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Abstract

Let G = (V,E) be a d-regular graph of order n. Let Gp be the random subgraph
of G for which each edge is selected from E(G) independently at random with prob-
ability p. For a fixed graph H, define m(H) := max{e(H ′)/(v(H ′)− 1) : H ′ ⊆ H}.
We prove that n(m(H)−1)/m(H)/d is a threshold function for Gp to satisfy Ramsey,
induced Ramsey, and canonical Ramsey properties with respect to vertex coloring,
respectively, provided the eigenvalue λ of G that is second largest in absolute value
is significantly smaller than d.

As a consequence, it is also shown that n(m(H)−1)/m(H)/d is a threshold function
for Gp to contain a family of vertex disjoint copies of H (an H-packing) that covers
(1 − o(1))n vertices of G. Using a similar argument, the sharp threshold function
for Gp to contain H as a subgraph is obtained as well.

Keywords: Random subgraph; pseudo-random; Ramsey property; H-packing;

1 Introduction

In this paper we study random subgraphs of pseudo-random graphs. Pseudo-random
graphs, which have been intensively studied over the last two decades (see, e.g., [11]), are
graphs whose edge distribution resembles closely that of a random graph with the same
edge density. Let G = (V, E) be a d-regular graph of order n, and A the adjacency matrix
of G. Let λ1 > · · · > λn be the eigenvalues of A. It follows from the Perron-Frobenius
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theorem that λ1 = d. Denote by λ the eigenvalue of A that is second largest in absolute
value. Roughly speaking, a pseudo-random graph is a d-regular graph G = (V, E) with λ
significantly smaller than d.

The classical Erdős-Rényi random graph model, namely the so-called binomial random
graph G(n, p), is formed by selecting each edge on a set of n labeled vertices independently
with probability p. Alternatively, G(n, p) can be viewed as a random subgraph of the
complete graph Kn. In the present paper, rather than studying a random subgraph of
one particular graph Kn, we investigate random subgraphs of a graph G from a broad
class of regular graphs, known as pseudo-random graphs. The study of random subgraphs
arising in this manner was initiated in [7].

Given a graph G = (V, E) and an edge probability 0 6 p = p(n) 6 1, the random
subgraph Gp of G is formed by selecting each edge of G independently with probability
p.

Since the eigenvalues of Kn are n − 1 (multiplicity 1) and -1 (multiplicity n − 1),
Kn is indeed a pseudo-random graph, by definition. Thus the random subgraph Gp of
pseudo-random graphs is a natural generalization of the classical Erdős-Rényi random
graph G(n, p), in that the host graph G is from a much wider class of regular graphs
including Kn.

For a graph property P , say that Gp satisfies P almost surely if the probability that
Gp satisfies P tends to 1 as n tends to infinity. A function t(n) is a threshold function for
the property P if

P (Gp satisfies P) →

{
0 if p � t(n),

1 if p � t(n).

Some results concerning G(n, p) can be naturally generalized to the random subgraph
Gp of pseudo-random graphs G. For example, the threshold function for the existence of
a Hamilton cycle, and the appearance of a giant component were studied in Frieze et al.
[7, 8]. The threshold function for the connectivity of Gp is obtained in [14].

Let H be a fixed graph of order h. Given a graph G = (V, E) of order n, a copy of
H in G is a (not necessarily induced) subgraph H ′ of G that is isomorphic to H. The
arrow notation, introduced by Erdős and Rado, has proved particularly useful in Ramsey
theory. We write G → (H)1

r if, given any r-coloring of V (G), there exists a copy of
H whose vertices are monochromatic. We determine the sharp threshold function for
Gp → (H)1

r. Define

m(H) := max

{
e(H ′)

v(H ′)− 1
: H ′ ⊆ H

}
.

Theorem 1. Let G = (V, E) be a d-regular graph of order n, and λ the eigenvalue that
is second largest in absolute value. Let H be a fixed graph with maximum degree ∆, and
m(H) defined as above. Suppose d � λ1/∆n1−1/∆. Then, for any integer r > 2,

(i) there exists a constant c = c(H, r) > 0 such that if p = c
n(m(H)−1)/m(H)

d
, then almost

surely Gp 9 (H)1
r;
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(ii) there exists a constant C = C(H, r) > 0 such that if p = C
n(m(H)−1)/m(H)

d
, then

almost surely Gp → (H)1
r.

Remark 1. Note that the hypothesis d � λ1/∆(H)n1−1/∆(H) guarantees p = o(1), since
m(H) 6 ∆(H)/2 yields n(m(H)−1)/m(H)/d 6 n1−2/∆(H)/d = o(1).

Remark 2. Clearly, if d is small, then the thresholds in Theorem 1 to 5 may not occur.
For example, if d is small, then the host graph G may not contain H as a subgraph, so
that a threshold does not exist in this case.

We now turn our attention to the induced Ramsey property of Gp. We write G
ind→ (H)1

r

if given any r-coloring of the vertices V (G) of G, there exists an induced copy of H whose
vertices are monochromatic.

Theorem 2. Let G = (V, E) be a d-regular graph of order n, and λ the eigenvalue that
is second largest in absolute value. Let H be a fixed graph with maximum degree ∆, and
m(H) defined as above. Suppose d � λ1/∆n1−1/∆, and d < αn, for some constant α < 1.
Then, for any integer r > 2,

(i) there exists a constant c = c(H, r) > 0 such that if p = c
n(m(H)−1)/m(H)

d
, then almost

surely Gp
ind9 (H)1

r;

(ii) there exists a constant C = C(H, r) > 0 such that if p = C
n(m(H)−1)/m(H)

d
, then

almost surely Gp
ind→ (H)1

r.

