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Abstract

In this note we address the problem of graph isomorphism by means of eigen-
value spectra of different matrix representations: the neighborhood matrix M̂ , its
corresponding signless Laplacian QM̂ , and the set of higher order adjacency matri-
ces M`s. We find that, in relation to graphs with at most 10 vertices, QM̂ leads

to better results than the signless Laplacian Q; besides, when combined with M̂ , it
even surpasses the Godsil and McKay switching method.
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1 Introduction and Basic Definitions

The absence of cospectral mates is relevant in identifying non-isomorphic graphs [5].
The adjacency matrix A provides a large fraction of cospectral graphs in comparison to
the Laplacian, L, and signless Laplacian , Q [8, 10, 6]. Haemers and Spence [8] have
published a study enumerating the cospectral graphs (up to 11 vertices) in relation to
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these matrices, later updated by Brouwer and Spence [3]. In this work, we systematically
resume the issue by considering the spectra of matrices that emerge from neighborhood
properties of graphs [1, 2], namely, M`s, M̂ , and QM̂ . Besides, since the combined use
of different matrices spectra reduces the cospectrality incidence among graphs [10], we
investigate the combinations M̂&Q, M̂&QM̂ and Q&QM̂ . This study suggests that these
matrices and their combinations are relevant in identifying non-isomorphic graphs.

The higher order matrices M`s and the neighborhood matrix M̂ emphasize the neigh-
borhood graph structure; the matrix QM̂ has the analogous meaning as Q for the matrix

A. The neighborhood matrix M̂ is a slight variation of the distance matrix [4], while the
higher order matrices M`s stand for the adjacency matrices of each order of neighborhood.
The following definitions, on simple graphs of diameter d, clarify these notions.

Definition 1. Two vertices i and j are said adjacent of order ` ∈ {0, 1, ..., d} if and
only if the shortest path between them has length `. This is denoted by (i, j) ∈ O(`). If
the vertices are not connected, then they are not adjacent in any order.

Definition 2. The higher order matrix of order `, denoted by M`, is given as:

(M`)i,j =

{
1, if (i, j) ∈ O(`)

0, otherwise
(1)

Two graphs are cospectral with respect to M` if and only if they have equal M` spectra
for all `. It is possible to evaluate all M`s matrices by finite induction, which proceeds
with polynomial time depending on the order of the graph, by

M` = (
`−1⊕
j=0

Mj)⊗M1 − (
`−1⊕
j=0

Mj), (2)

in which the symbols ⊕ and ⊗ stand for addition and multiplication matrix operations,
respectively, straightforward defined on their entries by the Boolean operations of addition
and multiplication on the algebra {0, 1}.

Definition 3. The neighborhood matrix M̂ is given by M̂ =
D∑
`=0

`M`.

Definition 4. Analogously to the classical notions of the Laplacian matrices, we define
the signless Laplacian neighborhood matrix as QM̂ = DM̂ + M̂ , with (DM̂)ij =

∑n
j=1 M̂ij.

2 Results

To study the spectra we used as input the graph sets provided by Brendan McKay [9].
The eigenvalues were numerically calculated with double precision variables. For some
matrices, cospectrality was also detected by the comparison among the integer coefficients
of the characteristic polynomial. In spite of the higher computational cost, it increases
the reliability of the comparison.

The neighborhood matrices present different properties regarding the classical ones.
For instance, for the adjacency matrix A and the Laplacian matrix L, if their associated
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graphs are cospectral, then they have the same number of edges; this property reduces the
number of spectra that have to be determined in order to enumerate cospectral graphs.
We have found that this property does not stand for M̂ ; therefore our analysis requires
more CPU time than the cospectrality analysis of A and L. This issue, allied to the
fact that we compare spectra by characteristic polynomials, explains the reason why our
analysis proceeds at a slow pace and it is very hard to go further than 10 vertices.

Tables 1 and 2 present our results (boldface type) for the number and fraction of non-
isomorphic graphs with cospectral mates according to the neighborhood matrices; we also
include the results reported in [8] and [3].

