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Abstract

The structure of the three pattern classes defined by the sets of forbidden per-
mutations {2143,4321}, {2143,4312} and {1324,4312} is determined using the ma-
chinery of monotone grid classes. This allows the permutations in these classes to
be described in terms of simple diagrams and regular languages and, using this, the
rational generating functions which enumerate these classes are determined.

1 Introduction

A pattern class (or simply class) is a set of permutations closed downwards under a
natural partial order. Therefore, every class is defined by a set of forbidden restrictions,
the minimal permutations that do not belong to the class. A central endeavor in the theory
of pattern classes is to describe the class defined by a given set of restrictions. To this end a
rich structure theory of classes has been developed. When new theoretical breakthroughs
occur they are exploited to widen our understanding to previously inaccessible pattern
classes. In essence that is the story of this paper. As we shall see the new theory of
monotone grid classes (outlined in the next section) allows us to find the structure of
(and enumerate) three pattern classes drawn from a particular suite of pattern classes
that, over the years, has succumbed gradually to one new technique after another.

We shall be concerned with classical pattern containment. In other words, one per-
mutation 7 is contained as a pattern in another permutation ¢ if ¢ has a subsequence
whose elements are ordered relatively the same as the elements of 7. When permutations
are represented by their diagrams (the plot of pairs (i,0(i)) in the plane) then pattern
containment is essentially containment of point subsets. Pattern containment is obviously
a partial order on the set of all permutations and the down-sets of this poset are called
pattern classes.
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The extensive literature on pattern classes contains studies of many particular classes
either because they arise naturally in some other guise or because their study is part of a
systematic classification of various types of classes. Examples of the former case are the
classes associated with various data structures [10] and the class corresponding to smooth
Schubert varieties [5]. This paper however is concerned more with systematic classifi-
cation. That is, its primary message is that the tools which have been developed that
describe certain well-structured classes can be applied directly to completely characterize,
and in particular enumerate, classes which had resisted ad hoc attacks.

Every pattern class can be defined by its basis which is the set of minimal permutations
not in the class. A permutation will lie in the class if and only if it does not contain any
of the basis permutations as a pattern. We write Av(B) for the class with basis B. In
most cases, it is impossible to say much about the structure of a class given only its basis.
But when the basis contains short permutations (or many permutations) some progress is
often possible. It would not be unfair to say that the structure is completely understood
when all the basis permutations have length at most three [16], or if there are two basis
permutations of lengths three and four [4, 19]. The cases of pattern classes having two
basis permutations of length four lie on the boundary of our present knowledge.

There are (224) = 276 pairs of distinct permutations of length four but the natural
symmetries of the pattern containment order mean that only 56 of them are essentially
different. Within this set of 56 there are only 38 different Wilf classes (classes whose
enumerations are different) [5, 11, 12, 13, 14]. Of these 38 Wilf classes, about half have
been enumerated (see [20] which lists 18 enumerations to date). The main results of this
paper produce enumerations (given by generating functions) and structure results for three
previously unenumerated classes: Av(2143,4321), Av(2143,4312) and Av(1324,4312).

We reiterate that, while it is interesting to continue to extend the systematic classifi-
cation of pattern classes having few short basis elements, we view the main contribution
of this work not so much as being the particular structural results and enumerations ob-
tained, but rather the illustration that they provide of our growing understanding of the
structure of pattern classes as a whole, particularly of monotone grid classes as discussed
in Section 2.

To conclude this section we recall the idea of a simple permutation, how every permu-
tation is formed by inflation from a simple permutation, and some relevant terminology.
Then we give a section by section summary of the remainder of the paper.

A permutation is said to be simple if it has no non-trivial interval (a contiguous
subsequence consisting of contiguous values). Every permutation 7 is the inflation of a
(unique) simple permutation o in the sense that 7 is obtained from o by replacing its
elements by intervals (with appropriate normalization) [1]. This process is called inflating
o. An example should clarify these ideas. If the simple permutation 3142 is inflated so
that its elements 3,1,4,2 become intervals isomorphic to 12,213, 1, 312 respectively we
obtain the permutation

3142[12,213, 1, 312] = 782139645.

While 7 determines o uniquely the interval decomposition of 7 is unique only if
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|o| > 2. The case |o| = 2 is somewhat different. These cases are associated with sum-
decomposable permutations (o0 = 12) and skew-decomposable permutations (o = 21).
A sum-decomposable (respectively skew-decomposable) permutation is one of the form
aff where every element of the prefix « is less (respectively, greater) than every ele-
ment of the suffix f. The terms sum-indecomposable and skew-indecomposable have
the obvious meanings while a permutation which is both sum-indecomposable and skew-
indecomposable is said to be strong-indecomposable.

Simple permutations enter into the study of pattern classes in the following way. If
we wish to understand the permutations of a class 7 then we may first find its set of
simple permutations. If we know enough about the structure of the simple permutations
we shall be able to find the inflations of them that also lie in 7. In general this type
of structural understanding is often accompanied by the means to enumerate the class
(roughly speaking, the generating function of 7 is related by functional composition to
the generating function of the simple permutations in 7). This is exactly the way we
shall exploit simple permutations in this paper.

In the next section we summarize the ideas behind monotone grid classes, a somewhat
newer technique for analyzing pattern classes, which we use in combination with the
theory of simple permutations. Then the next three sections treat the pattern classes
Av(2143,4321), Av(2143,4312) and Av(1324,4312) one by one. Since our treatments
have some variation we briefly outline them in turn.

Av(2143,4321). We prove it is the union of 4 monotone grid classes and enumerate it
directly from this.

Av(2143,4312). We first prove it is contained in a certain 2 X 2 monotone grid class
and then realize it as the union of two explicit component grid classes. Next we
enumerate the simple permutations in each of these components. Then we refine
this by classifying the simples into a small number of types and enumerating the
numbers of each type. The types are necessary because they have slightly different
allowable inflations. Knowing the inflations allows us to enumerate the strong-
indecomposables. Finally we incorporate the sum- and skew-decomposables.

Av(1324,4312). This is the most complex enumeration because the monotone grid compo-
nents of the entire class are not described explicitly. Instead we describe the simple
permutations as members of four monotone grid classes. By enumerating the sim-
ples of each type and determining their possible inflations we can enumerate the
strong-indecomposables. Lastly we incorporate the sum- and skew-decomposables.

The discussion of the three classes proceeds roughly in order of the complexity of
the underlying structural description. We shall be quite explicit in our discussion of the
simpler cases in the hope of imparting an understanding of the general principles. Then,
by the time we reach the more complex later cases, we hope that the reader will pardon
us for adopting a lighter touch in justifying some of these more detailed computations.
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2 Monotone grid classes

In broad terms our approach to each of the pattern classes analyzed in this paper is in
two stages. In the first stage we prove a structure result that relates the pattern class or
its simple permutations to a collection of monotone grid classes (defined below). In the
second stage we use an encoding that represents the permutations of these monotone grid
classes by regular languages over a finite alphabet. In this section we give the background
that underpins both of these stages.