Remark. For the classical Erdős-Rényi random graph G(n, p), there does not exist a
threshold function for the induced Ramsey property in general. This is one of the prop-
erties that indicate Gp differs from the classical G(n, p). We also see that the above
requirement d < αn, for some constant α < 1, is necessary.

Now we consider colorings on which no restriction (not even finiteness) is put on the
number of colors used. Call a coloring χ of a set S canonical if χ is either

(i) monochromatic [i.e., χ(s) = χ(t) for all s, t ∈ S], or

(ii) distinct (or rainbow) [i.e., χ(s) 6= χ(t) for all s, t ∈ S, s 6= t].

We write G → (H)1
c to denote that for every coloring χ of V (G) with an arbitrary

number of colors, there exists a copy of H on which the coloring χ is canonical. In other
words, the vertices of this copy either all receive the same color or all receive distinct
colors. Our next result shows that the threshold for G → (H)1

c is the same as that for
G → (H)1

r.

Theorem 3. Let G = (V, E) be a d-regular graph of order n, and λ the eigenvalue that
is second largest in absolute value. Let H be a graph with e(H) > 0, H 6= K2 or K2 ∪K1,
and m(H) defined as above. Suppose d � λ1/∆n1−1/∆. Then,
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(i) there exists a constant c = c(H, r) > 0 such that if p = c
n(m(H)−1)/m(H)

d
, then almost

surely Gp 9 (H)1
c;

(ii) there exists a constant C = C(H, r) > 0 such that if p = C
n(m(H)−1)/m(H)

d
, then

almost surely Gp → (H)1
c.

As a by-product, we also determine the threshold function for H-tiling. An H-tiling
or H-packing in G is a family of vertex-disjoint copies of H in G. An H-factor of G, when
h divides n, is an H-packing H such that every vertex of G is contained in a member of
H. Thus, G has an H-factor if G contains n/h disjoint copies of H.

The objective of packing problems in graph theory is to find in G as many disjoint
copies of H as possible. A fundamental result is the Hajnal-Szemerédi Theorem [9], which
gives the minimum degree condition for a Kr-factor. Alon and Yuster [3] consider more
general case, and obtain an asymptotic minimum degree condition for an H-factor. The
reader is referred to [12] for a good survey. In the present paper, we also determine the
sharp threshold function for Gp to contain an almost H-factor, namely, an H-packing
that covers (1− o(1))n vertices of G.

Theorem 4. Let G = (V, E) be a d-regular graph of order n, and λ the eigenvalue that
is second largest in absolute value. Let H be a fixed graph with maximum degree ∆, and
m(H) defined as above. Suppose d � λ1/∆n1−1/∆. Then, for any ε > 0,

(i) there exists a constant c = c(H, ε) > 0 such that if p = c
n(m(H)−1)/m(H)

d
, then almost

surely Gp does not contain an H-packing that covers all but at most εn vertices of
G;

(ii) there exists a constant C = C(H, ε) > 0 such that if p = C
n(m(H)−1)/m(H)

d
, then

almost surely Gp contains an H-packing that covers all but at most εn vertices of G.

A related question, which turns out to be simpler than H-packing, concerns the thresh-
old function for containing H as a subgraph. Using a similar and simpler argument, we
can also determine the threshold function for Gp to contain a fixed H. Define

m′(H) := max

{
e(H ′)

v(H ′)
: H ′ ⊆ H

}
.

Theorem 5. Let G = (V, E) be a d-regular graph of order n, and λ the eigenvalue that
is second largest in absolute value. Let H be a fixed graph with maximum degree ∆, and
m′(H) defined as above. Suppose d � λ1/∆n1−1/∆. Then

(i) there exists a constant c = c(H, ε) > 0 such that if p = c
n(m′(H)−1)/m′(H)

d
, then

almost surely Gp does not contain H as a subgraph;
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(ii) there exists a constant C = C(H, ε) > 0 such that if p = C
n(m′(H)−1)/m′(H)

d
, then

almost surely Gp contains H as a subgraph.

Theorems 4 and 5 extend the celebrated results of Erdős and Rényi (cf. [4, 6]) on the
threshold function for containing a fixed graph H in the random graph G(n, p).

2 Preliminaries

The proofs of our main results rely heavily on an inequality, due to Janson (cf. [1]), which
estimates the probability that the sum of “mostly independent” random variables deviates
from its mean. The inequality has proven especially useful when one seeks to show that
the probability is bounded from above by a function that is exponentially small.

Let Ω be a finite universal set, and R a random subset of Ω, where P (r ∈ R) = pr. So
these events are mutually independent over r ∈ Ω. Let {Ai : i ∈ I} be subsets of Ω, with
I a finite index set. Let Bi be the event Ai ⊆ R, and Xi the indicator random variable
for Bi. Let X :=

∑
i∈I Xi count the number of Ai ⊆ R. For i, j ∈ I, we write i ∼ j if

i 6= j and Ai ∩ Aj 6= ∅. We define

Λ :=
∑
i∼j

P (Bi ∧Bj),

where the sum is over ordered pairs. The Janson inequalities state that when the events
Bi are “mostly independent”, X is still close to Poisson distribution with mean µ = E(X),
as is the case when Bi’s are all independent.

