 -3x2-1=1

If d(v1) = d(vs) = 5, then for i € {1,3}, dg(v;) = 3, da(v;) < 2, ds(v;) = 0. Note that
vy is adjacent to a 6-vertex which is adjacent to the 4-vertex v, and v3 is adjacent to two
6-vertices which are adjacent to the 4-vertex v. After (R1)-(R3), a(vy) > 7—4x 2 —1+
2x3+2=1and a(vy) > T—5X 3 +1+2x 2 =1 by Observation 2 and its proof. By
(R4), 7(v1 = v) = 3, and 7(vs — v) > 1, hence w'(v) 2 4+2x 241+ -3x2—-1=1
by (R1) and Observation 2(2).

If d(vy) = d(vs) = 5, then for i € {2,3}, dg(v;) = 3, du(v;) = ds(v;) = 1, d3(v;) = 0,
and v; is adjacent to a 6-vertex which is adjacent to the 4-vertex wv. After (R1)-(R3)
a(v;)) 2 7T—5x2+2x 4+ 2% =1 by Observation 2 and its proof. By (R4), T(v; = v) > 3
for i = 2,3, hence w'(v) > 44+2x 2+2x $ —3x 2 —1=0by (R1) and Observation 2(2).

e Assume that ms(v) = 4. Then v is bad. If dg(v) = 4, then w'(v) > 4+4x2—4x3 =0
by (R1) and Observation 2(2). If v is adjacent to a 4-vertex, say vy, then by Lemma 3,
every vertex in N(N(v,vy1)) \ {v,v1} is of degree 6. It follows that 7(v3 — v) = 2 and
T(v; = v) =1 for i = 0,2, hence w'(v) > 4+2+2x1—4x 3 =3 So assume that
dy(v) =0, 2 < dg(v) < 3 by VAL, hence 1 < ds(v) < 2. Let d(v1) = 5. Then dg(vy) = 3.
By Claim 8, y sends at most 7 (=max{3 x 2 +2,4 x 2}) to incident faces. We see that
a(v)) = 7—7T+ 3 x 3 =2 by Observation 2(3) By (R4), (v — v) > 3. If ds(v) = 1,
then dg(v) = 3, andthereforew( )2 44+3x2+3—4xd=1.

Now, assume that ds(v) = 2. We have two Subcases to be handled. If d(vy) = 5, then
de(v;) = 3, dy(v;) = Land d3(v;) = 0 fori = 1,2. After (R1)-(R3), a(v;) > 7 T+3x3 =
By (R4), 7(v; = v) = 3 fori = 1,2. Hence w'(v) > 4+2x2+2x3—4x2 = Ifd(vg)
then dg(v;) > 3, dy(v;) < 2, d3(v;) = 0 for i = 1,3. Thus, av;) > 7 — 7+ 3x i =

T(v; »v) =3 fori=1,3, and w'(v) > 4+2x 2 4+2x 3 —4x 2 =1 accordingly.

@) d(v) =

Then w(v ) = 7. We note that dg(v) > 2, do(v) = 0, and d3(v) < 1 by VAL. If
ms(v) < 4, then a(v) > 7T+2x 3 —4x 2 —1 = 0 by (R1) and Observation 2(3). So assume
that ms(v) = 5. If d3(v) = 1, then dg(v) = 4 and henceforth al(v) > 7+4x 3 —5x 2 =0.
Furthermore, assume that ds(v) = 0. If dg(v) > 3, then a(v) > 7+3x 3 —5%x 2 = ¢ by
Observation 2(3). Otherwise, we conclude that dg(v) = 2 and ds(v) = 3. This shows that
v is a bad 5-vertex. Let y be an arbitrary 6-vertex adjacent to v. By Claim 7, mg+(y) > 2.
Thus, a(y) > (3 x 6 —8) —4 x 2 — I =1 by Observation 1. Note that y is adjacent
to at most three bad 5-vertices by Claim 9. Thus, 7(y — v) > 3 by (R5), and hence
W) 2 T+2x3+2Xx35—-5x2=1

(5) d(v) = 6.

We see that w(v) = 10, dg(v) = 2, do2(v) < 1, and mz(v) < 4 since G contains no
7-cycles. Instead of showing that w'(v) > 0, we need only to prove that a(v) > 0. If
ms(v) < 1, then a(v) > 10 — £ —1x 2 —5x 1 =1 by (R1) and Observation 1. If

3
m3(v) = 2 and v is not the master of any vertex, then a(v) > 10— —2x 2 —4x 1=

Y

Y

N cnwl

|4>I
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If m3(v) = 2, and moreover v is the master of some vertex, then by the analysis following
the proof of Claim 5, we know that my(v) = 2 and v has exactly one slave. Thus,
av) > 10-%2-2x2-2x1-2x2—-1=2 by (Rl) and (R3). If ms(v) = 3,
then by Claim 6, my(v) < 2, or my(v) = 3 and dy(v) = d3(v) = 0. For the former,
av) > 10— —-3x2-2x1-2 =L For the latter, v sends at most 2 to adjacent
small vertices, thus a(v) >10-2—-3x 3 =3 x1=0.

Finally, assume that mg(v) = 4. If my(v) = 2, then v is a slave of some vertex, hence
aw) 210+1—-%—-4x2—2x1=0by (R3) and Observation 1. If my(v) = 1, then
by Claim 5(2), mg+(v) = 1 and hence a(v) > 10 — £ —4 x 2 — 1 =0. If my(v) = 0, then

by Claim 5(3) and (4), ms(v) = 1 and mg+(v) = 1, or mg+(v) = 2. Thus, we always have
1

aw) >10-f—-4x2 -2 -1 =1 O
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