In the study of pattern classes it is common to represent permutations 7w by the
plot of the points (i,7(i)) in the plane. Thus the following diagram would represent
T =[16,13,18,11,19,10,8,7,12,3,2,14,9,6,5,4, 1]

A

Ny,
>

In this diagram the enclosing boundary square has been partitioned into cells, some
empty, but all monotonic (increasing or decreasing). The pattern of empty, increasing
and decreasing cells can be represented by a gridding matriz with 0,1,-1 entries for each
type of cell, or by a cell diagram where the increasing and decreasing cells are displayed
as sloping lines. In this case the matrix is

10 0
G=|-1 1 0
0 -1 -1

and the cell diagram is

ANAN

The set of all permutations whose diagram can be represented in this form is the
monotone grid class associated with G.

The theory of monotone grid classes has been developed by several authors. The classes
were introduced initially by Murphy and Vatter [15] who gave an important necessary and
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sufficient condition that identifies when a monotone grid class contains infinite antichains.
Their condition can be given in terms of the cell graph of the defining matrix in which the
vertices are the non-empty cells and two cells are adjacent if they lie in the same row or
the same column of the matrix with no intervening non-empty cell. They showed that the
associated monotone grid class has no infinite antichains if and only if the cell graph is a
forest. Subsequently Vatter and Waton [18] and Brignall [6] simplified and extended the
proof. Vatter and Waton’s paper also introduced a method of associating words over a
finite alphabet with permutations in the monotone grid class which is particularly useful
when the cell graph is a forest. It was shown in [2] how this association can be used to
encode permutations as words in a regular language and thereby how to obtain (at least
in principle) the generating function of the monotone grid class as a rational function.
This is our main tool in carrying out the enumerations.

Rather than repeat the formal justifications as given in [18] (and more extensively re-
fined in [2]) we merely illustrate the general approach with respect to the above monotone
grid class.

The points in any given cell are encoded in the coding word by a common letter. The
order of the code letters is defined by the order in which the points of each cell are ‘read’
and this order is in turn defined by a common order in which the cells in each row and in
each column are read. So, in the example, the reading order can be given by

/ !
N
NN

The main technical difficulty is that permutations may have more than one valid decom-
position into cells compatible with the gridding matrix. This is usually dealt with by
an implicit choice of a particular grid decomposition; in most cases this corresponds to a
local constraint on certain combinations of letters. For example in the diagram of © above
there is another gridding in which the top horizontal dashed line is a little higher placing
the first point into a lower cell. We might have chosen to prefer the given decomposition
because the associated word is lexicographically earlier. That this, or a similar choice of
grid decomposition, still leads to a regular language of representative words is one of the
main results of [2].

Another coding consideration arises when we are encoding merely the simple permu-
tations in the monotone grid class. Simplicity can be violated in several ways. One way is
that the maximum or minimum point occurs at one end of the permutation (as happens
in the example) and this is handled by forbidding certain beginnings and endings to a
code word (in the example, an initial code letter e would not be permitted). Another is
that a pair of points in a cell might form an interval of length 2. This manifests itself by
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a repeated code letter and so repeated code letters have to be forbidden. Still another,
often the trickiest to handle, is that an interval can be formed by points in multiple cells.
Again it is established in [2] that, when the cell graph is a forest (indeed, in a slightly
wider context), an encoding for the simple permutations of the corresponding class exists
where the codewords form a regular language and so can be defined by a finite automaton;
all the encodings that we shall use are defined in this way.

We use the theory of monotone grid classes in another way too through a result of
Huczynska and Vatter [9]. They proved that if a pattern class does not contain arbitrarily
long permutations which are a sum of 21’s or a skew sum of 12’s then it is necessarily
contained in some monotone grid class. In the pattern classes we are considering we have
two basis elements of length 4 and we focus on those pattern classes where these basis
elements forbid such sums and skew sums of length 4. Our paper is about the three
pattern classes in question because they are the remaining unenumerated classes with
two basis elements of length 4 that satisfy the Huczynska-Vatter criterion.

Finally, we give a name to an elementary monotone grid class. The class defined by
the matrix (1 — 1) consists of permutations 7 which can be written as the concatenation
of an increasing sequence and a decreasing sequence, so is denoted by A and is called a
wedge class. The basis of the class is {213,312}. The symmetries of A (denoted by Vv, <
and >) are also called wedge classes.

3 Av(2143, 4321)

3.1 The structure of Av(2143, 4321)

Theorem 1. Av(4321,2143) is the union of four monotone grid classes which are dis-
played in the following diagram.

J
J
77 % / A4
RNz J
A4 7 7 %
J 77
J J J
J
J
A B C D

Classes A and B are self-inverse and each is the reverse-complement of the other, while
classes C and D are each equal to their reverse-complement and are the inverses of one
another. The proof uses the following result from [4].

Proposition 2. Av(321,2143) is the union of two monotone grid classes, namely those
whose gridding matrices are (1 1) and its transpose.
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Lemma 3. Class C is exactly the intersection of Av(2143,4321) with the class of permu-
tations having at most 2 descents.

Proof. The diagram below shows a permutation with 2 descents. If it contains a 2143
pattern then there will be one where the 1 of the pattern matches the element a and the
4 matches the element d. The diagram identifies the potential 2’s and 3’s, and we merely
have to impose the condition that no 2 is below a 3. Thus we require that all elements
in the left middle cell lie above all elements in the right middle cell; this clearly gives a
permutation of the class C.

O

Notice that A, B, C and D are all contained in Av(4321,2143) (by inspection, they
cannot contain the patterns 4321 or 2143). So to prove Theorem 1 it is sufficient to prove
that Av(4321,2143) is contained in their union. Let 7 be an arbitrary permutation of
Av(4321,2143) of length n. If n is the final element of 7 then, by induction, 7 — n (the
result of removing n from ) lies in one of A, B, C or D and, from the forms of these
classes, so does m. So we may assume that there is at least one element to the right of n.
This gives rise to the situation of Figure 1 where m is the largest element to the right of
n.

n
@

A

/

Figure 1: First decomposition

m
o—
B

In Figure 1 the bottom-left cell is increasing because 7 avoids 2143 and, by definition of
m, the top-right cell is empty. Also, both cells A and B lie in Av(321,2143). Furthermore,
at least one of A, B is increasing because of the 4321-avoidance. So, by Proposition 2, we
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get the four cases shown in Figure 2. Of these cases a) and d) are mutually inverse as are
cases b) and ¢), so we shall consider only cases a) and b).

/ /
/ /S /
a4 A V4
(a) (b) () (d)

Figure 2: Four cases

In case a) we begin by noting that if the two increasing cells on the left were a single
increasing sequence then Lemma 3 would apply to show 7 € C. So we may assume
they contain at least one descent. Now we impose the 4321-avoidance condition. By the
preceding remark the situation is as shown in Figure 3 with d preceding c. If such a
permutation had a 4321 pattern then it would have one where d matched 4, ¢ matched
3, a matched 1 and all possible 2’s would lie between ¢ and a in both position and value.
Since there is no 4321 pattern, either a is above ¢ or a is below ¢ but the set of possible
2’s is empty giving one of the diagrams in Figure 4.

v
aard

Figure 3: Case a) possible occurrences of 4321

S A
/ g

Figure 4: Case a) with 4321-avoidance

e ;
/C

To conclude the analysis of case a) we have to impose the 2143-avoidance conditions
on the two diagrams of Figure 4. In the case of the first diagram if there is a 2143 pattern
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then there would be one where ¢ matches 2. So to avoid 2143 either the increasing cell
below and to the right of ¢ must be empty or the two rightmost increasing cells have to
contain a single increasing sequence. It then follows by inspection that = € B.