Lemma 6 (Janson’s Inequality). Let Bi, Λ, µ be as above, and assume that P (Bi) 6 γ
for all i. Then

P (X = 0) 6 exp

(
−µ +

1

1− γ

Λ

2

)
.

Further, if Λ > µ(1− γ), then

P (X = 0) 6 exp

(
−µ2(1− γ)

2Λ

)
.

In a pseudo-random graph G = (V, E), for B, C ⊂ V , let e(B, C) denote the number
of ordered pairs (u, v) such that u ∈ B, v ∈ C and uv ∈ E(G); let e(B) denote the number
of edges in G[B].

Note that subsets B, C ⊂ V are not necessarily disjoint. If B ∩ C 6= ∅, then by
definition e(B, C) counts the edges in G[B∩C] twice. Lemma 7 concerns edge distribution
in a pseudo-random graph (cf. [1, Chap. 9] ).

Lemma 7. Suppose B, C ⊂ V (G) are (not necessarily disjoint) subsets of vertices. Then

(1)

∣∣∣∣e(B, C)− d

n
|B||C|

∣∣∣∣ 6 λ
√
|B||C|;
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(2)

∣∣∣∣e(B)− d

n

|B|2

2

∣∣∣∣ 6 λ|B|
2

.

We also need Lemma 8, a result of Alon (cf. [11]) stating that, roughly speaking, every
“large” subset of vertices in a pseudo-random graph contains about the same number of
copies of H as it “ought to” contain.

For a fixed graph H, denote by Aut(H) the automorphism group of H. Define
aut(H) := |Aut(H)|.

Lemma 8. Let H be a fixed graph with s vertices and r edges, and maximum degree ∆(H).
Let G = (V, E) be a pseudo-random graph, and λ the eigenvalue of G that is second largest
in absolute value. Then for every subset V ′ ⊆ V of m vertices, where m � λ(n/d)∆(H),
the number of (not necessarily induced) copies of H in G[V ′] is

(1 + o(1))
ms

aut(H)

(
d

n

)r

.

3 Ramsey Property

Lemma 9. for any ε > 0, there exists a constant C = C(H, ε) > 0 such that if p =

C
n(m(H)−1)/m(H)

d
, then almost surely every subset of εn vertices of Gp contains a copy of

H.

Proof. We use Janson’s inequality to do so. Let U ⊆ V be a subset of vertices of cardinal-
ity εn. Let X denote the number of labeled copies of H contained in Gp[U ], the subgraph
induced by U in Gp. By Lemma 8, the number of copies of H contained in G[U ] is

(1 + o(1))
(εn)v

aut(H)

(
d

n

)e

.

For each of these copies, the probability that it is contained in Gp[U ] is pe. Thus,

µ = E(X) = (1 + o(1))
(εn)v

aut(H)

(
d

n

)e

pe

= (1 + o(1))
(εn)v

aut(H)

(
d

n

)e(
C

n(m(H)−1)/m(H)

d

)e

∼ εvCe

aut(H)
nv−e v′−1

e′

>
εvCe

aut(H)
nv−(v−1) (v′−1

e′
6 v−1

e
)

=
εvCe

aut(H)
n.
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Given two copies Hi, Hj of H in G, we write i ∼ j if i 6= j and E(Hi) ∩ E(Hj) 6= ∅.
Let H ′′ be a subgraph of H with e(H ′′) > 1. Denote by “'” the graph isomorphism.
Then

Λ :=
∑
i∼j

P (Hi ∪Hj ⊆ Gp) =
∑

H′′⊆H

∑
Hi∩Hj'H′′

P (Hi ∪Hj ⊆ Gp)

6
∑

H′′⊆H

(εn)v

aut(H)

(
d

n

)e

pe · (εn)v−v′′

aut(H\H ′′)

(
d

n

)e−e′′

pe−e′′

=
∑

H′′⊆H

(εn)2v−v′′

aut(H) aut(H\H ′′)

(
d

n

)2e−e′′ (
C

n(m(H)−1)/m(H)

d

)2e−e′′

=
∑

H′′⊆H

ε2v−v′′C2e−e′′

aut(H) aut(H\H ′′)
n2v−v′′− v′−1

e′ (2e−e′′)

=:
∑

H′′⊆H

Λ(H ′′),

where Λ(H ′′) denotes the term in the sum corresponding to a fixed subgraph H ′′ ⊆ H.
Now

µ2

Λ(H ′′)
=

(
εvCe

aut(H)
nv−e/m(H)

)2

/

(
ε2v−v′′C2e−e′′

aut(H) aut(H\H ′′)
n2v−v′′− 1

m(H)
(2e−e′′)

)
=

εv′′Ce′′ aut(H\H ′′)

aut(H)
nv′′− v′−1

e′ e′′

>
εv′′Ce′′ aut(H\H ′′)

aut(H)
nv′′−(v′′−1) (v′−1

e′
6 v′′−1

e′′
)

>
εv′′Ce′′ aut(H\H ′′)

aut(H)
n.

Since there are at most 2(v
2)−(v+1) < 2(v

2) subgraphs H ′′ in H with e(H ′′) > 1, we see that

µ2

2Λ
>

εv′′Ce′′ aut(H\H ′′)

2(v
2)+1 aut(H)

n > n, (1)

where C can be large enough such that the last inequality holds.
Case 1. Λ 6 µ. We know that P (Bi) = P (Hi ⊆ Gp) = pe 6 p = o(1), from the

remark after Theorem 4. Thus we can take γ to be an arbitrarily small constant such
that P (Bi) 6 γ. Also, note that

µ = E(X) =
εvCe

aut(H)
n >

εv′′Ce′′

aut(H)
n > 2(v

2)+1n > 3n.