For the second diagram of Figure 4 the argument is a little more complicated. The
only way that 2143 could be contained as a pattern would be for the 1 to lie in cell I; and
the 4 to lie in cell 5. If either cell I; or I, is empty then m € B so we shall now assume
both are non-empty. If there is a 2143 pattern at all there would be one where the 1 is
the lowest element of I; and the 4 is the highest element of I,. We now consider a more
detailed diagram (Figure 5) where these two points are displayed as black circles.

/

/

A4
LA

Figure 5: Case a): non-empty I; and I

In order to ensure that the pattern 2143 is avoided in Figure 6, some restrictions must
be imposed. Specifically, there are three possibilities:

e [ is non-empty and therefore both I3 and I, are empty. Then 7 € B.
e /3 is non-empty and therefore both I5 and Is are empty. Again m € B.

e J3 and I are both empty and all points of I, are larger than all points of I5. Then
7 is the inverse of a permutation with at most 2 descents and so, by Lemma 3, lies
in class D.

Now we turn to case b) in Figure 2. Again we begin by imposing the 4321-avoidance
condition. This is automatic if the two leftmost increasing cells form a single increasing
region. If they do not and there were a 4321 pattern at all then we could take one where
the point matching the 3 was the top point ¢ of the lower left increasing cell; then the
points 2 and 1 would have to be furnished from the two rightmost increasing cells and so
the higher of these would be greater than c. Therefore m would have one of the two forms
shown in Figure 6.

Finally we impose the 2143-avoidance condition. If there were a 2143 pattern then, in
both of the diagrams in Figure 6, the two marked points of the lower right cell could be

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P20 9



>
4
AN aee

Figure 6: Case b): avoiding 4321

taken as the 1 and 3 points. So there would be a 2143 pattern if and only if there were a
separating 2 to the left together with a separating 4 above these marked points. In other
words, because there is no 2143 pattern, one of the two dotted regions in each of the two

diagrams of Figure 7 must be empty.

IVZ{ B _y4
7"*”"”‘) 7

N~
N
IN L
IO I

Figure 7: Case b): avoiding 2143

Then, by inspection, we have the following conclusions:

e If the dotted region in the bottom left cell of the left diagram is empty 7 € A.
e If the dotted region in the top right cell of the left diagram is empty 7 € C.
e If the dotted region in the bottom left cell of the right diagram is empty 7 € D.

e If the dotted region in the middle right cell of the right diagram is empty 7 € B.

In all cases, 7 lies in one of A, B, C or D.

3.2 The enumeration of Av(2143, 4321)

To enumerate the class Av(2143,4321) we will enumerate the individual classes A, B,
C, D, and then their various intersections with one another so that the final result can
be computed by inclusion-exclusion. This will be accomplished by first finding regular
languages in one to one correspondence with each of them. As noted earlier, the existence
of such languages follows from general results of [2], but since those results are largely

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P20 10



non-constructive they cannot be applied without some difficulty. In fact the classes con-
sidered here are just simple enough to be handled directly and more easily by ad hoc
methods. Finding regular languages that correspond to their intersections is then quite
straightforward provided that we know the basis of each one. This is because the corre-
spondence between forest grid classes and words is such that subpermutations correspond
to subwords, so to find a regular language corresponding to the intersection of a class X
and Av(F') for some finite set of permutations F', it suffices to take the intersection of a
regular language for X with the complement of the language consisting of those words
w that contain a subword v which encodes an element of F' (this language is easily seen
to be regular). Finally, each of the regular languages can be enumerated by standard
variations of the transfer matrix technique.
We first exhibit (and justify) the basis for B:

B = Av(2143,4321,35142,35214, 35241, 43152, 53142).

It is routine to check that none of the permutations on the right hand side belongs
to B, so to verify this result we must show that any permutation that avoids them all
belongs to B. Suppose that this were false and take a minimal counterexample 7. If we
append a new largest element to any permutation in B the result again belongs to B; thus,
by minimality, m does not end with its maximum element. Furthermore, m contains 321
since the characterisation of Av(321,2143) given in Proposition 2 shows that this class is
a subclass of B. Take a particular copy, cba of 321 in m chosen so that b is the largest 2
of any 321, while a and ¢ are the smallest 1’s and 3’s respectively that form a 321 with 0.

Now a relatively simple case analysis will be used to show that in fact 7 € B, thus
obtaining a contradiction. We first consider the structure of 7 to the right of a. Here,
there can be no element d, larger than c¢. For if there were such an element, all e > d
would have to follow d (else one of 4321, 35214, or 2143 would occur in 7) in increasing
order (else 2143), and so 7 would end with its maximum. Furthermore, there can be no
element smaller than a (else 4321), and elements intermediate between a and ¢ must occur
in increasing order (else 4321, 53142, or 2143). Now we turn our attention to the left of
a. By the choices of ¢ and b, and 4321-avoidance, there are no elements here whose value
is intermediate between b and c. Likewise by the choices of b and a and 4321-avoidance,
there are no elements whose position lies between b and a and whose value lies below c.
Now, in a similar fashion as above, it is easy to argue that the elements to the left of and
below b occur in increasing order, as do those to the right of and above ¢. Thus 7 € B
(in fact in the part of B in the lower left 2 x 2 subgrid) as witnessed by a horizontal grid
line just below ¢ and a vertical one just to the left of a.

This analysis also shows how to construct a regular language in one to one correspon-
dence with B. We will use an alphabet {a,b,c,d}. These will correspond to the cells
of the gridding with d being the upper right, b the lower left, a the second cell in the
bottom row, and ¢ the second cell in the left hand column. The reading order in each
cell is left to right and hence bottom to top. We now describe how to associate each
m € B with a unique word over this language (and implicitly claim that the set of such
words forms a regular language — which will hopefully be clear from the construction). If
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7 does not involve 321 then either it belongs to the class whose gridding matrix is (1 1)
or its transpose (or both). If it belongs to the first of these but not the second, then it
can be uniquely represented over the alphabet {a, b}, while in the opposite case it can be
uniquely represented over {b,c}. If it belongs to the intersection and is not increasing,
we can choose its representation to be of the form a*b', while if it is increasing, we will
simply use b". If m does involve 321 then the argument of the preceding paragraph shows
that we must encode the largest such 2 with b, the smallest corresponding 3 with ¢ and
the smallest corresponding 1 with a. Moreover, all the letters encoding the remaining
elements of 7 are uniquely determined by their position relative to this 321. The only
latitude allowed in the arrangement of these letters is that adjacent ¢ and a elements
could be placed in either order, and also that only the total number of d’s is relevant.
Finally, to ensure the existence of a 321, there must be both a ¢ and an a preceding some
b. Thus we can obtain a unique representative for each permutation involving 321 in this
class by requiring that the encoding word be of the form {a, b, c}*d*, that it must contain
the substrings cb and ab, and that it may not contain ca as a factor.

Class A is a symmetry of B so we need consider it no further. For class C (and
symmetrically D) a basis is easy to determine since it is the subclass of Av(2143,4321)
allowing at most two descents, and so its basis consists of the minimal permutations
having at most three descents (and not involving the two known basis elements). The
regular encoding of C is also easily obtained by thinking of it as a subclass of the grid
class with gridding matrix (1 1 1) and starting from a regular encoding of that class.

With these bases and regular languages computed, the remainder of the program
outlined in the first paragraph of this subsection can be carried out. In practice, all of these
constructions were accomplished using GAP [8] and its automata package [7]. Of course
a signal advantage of this approach is that it is possible to verify all the constructions
experimentally (at least up to a certain length) thereby obtaining some not insignificant
degree of confidence in their correctness. In view of this procedure, we report only the
final outcome of the enumeration.

Proposition 4. The class Av(2143,4321) is enumerated by the rational function:

tp(t)
(L= 20011 — 1) (1 — 3t + &2)

where

p(t) =1 — 16t + 117% — 513> + 1499t* — 3064¢> + 4530t°—
4827t7 + 3691t — 1968t° + 690¢1° — 150t + 16412

The series expansion begins 1, 2, 6, 22, 86, 333, 1235, 4339, 14443, 45770, 138988,
407134, ... (sequence A165525 of [17]).
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4 Av(2143, 4312)

4.1 The structure of Av(2143,4312)

The main result in this subsection is

Theorem 5.
Av(2143,4312) = EU F

where € and F are the monotone grid classes shown in Figure 8.

/

/
/ A/
/ S/
AN /™N

1INV AN
£ F

Figure 8: The components of Av(2143,4312). Symmetries under reverse-inverse-reverse.

Our first step is to show that Av(2143,4312) is contained within a certain 2 x 2 grid
class:

Lemma 6. Each permutation of Av(2143,4312) has a diagram of the type shown in Figure
10.

Proof. Consider a permutation m € Av(2143,4312) of length n. We may suppose that
m & Av(132,312) (which is the class of wedge permutations oriented <), as otherwise the
conclusion follows immediately. Let ¢ be the rightmost element which occurs either as
the 1 in a 132 or the 3 in a 312 pattern. Thus the points that follow ¢ form a pattern in
Av(132,312). There are two cases, and these are depicted in Figure 9.

Figure 9: The two cases in the proof of Lemma 6.
In both cases, the vertical dotted line passes through the element i, with the point as

labelled. The diagram on the left depicts the case where we find a copy of 132, noting
that we have taken the ‘3" and ‘2’ to be the leftmost possible. To the left of the element
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i, we divide the region into 3 boxes: the highest (above the ‘2’ of the 132 pattern) must
be increasing to avoid 4312, the middle region (below the ‘2’ but above the '1’) must be
empty to avoid 2143, and the lowest region (below the ‘1’) must be increasing, also to
avoid 2143. It is then clear that any permutation in this picture can be represented as
stated in the lemma. A similar argument applies in the case when we encounter a 312
pattern first. O

We can now complete the proof of Theorem 5.

Certainly both £ and F are contained in Av(2143,4312) since, by inspection, neither
contain 2143 or 4312. So, let m be an arbitrary permutation of Av(2143,4312). By
Lemma 6, 7 has a representation of the type displayed in Figure 10. Permutations with
such a representation automatically avoid 4312 so it remains to enforce the condition that
7 should also avoid 2143. However the only way in which 2143 can appear in such a
permutation is for the 2 and the 4 to lie in the top left cell, the 1 in the bottom left
cell and the 3 in the top right cell. Thus, avoiding the pattern 2143 corresponds to the
following restriction within the 2 x 2 gridding: any two points in the top left cell cannot
simultaneously be separated by points in the top right and bottom left cells.

74
AN

Figure 10: A 2 x 2 grid class containing Av(2143,4312).

Hence 7 has one of the two forms shown in Figure 11. By inspection the left-most
diagram lies in £ and the right-most diagram lies in F.

7 /S
/N JHAN

Figure 11: Imposing the 2143-avoidance on Figure 10.

4.2 Enumerating the simple permutations

Now we use Theorem 5 to enumerate the simple permutations. We first enumerate the
simple permutations of the class £. These, together with the simples of F (whose enu-
meration is identical), form the simples of the class.

Lemma 7. The generating function for the simple permutations of length at least 4 in

the class € is
4(2 — 3z — 2?)

(14 z)(1—2x)*

Sg(SL’) =
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Proof. Since £ is a forest monotone grid class, we can encode the points of each permu-
tation according to the region in which they lie. We will use the following scheme for our
encoding:

/

v

7

4
7N
7 N
We impose rules on the permitted code words to ensure both that the permutation being

encoded is simple and that each simple permutation has a unique encoding. To do this,
we specify the following rules:

e All occurrences of {a, b, c,d} come before {A, B,C, D}.

e To ensure the permutation is not sum- or skew-decomposable, the word cannot
begin with any of {b, ¢,d, B, C'}. For the same reason, we must find at least one ¢
before the first d, at least one b before the first ¢, and an a before the first b. Note
that this means the first lowercase letter (if it exists) is a.

e All letters before the first D are in {a, b, ¢, d}, to avoid duplicate encodings (e.g. A
could be replaced with a). Note that this means that the first uppercase letter (if
it exists) is D.

e To avoid intervals within a region, between every two instances of a (except where
the word is a?) there must be at least one b. Similarly, between two instances of b
there must be either a or ¢, between two cs there must be b or d, and between two
ds there must be c. The same rules apply for the uppercase letters.

e There should be no factors of the form ca, da, db, CA, DA or DB, as these can be
encoded as ac, ad, bd and so on.

e If it exists, the final A can be followed by at most one letter, since the subsequent
points in the regions encoded by B, C' and D will form an interval. For uniqueness,
this final letter will be B.

e If the word does not contain A then the final a can be followed by at most one
letter (which for uniqueness will be encoded by b). Otherwise, either we can find an
interval of size two in the regions encoded by {b, ¢, B,C, D}, or there is an instance
of d that could equivalently be encoded by a.

These rules together give the following automaton, which we present in two parts,
the first encoding the prefix on the letters {a,b,c,d}, the second encoding the suffix
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on {A,B,C,D}. The outward half-edges in the first automaton indicate a permitted
transition to the start state of the second automaton.

The generating function now follows routinely from the transfer matrix method. [

Of course, by symmetry, the simple permutations of F are enumerated by the gen-
erating function sz(x) which is equal to sg(x). However the class € N F also contains
simple permutations, which need to be considered in order to handle the overcount in
se(x) + sz(x). We describe these in the following result.

Lemma 8. The simple permutations in ENF lie in one of the following two grid classes
(where a cell with a single dot represents exactly one point):

o /
/ °
VAN /\

Proof. Let o be a simple permutation in £ N F of length at least 4. Suppose that o had
a subsequence cdab ~ 3412 and consider a representation of ¢ in the form of the 2 x 2
class given in Lemma 6 (Figure 10). Then ¢ and d would necessarily lie in the top left
cell of the representation. However, since o € £, there are no points in the top right cell
that separate ¢ and d by value. Similarly, since ¢ € F, there are no points in the lower
left cell that separate ¢ and d by position, and hence ¢ and d form an interval in o, a
contradiction. So, o avoids 3412.