Thus
P (X = 0) 6 exp(−µ/3) < exp(−n).
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Case 2. Λ > µ. Then, from (1) we see that

P (X = 0) 6 exp

(
−µ2(1− γ)

2Λ

)
6 exp (−(1− γ)n) .

In either case, the probability that there is a subset of εn vertices that contains no
copy of H is at most(

n

εn

)
P (X = 0) 6

(en

εn

)εn

exp(−(1− γ)n)

= exp (ε(1− log ε)n− (1− γ)n)

6 exp (−n/2) = o(1),

since ε(1− log ε) = ε− ε log ε → 0 as ε → 0.
This shows that almost surely every subset of εn vertices in Gp contains a copy of H.

Thus Gp contains at least (1− ε)n/h vertex-disjoint copies of H.

Proof of Theorem 1 . (i) We show that there exists a constant C such that for p =
Cn(m(H)−1)/m(H)/d, P (Gp 6→ (H)1

r) = o(1). Suppose Gp 9 (H)1
r, namely there exists

an r-coloring of V (G) such that Gp contains no monochromatic copy of H in this color-
ing. Thus there exists a subset of n/r vertices (the largest color class will do) that doesn’t
contain a copy of H. The probability of this latter event, by Lemma 9, is o(1).

(ii) Suppose p = cn(m(H)−1)/m(H)/d, we show that

P
(
Gp → (H)1

r

)
= o(1).

If m(H) := max{e(H ′)/(v(H ′)− 1) : H ′ ⊆ H} = 1, then H is a forest with e(H) > 0.
Since for p = c/d, c < 1, Gp almost surely consists of trees and unicyclic components (see
[8, Theorem 2]), we see that Gp can be properly colored with at most 3 colors so that all
copies of H are not monochromatic.

Now assume that v(H) > 3 and m(H) > 1. Let H1 ⊆ H be a smallest subgraph of H
with e(H1)/(v(H1)− 1) = m(H) > 1. Thus for any subgraph H ′ ⊆ H1, we have

e(H ′)

v(H ′)− 1
<

e(H1)

v(H1)− 1
.

We construct a hypergraph (V, E) whose vertex set is V (G) and whose hyperedges are
the vertex sets of copies of H1 in Gp. Denote this hypergraph by Hp. If Gp → (H)1

r,
then χ(Hp) > r. We take an edgewise minimal subhypergraph H of Hp with the property
χ(H) > r.

Fact 1. For every hyperedge E of H, and every v ∈ E, there exists a hyperedge E ′ ∈ H
such that E ∩ E ′ = {v}, in other words, E ′ intersects E only in v.

If H is edge-minimal with χ(H) > r+1, then for any E ∈ H, H−E admits a proper r
coloring. In any such coloring, vertices of E must be monochromatic, as otherwise those
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vertices receive different colors, then the r-coloring is a proper coloring of H, contrary to
the hypothesis that χ(H) > r.

Suppose that in a hyperedge E, there exists a vertex v such that for any other hyper-
edge E ′ ∈ H, E ′∩E 6= {v}. Thus E ′∩E either doesn’t involve v at all or, if it does, E ′∩E
contains at least two vertices, one of which is v. Now, H− E admits a proper r-coloring
in which vertices in E all receive the same color. Recolor the vertex v with a different
color (that has been used, not new), then E receives two colors; for every E ′ ∈ H, if E ′

doesn’t contain v then colors of vertices in E ′ do not change; if E ′ contains v then, by
assumption, E ′ contains another vertex u in E, which receives a color different from that
of v in this modified coloring.

Thus we see that H can be properly r-colored, contrary to the hypothesis that H is
edge-minimal with χ(H) > r + 1. Hence Fact 1 is proven. �

Say that a sequence E1, E2, . . . , Ek of hyperedges forms a linear path in the hypergraph
H if consecutive hyperedges intersect in exactly one vertex, i.e.,

|Ei ∩ Ej| =

{
1 if |j − i| = 1,

0 otherwise.

Now let P be a longest linear path in H. (The reason that we require the path to be linear
is because then the containment of these copies of H1 is independent, and the probability
of a hyperedge in the path P is pe(H1).)

It follows from Fact 1 that P has at least two hyperedges E1 and E2. Suppose x and
y are two vertices that are contained only in the first hyperedge E1 of P . Fact 1 yields
two hyperedges Ex and Ey that intersect E1 and E2 only in x and y, respectively.

Ex

Ey

P

E2

E1

y

x

Et

Es

Figure 1: Linear path P and hyperedges Ex, Ey

We see from the maximality of P that |Ex ∩ P | > 2 and |Ey ∩ P | > 2. It follows that
there exists a hyperedge in P which intersects Ex, and which is different from E1. Let Es
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denote the first hyperedge in P such that Es intersects Ex, and Es 6= E1. Similarly, let Et

denote the first hyperedge in P such that Et intersects Ey, and Et 6= E2, as is depicted
in Figure 1.

Without loss of generality, we assume s 6 t. Thus, P ∪Ex is a cycle E1, E2, . . . , Es, Ex,
where the first s hyperedges E1, E2, . . . , Es form a linear path. Similarly, P ∪ Ey is a
cycle E1, E2, . . . , Et, Ey, where the first t hyperedges E1, E2, . . . , Et form a linear path, as
indicated in Figure 1. We consider the events

A` : |Ey ∩ Et| = `, ` = 1, 2, . . . , h1 − 1.