Next note that, since o is simple, it must contain either 2413 or 3142, or both (but in
fact it will emerge that here this final case is impossible). Suppose first that o contains
2413, and choose a copy of 2413 in ¢ with 2 as far right as possible, the 3 as far left as
possible and the 1 as high as possible. Now we have the situation depicted in Figure 12.
In this diagram, all non-labelled cells are empty, either because ¢ cannot contain any of
the patterns 2143, 4312 or 3412, or because of our choice of points for the 2413-pattern.
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A
B
C
D
E F |G

Figure 12: The case where the simple permutation o € £ N F contains 2413.

In order to avoid the pattern 2143, the cells labelled A and B together must avoid 21,
i.e. they form an increasing sequence. Similarly, cells D and E must avoid 21 for the same
reason, while F' and G avoid 12 in order to ensure that o does not contain 4312. The cell
labelled C' can contain at most one point, as otherwise it will form a nontrivial interval.
We now claim that A must in fact be empty. For if it were not, then because ¢ cannot
end with its maximum there would have to be an element of G to its right. But then
o would either begin or end with its minimum, which in either case is a contradiction.
Together, these conditions on the cells demonstrate that ¢ lies in the first of the two grid
classes in the statement of the Lemma. The situation where o contains 3142 is analogous,
and gives rise to permutations in the second of these classes. O

With the structure of the simples of £ N F described, we are now able to enumerate
them. The following encoding and automaton is used to enumerate the simples containing
2413 (i.e. the ones given by the left-hand diagram in Lemma 8):

/
1IN

The generating function from this automaton is which is the generating

—x —a?
function for the Fibonacci numbers, offset by three. Consequently, noting that the sets

of simples in the two diagrams of Lemma 8 are disjoint, the generating function for the
simples in £ N F is:

2t
erl) = 1

Note the extra factor of x which has been added, to account for the singleton cell.
Finally, the generating function for the simples of C = Av(2143,4312) of length at
least 4 is:
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224(1 — 2z + 2)
1+2)(1—22)%(1 —x—2?)

Sc(:l?) = 58(517) + SF("E) - ng]_-(x) = (

4.3 Inflations of simples

Our next task is to describe the inflations of simple permutations in the grid class £. We
identify two types of simple: the simple permutations whose encoding ends with the letter
A will be called type 1, and all other simples (i.e. those ending with a, b or B) are type 2.

Lemma 9. In the grid class £, Type 1 simple permutations are enumerated by

241 -z — 2?)
(1+2)(1—2x)(1 —x — 222)’

se(r) =

and each point can only be inflated by Av(12) or Av(21).

Proof. The generating function s}(x) follows by considering the automaton for the simple
permutations in &£, but with the state labelled A as the only accept state.

Second, it is routinely verified that all points can only be inflated by an increasing
or decreasing sequence, in order to remain in the grid class &£, noting that the regions
encoded by A, B, C' and D are all non-empty, and the last point encoded by A lies to the
right of all points encoded by B. O

Lemma 10. In the grid class £, Type 2 simple permutations are enumerated by

2/ 8 zt(1 — 322 — 23)
(@) = A0 —on(d =2 =227

and each point can only be inflated by Av(12) or Av(21), except for one point (either
encoded by b or B if this is the last letter, or encoded by c if a is the final letter), which
can be inflated by Av(312,2143).

Proof. The generating function is clear from the previous lemma. Second, as in the
analysis for the Type 1 simples, all points can only be inflated by Av(21) or Av(12) with
one exception. This exception is as described in the statement of the lemma: note that in
all of these cases, there exists some point encoded by a or A that lies above and to the left
of the point in question, so any inflation must avoid 312 to avoid creating a 4312-pattern,
in addition to avoiding 2143. U

We are now in a position to enumerate the strong-indecomposables in £, but this is not
quite what we want: in order to enumerate the strong-indecomposables in Av(4312,2143),
we must also be able to handle the inflations of permutations in ENF. Again, these divide
into two types, which are analogous to the types given above: type 1 corresponds to those
simple permutations whose encoding ends with a, and type 2 are those whose encoding
ends with b. Applying a similar analysis to the above shows that each point in type 1

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P20 18



simples in £ N F can be inflated by Av(12) or Av(21) only, and the generating function

is: .
2z

T 1222 — P

Similarly, type 2 simples in £ N F can only be inflated by Av(12) or Av(21), with
the exception of one point which can be inflated by Av(312,2143), and the generating
function for these simples is:

Sémf(x)

220

2 _
Sgﬂ]:(x) - 1 o 2x2 o xg’
The generating function for the permutations in Av(312,2143) is given by

 r(l—2x)
1 —3z+2%

g(z)

from which it follows that the strong-indecomposables in Av(4312,2143) of length at least
4 have generating function:

fina(x) = {25; (ﬁ) — senF (i)}
T g(x)t — [25?: (1 - x) ~ Senr (ﬁﬂ

_ 22Y(1 — Tw + 172 — 182° + 112" — 52°)
B (1 —2)%(1 — 32)%(1 — 3z + x2)?

4.4 Completing the enumeration

To complete the enumeration, we first need to count the sum- and skew-decomposable per-
mutations in Av(4312,2143), given by generating functions fg(x) and fs(z) respectively.
The generating function of the entire class will be denoted by f(x).

Consider a sum-decomposable permutation © = m; & w9, where the first summand 7,
is sum-indecomposable. If m; = 1, then 75 can be any permutation from Av(4312,2143),
while if 7; has more than one point then it contains 21 (since it is sum-indecomposable,
and hence not increasing), and so m € Av(21) in order to avoid creating a 2143-pattern.
In this latter case, m; must either be skew-decomposable, or strong-indecomposable of
length at least 4. Hence:

T
1—

fo(x) = 2 f(x) + (fina(x) + fo(2))

For the skew-decomposables, write m = m © my with 7y skew-indecomposable. Note
that, since m; is necessarily nonempty, to avoid a 4312-pattern we must have m, €
Av(312,2143). If my = 1, then m can be any permutation from Av(4312,2143), while
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if 7 is a non-trivial skew-indecomposable in Av(312,2143), then m € Av(21) in order to
avoid creating a 4312-pattern.

The generating function for the skew-indecomposables of length at least 2 in Av(312,2143)
is (see, e.g. [3])
z(1 — x)? x?
93() = 1-3z+22 © 1-3z+a%

from which it follows that

JZ’Z T

1-3z+22 1—2

fo(x) = 2 f(x) +

Substituting this expression for fo(x) into the expression for fg(x), and noting that
f(x)=1+x+ fo(x) + fo(x) + fina(z) allows us to solve for f(x):

1—2z fina(x) x3
—_ T (1
[@) =52 < T T U3+ —a2p
1 — 13z 4+ 6922 — 19123 + 2942* — 2522° + 1162 — 2327

(1— 2)2(1 — 32)2(1 — 3z + 22)?

The series expansion begins 1, 2, 6, 22, 86, 337, 1295, 4854, 17760, 63594, 223488,
772841, ... (sequence A165529 of [17]).

5 Av(1324,4312)

5.1 Simple permutations

The main result of this subsection is that every simple permutation of Av(1324,4312) has
one of the following grid class forms:

/
|/ /

/ . AN
AN / AN /
/N AN AN AN
v AN / AN AN
X

T F S

The names of the classes are chosen mnemonically since 7 is a Two-by four class, F
is Four-by-seven, § is Seven-by-four and X is siX-by-six. In the diagrams for F and S
the cells containing a dot represent a single point or no point at all. Cells containing
monotone sequences may be empty (although simplicity places some constraints on this).
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Notice that all these classes are certainly contained in Av(1324,4312). We shall now
consider an arbitrary simple permutation = € Av(1324,4312) and prove it has one of the
above forms.

We identify the first point m and the greatest point n of m and use them to divide m

into 4 quadrants.
®
s
°
m
< 2

The NW quadrant is increasing because of 1324 avoidance. The NE quadrant is wedge-
shaped as A because of 312 and 213 avoidance, the SW quadrant is wedge shaped as <
because of 312 and 213 avoidance, and as yet the SE quadrant is unknown.

Consider the wedge in the NE quadrant. We shall prove it is monotone. If not then
there is a proper apex and this point together with the two on either side forms either
ach ~ 132 or bea ~ 231. Consider the first of these cases. Since cb is not an interval it has
a splitting point p which must lie in the NW quadrant or the SE quadrant. In the former
case mpac ~ 1324 and in the latter case ncpb ~ 4312 both of which are impossible. Now
consider the second case. Here bc is not an interval so has a splitting point p. If p is in
the NW quadrant mpbc ~ 1324 and if p is in the SE quadrant nbpa ~ 4312; again both
of these are impossible.

Similarly (or by symmetry) the SW quadrant is monotone.

These two monotone quadrants cannot both be increasing and of length more than 1.
For if we had ab ~ 12 in the SW quadrant and cd ~ 12 in the NE quadrant each chosen
as closest possible pairs then, as they are not intervals, they must each have separators
elsewhere. The separators cannot lie in the NW quadrant (else a 1324 pattern occurs) so
must lie in the SE quadrant. The ab separator (x say) must lie to the right of d (else 1324
occurs again) and the cd separator (y say) must lie below a (again because of 1324). But
then ncxy ~ 4312 which is also impossible.

We therefore have three possibilities: the NE quadrant is increasing of length more
than 1 and the SW quadrant is decreasing, the NE quadrant is decreasing and the SW
quadrant is increasing of length more than 1, or both of these quadrants are decreasing.
We shall see that these possibilities lead to m € F, m € S, or m € T U X respectively.

Lemma 11. If the NE (respectively SW) quadrant is increasing of length more than 1
then 7 lies in F (respectively S).

Proof. Let a,b be the last two points in the NE quadrant. Since ab is not an interval and
it has no left separator (by 1324) there is a separator s in the SE quadrant. In fact the
point 1 is a separator. To see this we rule out the alternatives:

e 1 is to the left of a. Then lasb ~ 1324.
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e 1 is to the right of b. Then no point comes after 1 for any successor u would lie in
the SE quadrant and nblu ~ 4312. But a simple permutation cannot end with its
minimuim.

It also follows that 1 is succeeded only by b (because another successor v would lie in
the SE quadrant and then nalv ~ 4312).

Let 0 be the sequence of points in the SW quadrant (known to form a decreasing
sequence). In the SE quadrant let P, ), R be the sets of points entirely below §, between
the first and last points of d, and entirely above § respectively (all of which come before
the point 1). We have

e P is decreasing (or there is a 4312 pattern with the initial point m and a point of §
as the 4 and 3),

e () is empty (or again 4312 with the initial point m as the 4, and the top and bottom
points of § as the 3 and 1),

e R is increasing and, with the NE quadrant, is a single increasing sequence (because
of 1324 avoidance and the fact that these points come before b).

The situation is now as shown, where we have also taken into account the fact that
no point in the NW quadrant can separate any pair in the NE quadrant.

k/"a:l
o
el —
N

\.‘

Finally, the increasing sequence shown that begins at m must consist of m alone. For let
p be the next point in this sequence. As mp is not an interval the first point of § must
separate these two points. But then either dprb with r € R is a 1324 pattern or R is
empty and md is then an interval.

This gives the class F and the other case of the lemma follows by symmetry. O

Lemma 12. If the NE and SW quadrants are decreasing then the permutation lies in T
or X.

Proof. We begin by considering the effect of 1324 and 4312 avoidance on the SE quadrant:
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In this diagram the SE quadrant has been partitioned into 9 cells. The cell with
content A is increasing because of 1324 avoidance, the 5 gray cells are all empty because
of 4312 avoidance, and the remaining 3 cells are decreasing also because of 4312 avoidance.

Now consider the decreasing content in the bottom right corner of the SE quadrant.
To avoid 4312, any point in this cell comes after and below both the other two decreasing
cells in this quadrant. Thus it is a skew component and therefore empty.

If the cell marked A is empty we have class 7. If not the situation in the NW cell is
as shown below with no point in the region marked “Empty” otherwise we would have a
1324 pattern with a point of A playing the role of 2.

Finally, to avoid 4312, any point of A cannot simultaneously lie to the left of a point in
the decrease below it, and above a point in the decrease to its right. This condition yields
the class X. O

5.2 Introduction to the enumeration

The automata in this section are the most complex in the paper, yet their construction
is not, in principle, very difficult. So, rather than set out every step in detail, we shall
instead trust the reader to supply the various rules for making encodings unique in the
same way we did in the previous section. A guiding principle in selecting the encoding
word for a permutation is to use the lexicographically least of all the possibilities.

We have to consider a number of sets C' of permutations and, uniformly, we let fo
denote the generating function for C, s¢ the generating function for the simples (of length
more than 2) in C, and ic the generating function for the inflations of these simples in
Av(1324,4312) (these are, of course, the strong-indecomposables).
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Apart from the classes 7,8, F, X a number of other sets of permutations feature in
our analysis:

e 7 =Av(21) and D = Av(12)

e & = Av(213,312), which we previously denoted by A, (and its symmetries) whose

generating function is fe(z) = 5.

z(1—3z+3x2)

e G = Av(213,4312) (and its symmetries), with generating function fg(z) = i 2]

(see, e.g. [4]).
o W = ‘Wedge simples’: Wedge permutations of length more than 2 are never simple

but there are simple permutations which are almost wedges as shown here (<- for
brevity). There are two of this < type in every length from length 4 onwards.