Then
P
(
Gp → (H)1

r

)
6 P (χ(H) > r) 6 P (

∨
`

A`).

Observe that the event A`, ` > 2, implies that there exists a hypercycle (E1, E2, . . . , Et, Ey),
t > 3, for which the first t hyperedges form a linear path, and H ′ := Ey ∩ Et (|H ′| = `)
spans a proper subgraph of H. Hence, by Lemma 8,

P

(∨
`>2

A`

)
6
∑
t>3

∑
H′(H1

nt(v(H1)−1)−(v(H′)−1)

aut(P ∪ Ey)

(
d

n

)te(H1)−e(H′)

pte(H1)−e(H′)

6
∑

t

∑
H′(H1

(
n(v(H1)−1)/e(H1)cn−1/m(H)

)te(H1)
n−((v(H′)−1)−e(H′)/m(H))c−e(H′)

6
∑

t

∑
H′(H1

cte(H1)n−δc−e(H′)

62hc−h
∑

t

(ce(H1))tn−δ

=o(1),

where δ := ((v(H ′)− 1)/e(H ′)− (v(H1)− 1)/e(H1))e(H ′) > 0.
Thus we see that the hypercycle formed by the hyperedges E1, E2, . . . , Et, Ey is al-

most surely a linear cycle, namely consecutive hyperedges intersect in exactly one vertex,
including cyclically. Now we estimate P (A1). Let B1 and B2 denote the events that A1

holds with t > B log n and t < B log n, respectively. By Lemma 8,

P (B1) 6
∑

t>B log n

nt(v(H1)−1)+1

aut(P )

(
d

n

)te(H1)

pte(H1)

6
∑

t>B log n

nt(v(H1)−1)+1(cn)−te(H1)/m(H)

=n
∑

t>B log n

(ce(H1))t

=o(1).
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For the probability of B2, we observe that in the linear cycle (E1, E2, . . . , Et, Ey), Ex

intersects some hyperedge Es and H ′ := Ex ∩ Es spans a proper subgraph of H. For a
fixed H ′ = Ex∩Es, the probability that Gp contains the hyperedges E1, E2, . . . , Et, Ey, Ex

is, by Lemma 8,

n(t+1)(v(H1)−1)−(v(H′)−1)

aut(P ∪ Ex ∪ Ey)

(
d

n

)(t+1)e(H1)−e(H′)

p(t+1)e(H1)−e(H′)

Note that there are at most (hB log n)v(H′) ways to embed H ′ = Ex ∩ Es in the linear
cycle (E1, E2, . . . , Et, Ey). Hence, using Lemma 8, we have

P (B2) 6
B log n∑

t=3

∑
H′(H1

(hB log n)v(H′)n
(t+1)(v(H1)−1)−(v(H′)−1)

aut(P ∪ Ex ∪ Ey)

(
d

n
p

)(t+1)e(H1)−e(H′)

6c−h

B log n∑
t=3

∑
H′(H1

(hB log n)v(H′)(ce(H1))t+1(n(v(H1)−1)/e(H1)−1/m(H))(t+1)e(H1)

× (n(v(H′)−1)/e(H′)−1/m(H))−e(H′)

6 (hB)h c−h2h

B log n∑
t=3

(log n)v(H′)(ce(H1))t+1n−δ

=O
(
(log n)h+1n−δ

)
= o(1),

where δ := ((v(H ′) − 1)/e(H ′) − (v(H1) − 1)/e(H1))e(H ′) > 0. Thus, we see that
P (
∨

`>1 A`) = o(1), and hence P (Gp → (H)1
r) = o(1).

4 Induced Ramsey Property

Proof of Theorem 2. (i) By Theorem 1 (i), if p = c
n(m(H)−1)/m(H)

d
, c sufficiently small,

then almost surely there is an r-coloring of V (Gp) such that all copies of H receive at
least two colors, which implies that induced copies of H all receive at least two colors.

(ii) We estimate P (Gp
ind→ (H)1

r). Suppose that there is an r-coloring of V (G) such
that each induced copy of H receives at least 2 colors. Then there exists a set of n/r
vertices containing no induced copies of H (the largest color class will do).

In [11], it is also shown that if the hypotheses in Lemma 8 all hold true, and

1. d = o(n), then the number of induced copies of H in G is (1 + o(1))
ns

aut(H)

(
d

n

)r

;

2. if d/n < α, for a constant 0 < α < 1, then the number of induced copies of H in G

is
Ω(ns)

aut(H)

(
d

n

)r

.
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Using this result, along with Janson’s inequality, we can show an analog of Lemma 9
as follows. Let U ⊆ V (G) be a subset of V (G) of cardinality n/r. Let X be the induced
copies of H in Gp[U ]. Proceeding in much the same way as the proof of Lemma 9, and
using similar calculations, we can show that E(X) = Ω(n) and µ2/2Λ > n. Thus the
probability that a set of n/r vertices contains no induced copies of H is bounded above
by
(

n
n/r

)
exp(−n) = o(1).

Remark. For the classical Erdős-Rényi random graph G(n, p), there does not exist a
threshold for the induced Ramsey property in general. A fundamental reason for this
is monotonicity. The complete graph (or a sufficiently dense pseudo-random graph) will
not contain H as an induced subgraph. Thus threshold properties for induced copies
of H occur for random subgraphs of sparse pseudo-random graphs, but not for random
subgraphs of graphs with high linear degree.