Symmetries of this set under reverse-inverse-reverse symmetry (with shape A ) will

also be called wedge simples. These two varieties of wedge simples intersect in
{2413, 3142, 24153}.

e Sets ‘4 x 7" and ‘2 x 4": we partition F into two subsets. If the singleton cell of a
(simple) permutation in class F is empty, the permutation reduces to the form:

/
AN

/
N\

We call this class of permutations 2 x 4 whereas the set of permutations in which the
singleton cell does contain a point is called 4 x 7 (but note that some permutations
of 4 x 7 may be represented in a smaller grid than 4 columns and 7 rows).

e Sets ‘3 x 3" and ‘6 x 6”: in the class X there is a subset of permutations of the form

/
AN
N\

We call this set of permutations 3 x 3. Permutations of X not in 3 x 3 form the set
6 x 6 (and again note that some of these may be represented in fewer than 6 rows
and columns).
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5.3 The two by two class T

We enumerate the simples of length > 4 using the following encoding scheme and au-
tomaton:

VX
N

As given, this automaton accepts one word of length 3 which it should not. It is
possible to avoid this, but the resulting automaton is significantly more complicated: it
is easier simply to subtract 23 from the generating function it defines. This yields:

242+ 2)
A P

5.3.1 Inflations of T

The inflations of the simple permutations depend somewhat on initial and final points in
various cells and it is necessary to refine the automaton above to reflect the various cases.
We distinguish 4 types that we can conveniently describe by the first and last code letters
of their encodings:

e c---a (i.e. code words beginning with ¢ and ending with a): In this case, the first
point encoded by a and the last point encoded by c¢ inflate to Av(213,312) and
Av(132,312) respectively.

e c---b: Here the first point encoded by a inflates to Av(213,312), and the pair
(brast, Crast) 1s either (G\Z, D) or (Z,€) (symmetry may need to be applied to G and
).

e a---a: The first two points encoded by a are (G\Z,D) or (Z, ), and the last point
of ¢ is Av(132,312).

e a---b: The first two points encoded by a, and the last points encoded by b and ¢
forms pairs which inflate by (G \ Z, D) or (Z,€).

Let scq, S etc denote the generating function for the simples in each of these cases.
Modifying the automaton in each case, we get:

°(2 + ) rt
Sca(x) = T 4 5  _a Seb = 7T = 5 =
1—222 — 23 1—222 — 23

x4 x®
Saa(T) = 1—222 — 23 Sab = 1—222 — 23
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Now let i, i etc denote the generating function of the inflations of the corresponding
simple permutations. We obtain the following expressions. For i.,:

) =5 (152 (555 - setor = 22 o)

11—z x (1 —-2x)%2(1 -3z +2?)(1 —x)

Similarly, we obtain:
(1 — 2z + 2?) () = 25(1 — x)?
1—22)3(1 — 3z + 22) DT (1= 22)4 (1 — 3z + 2?)

icb(x) == iaa = (

Adding them together:
242 — Tz + 622 + 23 — 2%)
(1—2)(1 —22)*(1 — 3z + 2?)

ir(z) =

5.4 The four by seven class F, and its symmetry class S

The simples in the class F lie in one of 2 X 4 or 4 x 7. To enumerate the 2 x 4 grid class
we use the following encoding and automaton:

v

Notice that this automaton again accepts a spurious length 3 word, and again it is eas-
ier simply to delete this from the generating function. After correction, the generating

function is
(2 —2)

(1—z)*
For the 4 x 7 set we use the following encoding scheme to obtain the generating function
S4x7 ([L’ ) .

82x4($) =

/ZL aba + xba,

N

N

Combining the two cases, we obtain

22— 22+2?)

s#(1) = =5y

The enumeration of the simples of class S is identical by symmetry.
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5.4.1 Inflations of F and S

The analysis of the inflations of the 4 x 7 subset of F is quite straightforward. In any
permutation of this set the first point of those encoded by b inflates to Av(132,213) while
the last point of those encoded by e inflates to Av(213,312), and all other points inflate
to monotone sequences. Therefore

ax7(2) = S1x7 (1:) ' <1;x)2'f5(9’)2 - ﬁ

However, the analysis of the 2 x 4 subset is more subtle and, just as for the inflations
of the permutations of T, it is necessary to distinguish several types, refine the automaton
for each type and determine how the points of each type are inflated. Nevertheless the
analysis is similar to that of class 7 and so we merely summarize the derivation of the
generating functions of the inflations of each type. We divide into 7 types. In the following
table we give the code words for each type, the corresponding generating function for the
simples, the factor of the generating function for the inflations arising from points that
do not inflate monotonically, and the resulting contribution to this generating function.

Code words  Simples Non-monotone factor Inflations
P 2 z’
aba---cdc  gEar fe (1-22)T(1-2)
aba - - - be 2 /2 EEn
=) £ 2 =)
ZB4 z —
aba - - - ac (1-22) fe(fg + fe — /(1 = x)) (1£12r)2
5 2%(1—3z+322)
bac- - -dc = felg (1—-22)1(1-z)?
ZB4 z —
ba - --bc =) fe(fo + fe —x/(1—1)) (1£12m)2
ZB5 "ES —
bab- - -ac =) (fg + fe — /(1 —x))? (192%)‘2
bab--cde s felfo+ fe—a/(1-2))

Summing the contributions, we get:

(2 — T + T2? + 23 — 427)
(1 —x)2(1 —2x)°

ioxa(T) =

Consequently

4(2 — 62 + 5a? + 223 — 4xt)
(1 —x)2(1 —2x)°

Z]:(:L') = 'i4X7(ZL') + 'i2x4(x) =

5.5 The six by six class X

In general we shall encode the permutations of X by the following scheme:
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r

N

N

However there are some degenerate cases when certain cells are empty that it is con-
venient to handle separately. For example, if there are no points encoded by a or by b,
then the simple permutations are the same as given by the 2 x 4 set above. Similarly, if
there are no points encoded by ¢ or by d, then we have the reverse-inverse-reverse of that
set, which has the same generating function.

Thus, we will consider the case that there are points encoded by all of a, b, ¢ and d.
If there are no other code letters, then we are enumerating points in the 3 x 3 class. We
note that the class 3 x 3 contains the wedge simple permutations of both varieties, but
these have already been counted by so44 or its symmetry so we do not wish to count these
again. In the automaton below, this is achieved by requiring that accepted words must
contain at least two bs and at least two ds. We thus obtain:

bab + abab

We now turn to the enumeration of the remaining simples in the class, namely those
involving all of the code letters a, b, ¢ and d, and at least one other letter from e, f,
g and h (these simples all belong to the set called 6 x 6). The following automaton is
actually less complex than it looks at first sight. Apart from ensuring that all a’s and b’s
come before all ¢’s and d’s etc., it also enforces that the same permutation is not coded
by different words. For example, the first d comes before the first ¢ otherwise the first ¢
could have been coded by an a with appropriate redrawing of gridlines. This and similar
restrictions gives us the automaton and generating function:
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ab + bab

(1 + 2 — 2?)
(1—x)!

86x6(flf) =

We now need to combine the three generating functions given above, taking into con-
sideration any intersections to avoid overcounting. The simples enumerated by s3y3\w (x)
deliberately exclude the wedge simple permutations and, because of this, their intersection
with the simples enumerated by soy4(x) and its symmetry is empty. Similarly, the defini-
tion of the class 6 x 6 was such that it was disjoint from the other subcases. Consequently,
the only intersection that we need to consider is 2 x 4 with its symmetry under reverse-
inverse-reverse. It is straightforward to check that the only simples in this intersection
are 2413, 3142 and 24153. The generating function for the simples in X is therefore:

4 29 2 2 -9 3 4
Sx(S> = Sﬁxﬁ<.f(7) + 282><4<.f(7) + ngg\W(I) — 2LU4 — LE‘5 = L ( l’::‘[ —x[L’)4 v )

5.5.1 Inflations of X

First, we shall take the inflations of 6 x 6 into account: all but two points are inflated
monotonically, and the remaining two (last point of b, and first point of d) are inflated by
(symmetries of) £. Hence

iﬁxﬁ(x):%xﬁ( x )'<1—x)2'f€(z)2: (1 — 2 — 22

-z x (1—a)(1—2x)8

Next, Section 5.4 provides the inflations of 2 x 4 and its symmetry. This leaves the

3 x 3 class, which splits into four cases summarized below in the same way we summarized
the 2 x 4 class:

Code words  Simples Non-monotone factor Inflations

bab- - - cd m f2 W
bab - - - de O—HC)QCZW fe(fe + fg —x/(1—1x)) (1—2xxi(1—x)
aba - - - cd U—&w fe(fe + fg —x/(1—x)) (1—2xx5(1—x)
aba - - - dc % (fe + fo —=/(1 —x))? (1—2xx:(1—x)
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Adding these contributions together yields:

_ 2%(1 — x)
Z3x3\W(fE) = m

Recall again that this excludes inflations of wedge simple permutations (which we counted
in the 2 x 4 class).

We also need the generating function for the inflations of 2413, 3142 and 24153, and
this is:

2 (125) o) (Jetw + ot 12 )+
(11;)3' (fg(x) + Jolz) = 11;)2 —Q i4§;§(zix2)x)4

Putting everything together:

z4(2 — 3x)
[ —2)(1 = 22)°
(2" — 2625 + 462° — 142" — 252° + 2822 — 122 + 2)
(1 —xz)*(1 — 2x)8

Zgg(l') = ’i@xG(l’) + 2i2><4(l’) + Z.3><3\W(:L’) - (

5.6 The strong-indecomposables

The strong-indecomposables are the inflations of simple permutations of length 4 or more.
Having calculated the inflations in each of 7, F, § and X the main ingredient we still
need is to compute the inflations of intersections between these classes.

Inflations of wedge simples In both varieties of wedge simples there are two of each
length from 4 onwards but the two varieties intersect in {2413, 3142, 24153}. In computing
their inflations we have to distinguish between odd and even lengths. In even lengths both
the permutations of each variety have one point that inflates to £ (or a symmetry) and
a pair of points that inflates to (G \ Z,D) or (Z,€). But in odd lengths each variety has
one wedge simple with two points inflating by (symmetries of) £, whereas the other has
two pairs of points which inflate to (G \ Z, D) or (Z, ). Taking all this into consideration
a routine calculation shows that

b (1) = 4(2 — bx + 22% + 227)
AT T A =) - 23)8

We now consider the intersections:

e 7 N X: By inspection, these are the permutations in the 3 x 3 class given above.
We have,

» . , (2 — 9z + 132% — 423 — 3ah) 2!
I3x3(2) = dgxa\w () +iw (2) = (1—22)%(1 — =)
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e FNAX and § N X. The permutation in F N & lie in the class

/

/
N\

Following similar analysis to the class F, the simples lie either in the 2 x 4 class,
or all cells in the above cell diagram are nonempty. We have already considered
iax4(z), while for the second type (which we call the 4 x 6 class), we observe that
the automaton to enumerate its simples is the same as for the 4 x 7 class, but with no
points encoded by the letter f. Thus syxe(z) = sax7(z)-(1—22%) = 25(1+2)/(1—x)%

To compute i4x6(x) we note that points in the 4 x 6 class are inflated in the same
way as for the 4 x 7 class. This gives

i4x6(2) = S1x0 <1f:c) ' (1;:5)2%(:6)2 “a —:c)2$(51 o)t

Therefore

x4(2 — 62 + ba? + 2% — 42%)
(1 —22)5(1 — x)2

i}'m)((l') = Z.4><6(37) + Z.2><4(37) =

S N A is handled by symmetry.

e 7 N F consists of wedge simples shaped like <- while 7 N S is the other variety of
wedge simples. Both sets are obviously contained in X andso TNF =T NFNX
and TNS=TNSNX.

e FNS and TNFNS (which are both finite) are also obviously contained in X and
soFNS=FNnSNXand TNFNS=TNFNSNA:

These set equalities simplify the inclusion-exclusion calculation of the strong-indecomposables
to
i(x) =ir+ir+is+ix
- (iTﬂF + Z'7’05 + iTnX +irns +irnx + iSmX)
+ (iTmFmS + Z'7’0}‘02’( + iTﬂSmX + iFﬂSmX)
— ITnFNSNX
= i1 +ir +is +ix — (I3x3 + irnx + isnx)

Here and henceforth the omission of a subscript referring to a set on a generating function
means that we are dealing with the entire class Av(1324,4312). This yields:

) 2120 242? — 82° — 412t + 5725 — 16292
= (1—2)(1 =3z + 22)(1 — 22)°
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5.7 Sum- and skew-decomposables, and final enumeration

We begin with the sum-decomposables. These are of the form a; @ as & - - - B g, where
Qg, ..., g1 are singletons, a; € Av(132,4312), ay € Av(213,4312) = G and ay, o are
sum-indecomposable. These last two two classes are symmetric, so we need enumerate
only the sum-indecomposables of G.

Because G avoids 213, sum-decomposable elements of G are of the form 1®---® 1D,
where 7 is sum-indecomposable. So we have the equation, fg(z) = fg, (@) - 1% and hence

x?

z(1 — 3z + 32?)
feg@) = (1— 22)2 :

This gives

1 22(1 — 3z + 32%)?
J— 2 . =

Jo(@) = Joow) @) 720 = T - — o)

Now we analyze the skew-decomposables. These take the form o © ag, where oy
is ©-indecomposable, and we have either a; € Z and ay € Av(312,1324), or a; €
Av(1324,4312) \ Z and ay € D.

x(1—3x+322)

We already know that fay(312,1324) = D)2 So now we need the expression for

the skew-indecomposables in Av(1324,4312), which essentially consists of everything we
have counted so far:

fa(x) =2+ fo(z) +i(x)
_ p(z)
(1 =3z +22)(1 —22)5(1 — 2)

where
p(z) = x(1 — 152 + 9927 — 37323 + 8792* — 13382° + 13112° — 80427 + 2892° — 4427).

To exclude the class of increasing permutations from this enumeration we just have to
subtract z/(1 — x).
The skew-decomposables are therefore enumerated by

B q(z)
fo(z) = (1 =3z +22)(1 — 22)5(1 — 2)2

where
q(z) = 2*(1 — 142 + 87x% — 31323 + 7182" — 10902° + 109525 — 708x" + 27325 — 4427°).
Finally, the class Av(1324,4312) itself is enumerated by

f(@) = fa(x) + fo(x)

r(z)
(1 =3z +22)(1 —2x)5(1 — z)?
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where

r(z) = (1 — 15z + 1002% — 3852% + 9392 — 149925 + 15592° — 10202" + 3852° — 602.7).

The series expansion begins 1, 2, 6, 22, 86, 335, 1266, 4598, 16016, 53579, 172663, 537957,
. (sequence A165526 of [17]).
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