5 Canonical Ramsey Property

In this section we prove Theorem 3. The proof of Theorem 3 relies on Proposition 10,
which counts the number of copies of H for which each vertex is from a given subset Vi

of vertices in a pseudo-random graph G. This result is a generalization of Lemma 8, and
the proof follows from the same idea as that of Lemma 8 (cf. [11]).

Proposition 10. Let H be a fixed graph on vertices {v1, . . . , vh} and with r edges, and
maximum degree ∆(H), where h, r and ∆(H) are fixed values. Let G = (V, E) be a
pseudo-random graph. Then for subsets V1, . . . , Vh ⊆ V , where mi = |Vi| � λ(n/d)∆(H),
1 6 i 6 h, the number of (not necessarily induced) copies of H with vi sent into Vi, is

(1 + o(1))
m1m2 . . . mh

aut(H)

(
d

n

)r

, as n →∞.

Proof. We consider a random mapping from V (H) to V (G) that sends vertex vi to subset
Vi, for all i = 1, 2, . . . , h. Denote by A(H) the event that every edge of H is mapped to
an edge of G. In such a case we say that the mapping is an embedding of H into G. It
suffices for our purposes to show

P (A(H)) = (1 + o(1))

(
d

n

)r

. (2)

We prove (2) by induction on the number r of edges. If r = 0, clearly the assertion
holds. Suppose that (2) holds for all graphs with at most r − 1 edges. For an edge
uv ∈ E(G), let Huv := H − uv denote the subgraph of H on the vertex set V (H) with
the edge uv deleted. Let Hu := H − u, Hv = H − v, and H ′ := H − {u, v}. Write r′ for
the number e(H ′) of edges of H ′, and note that

r − r′ 6 2(∆(H)− 1) + 1 = 2∆(H)− 1. (3)
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By the induction hypothesis,

P (A(H ′)) = (1 + o(1))

(
d

n

)r′

.

Thus, in order to get P (A(H)), we need only find P (A(H)|A(H ′)). We first find
P (A(Huv)|A(H ′)). For an embedding f ′ of H ′, since V (H ′) = h − 2, there are two
sets Vα, Vβ (depending on f ′, of course) among V1, . . . , Vh that do not contain images
of vertices in V (H ′). Denote these two sets Vα, Vβ by W1 = W1(f

′) and W2 = W2(f
′).

Denote by νi(u, f ′) (resp. νi(v, f ′)) the number of extensions of f ′ to an embedding of
Hv = H−v (resp. Hu = H−u) in V with u (resp. v) sent to Wi, i = 1, 2. Since the num-
ber of extensions of f ′ to an embedding of Huv in V ′ is ν1(u, f ′)ν2(v, f ′)+ν2(u, f ′)ν1(v, f ′),
we have

P (A(Huv)|f ′) =
ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

|W1||W2|+ |W2||W1|
. (4)

Taking expectation over all embeddings f ′, (4) yields

P (A(Huv)|A(H ′)) =
∑
f ′

P (A(Huv)|f ′)P (f ′|A(H ′))

=
∑
f ′

ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

|W1||W2|+ |W2||W1|
P (f ′|A(H ′))

=Ef ′

(
ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

|W1(f ′)||W2(f ′)|+ |W2(f ′)||W1(f ′)|
|A(H ′)

)
. (5)

On the other hand,
P (A(Huv) = P (A(Huv|A(H ′))P (A(H ′)), (6)

and by the induction hypothesis, P (A(Huv)) = (1 + o(1))( d
n
)r−1 and P (A(H ′)) = (1 +

o(1))
(

d
n

)r′
. Substituting these quantities in (6), we get

P (A(Huv|A(H ′)) = (1 + o(1))

(
d

n

)r−1−r′

(7)

From (5) and (7), we have

Ef ′

(
ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

2|W1(f ′)||W2(f ′)|
|A(H ′)

)
= (1 + o(1))

(
d

n

)r−1−r′

(8)

Now let f be a random one-to-one mapping from V (H) into V ′. Let f ′ be a fixed
embedding of H ′. Then

P (A(H) | f |H′ = f ′) =
d

n

ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

|W1(f ′)||W2(f ′)|+ |W2(f ′)||W1(f ′)|
+ δ1 + δ2,
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where |δi| 6 λ

√
νi(u,f ′)ν3−i(v,f ′)

2|W1(f ′)||W2(f ′)| , i = 1, 2. This follows from Lemma 7, where we take the
possible images of u as the set B and the possible images of v as the set C, or the other
way around. Averaging over embeddings f ′ we get

P (A(H)|A(H ′)) =
∑
f ′

P (A(H)|f ′)P (f ′|A(H ′))

=
∑
f ′

(
d

n

ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

|W1(f ′)||W2(f ′)|+ |W2(f ′)||W1(f ′)|
+ δ1 + δ2

)
P (f ′|A(H ′))

=
d

n
Ef ′

(
ν1(u, f ′)ν2(v, f ′) + ν2(u, f ′)ν1(v, f ′)

2|W1(f ′)||W2(f ′)|
|A(H ′)

)
+ Ef ′(δ1 + δ2|A(H ′))

=(1 + o(1))
d

n

(
d

n

)r−1−r′

+ Ef ′(δ1 + δ2|A(H ′)). (by (8))

By Jensen’s inequality,

|Ef ′(δ1|A(H ′))| 6Ef ′

(
λ

√
ν1(u, f ′)ν2(v, f ′)

2|W1(f ′)||W2(f ′)|
|A(H ′)

)

6
λ√

2|W1(f ′)||W2(f ′)|
Ef ′

(√
ν1(u, f ′)ν2(v, f ′)

2|W1(f ′)||W2(f ′)|
|A(H ′)

)

6
λ√
2m

√
Ef ′

(
ν1(u, f ′)ν2(v, f ′)

2|W1(f ′)||W2(f ′)|
|A(H ′)

)
(Jensen’s)

6(1 + o(1))
λ√
2m

(
d

n

)(r−1−r′)/2

, (by (8))

where m := min{m1, . . . ,ms}. Analogously,

|Ef ′(δ2|A(H ′))| 6(1 + o(1))
λ√
2m

(
d

n

)(r−1−r′)/2

.

Thus

P (A(H)|A(H ′)) =(1 + o(1))

(
d

n

)r−r′
(

1 +

√
2λ

m

(
d

n

)(r−1−r′)/2−(r−r′)
)

=(1 + o(1))

(
d

n

)r−r′
(

1 +

√
2λ

m

(n

d

)(r−r′+1)/2
)

6(1 + o(1))

(
d

n

)r−r′
(

1 +

√
2λ

m

(n

d

)∆(H)
)

(by (3))

=(1 + o(1))

(
d

n

)r−r′

,
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by our assumptions on the parameters.
Thus

P (A(H)) = P (A(H)|A(H ′))P (A(H ′)) = (1 + o(1))

(
d

n

)r

.

Remark. The subsets V1, V2, . . . , Vh are not necessarily disjoint. In particular, if we take
V1 = V2 = · · · = Vh in Proposition 10, then we get Lemma 8.

Proof of Theorem 3. (i) If v(H) > 4 then from Theorem 1 we know there exists c > 0 such

that for p = c
n(m(H)−1)/m(H)

d
, almost surely Gp 9 (H)1

3, that is, Gp admits a 3-coloring in

which there is no monochromatic copy of H. Since v(H) > 4, in this same coloring copies
of H cannot be rainbow either. Thus we see that there exists a coloring of V (G) such
that in the coloring there is no monochromatic copy of H, nor does Gp contain rainbow
copy of H in this coloring.

Similarly, if H = K3 or P3, the 3-vertex path, Theorem 1 (ii) implies that there exists

c > 0 such that for p = c
n(m(H)−1)/m(H)

d
, almost surely Gp 9 (H)1

2, that is, Gp admits a

2-coloring in which there is no monochromatic copy of H. Since v(H) = 3, in this same
coloring copies of H cannot be rainbow either. Thus we see that there exists a coloring of
V (G) such that in the coloring there is no monochromatic copy of H, nor does Gp contain
rainbow copy of H in this coloring.

(ii) Given a coloring of V (G), if some color is used at least n/2h times, then there
exists a color class of size at least n/2h. By Lemma 9, we know that in this coloring, Gp

contains a monochromatic copy of H.
Henceforth we assume that each color is used at most n/2h times. In this case we

show that Gp almost surely contains a rainbow copy of H in the coloring.
Since each color class is of size at most n/2h, there exist h disjoint subsets of vertices

V1, . . . , Vh, each of size n/2h 6 |Vi| 6 n/h, 1 6 i 6 h, such that none of the colors is
present in more than one subset Vi. (Such subsets can be obtained by partitioning V (G)
according to the color classes.) Let A be the set of mappings α : V (H) → V (G) such
that α(vi) ∈ Vi, 1 6 i 6 h. Set Aα := {α(vi)α(vj) : vivj ∈ E(G)}. Let Bα be the event
that Aα is contained in Gp, and Xα the corresponding indicator random variable. Define
X :=

∑
α∈A Xα, and Λ :=

∑
i∼j P (Ai ∧ Aj). Clearly, P (Bα) = pe 6 p = o(1).

Using Proposition 10, we have

µ = E(X) >
m1 . . . mh

aut(H)

(
d

n

)e(H)

pe(H)

>
( n

2h

)v(H)
(

d

n

)e(H)

pe(H),

the electronic journal of combinatorics 19(3) (2012), #P2 15



and

Λ 6
∑

H′⊆H,e(H)>0

(n

h

)2v(H)−v(H′)
(

d

n

)2e(H)−e(H′)

p2e(H)−e(H′)

=2hhv(H′)n−v(H′)
(
Cn−1/m(H)

)−e(H′)
(n

h

)2v(H)
(

d

n

)2e(H)

p2e(H)

62hhhC−1n−1
(n

h

)2v(H)
(

d

n

)2e(H)

p2e(H).

Thus, we see that

µ2

2Λ
>

(
n
2h

)2v(H) ( d
n

)2e(H)
p2e(H)

2(2h)hC−1n−1
(

n
h

)2v(H) ( d
n

)2e(H)
p2e(H)

=
Cn

22h+1(2h)h
.

Using Janson’s inequality, we have

P (X = 0) 6 exp

(
−µ2(1− γ)

2Λ

)
6 exp

(
− C(1− γ)

22h+1(2h)h
n

)
6 exp

(
− C

22h+2(2h)h
n

)
.

Since there are at most 2hn ways to get V1, . . . , Vh, the probability that there is a coloring
of V (G) so that each color class is of size at most n/2h and Gp contains a rainbow copy
of H, is at most

2hn exp

(
− C

22h+2(2h)h
n

)
= exp

(
hn log 2− C

22h+2(2h)h
n

)
= o(1),

provided C > 22h+2(2h)h+1.

6 H-tiling

Proof of Theorem 4. (i) Let H ′ = (V ′, E ′) be any subgraph of H for which e(H ′)/(v(H ′)−
1) = m(H). Denote e′ = e(H ′) and v′ = v(H ′). Let H = {Hi : i ∈ I} denote the set of all
labeled copies of H ′ in G. Write X for the number of vertex-disjoint copies of H ′ in Gp.

It suffices to show that almost surely X < (1 − ε)n/h. We use the second moment
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method to do so. We first calculate the expectation of X.

E(X) = (1 + o(1))
nv′

aut(H ′)

(
d

n

)e′

pe′

= (1 + o(1))
nv′

aut(H ′)

(
d

n

)e′

ce′ n
e′−e′/m(H)

de′

= (1 + o(1))
ce′

aut(H ′)
nv′−(v′−1)

= (1 + o(1))
ce′

aut(H ′)
n.

Choosing an appropriate constant c, we have E(X) < (1− ε)n/2.
We next show that Var(X) = E(X2) − µ2 = o(µ2), which along with Chebyshev’s

inequality implies that X is concentrated around its mean. If two copies Hi, Hj ∈ H
share at least one edge in G, we denote i ∼ j. Thus

E(X2) =
∑

Hi,Hj∈H

P (Hi ∪Hj ⊆ Gp)

=
∑

E(Hi∩Hj)=∅

P (Hi ∪Hi ⊆ Gp) +
∑
i∼j

P (Hi ∪Hi ⊆ Gp)

=:t1 + t2,

where the first sum t1 :=
∑

E(Hi∩Hj)=∅ P (Hi ∪Hi ⊆ Gp) is over ordered pairs that share

no edges, and the second sum t2 :=
∑

i∼j P (Hi ∪Hi ⊆ Gp) is over all ordered pairs that
intersect in at least one edge.

Clearly, if Hi, Hj ∈ H are edge-disjoint, then the events Hi ⊆ Gp and Hj ⊆ Gp are
independent. Hence

t1 =
∑

E(Hi∩Hj)=∅

P (Hi ⊆ Gp) · P (Hi ⊆ Gp)

6
∑

Hi,Hj∈H

P (Hi ⊆ Gp) · P (Hi ⊆ Gp) = E2(X).

Now we estimate the sum over the ordered pairs that share at least one edge. The
intersection of any Hi and Hj is a subgraph H ′′ = (V ′′, E ′′) of H ′, with e(H ′′) > 1.
Thus we can partition the range of the second sum t2 according to the various possible
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H ′′ = Hi ∩Hj.

t2 =
∑

H′′⊆H′

∑
Hi∩Hj'H′′

P (Hi ∪Hi ⊆ Gp)

6
∑

H′′⊆H′

nv′

aut(H ′)

(
d

n

)e′

pe′ · nv′−v′′

aut(H ′\H ′′)

(
d

n

)e′−e′′

pe′−e′′

=
∑

H′′⊆H′

n2v′−v′′

aut(H ′) aut(H ′\H ′′)

(
d

n

)2e′−e′′ (
c
n(m(H)−1)/m(H)

d

)2e′−e′′

=
∑

H′′⊆H′

c2e′−e′′

aut(H ′) aut(H ′\H ′′)
n2v′−v′′− v′−1

e′ (2e′−e′′)

6
∑

H′′⊆H′

c2e′−e′′

aut(H ′) aut(H ′\H ′′)
n2v′−v′′−2(v′−1)+(v′′−1) (v′−1

e′
6 v′′−1

e′′
)

62(v′
2 )c2e′−e′′n = c1n,

where c1 := 2(v′
2 )c2e′−e′′ . Hence

Var(X)

E2(X)
=

E(X2)− µ2

µ2

6
µ2 + c1n− µ2

µ2
= O(

1

n
),

and by Chebyshev’s inequality,

P (|X − E(X)| > E(X)) 6
Var(X)

µ2
= o(1).

Since c can be small enough such that E(X) 6 (1− ε)n/2h, it follows that

P (X > (1− ε)n/h) 6 P (|X − E(X)| > E(X)) = o(1).

Thus we see that almost surely X < (1 − ε)n/h, in other words, there are less than
(1− ε)n/h vertex-disjoint copies of H ′ in Gp. Hence there are less than (1− ε)n/h vertex-
disjoint copies of H in Gp.

(ii) It suffices to show that every subset of εn vertices contains a copy of H. Lemma
9 will do the job. It shows that almost surely every subset of εn vertices in Gp contains
a copy of H. Thus Gp contains at least (1− ε)n/h vertex-disjoint copies of H.

The proof of Theorem 4 can be easily adapted to give a threshold function for the
subgraph containment problem. Calculations are in much the same way as in the proof
of Theorem 4 (i).

Analogously to Theorem 4, for a fixed graph H, define

m′(H) := max

{
e(H ′)

v(H ′)
: H ′ ⊆ H

}
.
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Sketch of proof of Theorem 5. The proof is a direct application of the second moment
method, and is similar to that of Theorem 4 (i).

Let H ′ be a subgraph of H for which e(H ′)/v(H ′) = m′(H). Let X and X ′ be the
number of copies of H and H ′ in Gp, respectively. For p = cn(m′(H)−1)/m′(H)/d, it is easy
to verify that E(X ′) → 0 as n →∞, if c sufficiently small.

For p = Cn(m′(H)−1)/m′(H)/d, use the second moment method to show that
Var(X)/E2(X) → 0 as n →∞, if C is sufficiently large.
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