Table 1: Number of non-isomorphic graphs with cospectral mates, until n = 10, w.r.t. to
A, A&¬A, L, Q, M`s, M̂ and QM̂ . The symbols * and ** refer to the values obtained in
[3] and here, respectively, both of them replacing the value in [8].

n # graphs A A&¬A L Q M`s M̂ QM̂

2 2 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0
4 11 0 0 0 2 0 0 0
5 34 2 0 0 4 0 0 2
6 156 10 0 4 16 0 0 8
7 1044 110 40 130 102 20 24 48
8 12346 1722 1166 1767 1201 565 688 511
9 274668 51039* 43811 42595 19001 21642 25774 8743
10 12005168 2560606* 2418152 1412438 645146** 1214851 1416527 328683

Table 2: Fraction of non-isomorphic graphs with cospectral mates, until n = 10, w.r.t. to
the matrices A, A&¬A, L, Q, M`s, M̂ and QM̂ .

n # graphs A A&¬A L Q M`s M̂ QM̂

2 2 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0
4 11 0 0 0 0.182 0 0 0
5 34 0.059 0 0 0.118 0 0 0.059
6 156 0.064 0 0.026 0.103 0 0 0.051
7 1044 0.105 0.038 0.125 0.098 0.019 0.023 0.046
8 12346 0.139 0.094 0.143 0.097 0.046 0.056 0.041
9 274668 0.186 0.160 0.155 0.069 0.079 0.094 0.032
10 12005168 0.213 0.201 0.118 0.054 0.101 0.118 0.027

One important fact is that QM̂ is more efficient than Q, since the fraction of cospectral
mates reduces by a factor of 2 or more. As in the case of Q, the fraction of cospectral
mates, for QM̂ , decreases monotonically with the number of vertices. We also note that

M̂ and the set of M`s are more efficient than the other classical matrices.
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The conjecture of Haemers and Spence [8], that the fraction of graphs with cospectral
mates, with respect to A, A&¬A and Q matrices, tends to zero as n goes to infinity, seems
to be further valid for QM̂ .
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Figure 1: The fraction of cospectral mates w.r.t. to the matrices versus number of vertices
n: A (black solid line - square), A&¬A (black dashed line - blank square), L (black dotted
line - blank circle), Q (black dot-dashed line - circle), M̂ (dark gray short dotted line -
blank up triangle), M`s (dark gray short dashed line - blank down triangle), QM̂ (dark
gray short dot-dashed line - up triangle).

Figure 1 presents the fraction of cospectral mates versus the order of the graphs in
Table 2, providing a comparative picture that makes clear that the fraction of graphs with
cospectral mates vary differently according to the matrix sets. Observe the superiority of
QM̂ in differentiating graphs.

Therefore, our analysis of neighborhood based matrices clearly reveals that the neigh-
borhood structure is a relevant feature in the study of graph spectra. According to Wilson
and Zhu [10], combining spectra of diverse matrices associated to graphs may be a good
approach to better differentiate graphs. In order to investigate the impact of these com-
binations, we set up the Table 3 which summarizes our results.

Observe that, for n < 10, there is no cospectral mate between M̂ and QM̂ , and, for
n = 10, the fraction of cospectral mates reduces to 0.00064.

Comparing the results presented in the last column of Table 3 with the results con-
cerning the method proposed by Godsil and MaKay [7], the GM* switching method [8],
we conclude that they are equivalent for n < 10, reducing the cospectral incidence to
zero. However, for n = 10, the combined spectra leads to a slightly better result: M̂&QM̂

(7712 common cospectral mates) and the lower bound of GM* (9480 cospectral mates).
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Table 3: Number of non-isomorphic graphs with cospectral mates w.r.t. Q, M̂ , QM̂ and

the combinations QM̂&Q, M̂&Q, and M̂&QM̂ .

n # graphs Q M̂ QM̂ QM̂&Q M̂&Q M̂&QM̂

2 2 0 0 0 0 0 0
3 4 0 0 0 0 0 0
4 11 0 0 2 0 0 0
5 34 4 0 8 0 0 0
6 156 16 0 8 0 0 0
7 1044 102 24 48 48 0 0
8 12346 1201 688 511 503 0 0
9 274668 19001 25774 8743 8524 4 0
10 12005168 645146 1416510 328683 18344 7766 7712

3 Discussion and Concluding Remarks

In the present work, we analysed graph cospectrality, for n < 11, with respect to the
matrices: M`s, M̂ , and QM̂ . Our main results, summarized in the last columns of Tables
1 and 3 (boldface type), reveal the superiority of our approach to distinguish the graphs,
concerning to the cospectrality, in comparison to other previously reported matrices Q
and A.

The signless laplacian of neighborhood matrix QM̂ offers lower cospectrality incidences
than those provided by Q, with a significant reduction factor ∼ 2, mainly because both
of them are decrescent with the number of vertices n, at least, until n = 10. It seems that
Haemers and Spence conjecture works for Q and QM̂ matrices: the fraction of graphs
with a cospectral mate tends to zero as n→∞.

Following Wilson and Zhu [10], we combined different spectra to reduce the cospectral-
ity incidence among graphs. The results reveal that this approach can drastically reduce
the cospectrality among graphs for the combinations M̂&QM̂ and M̂&Q, confirming the
efficiency of neighborhood matrices approach for the cospectrality problem. Finally we
observe that the method of combining spectra is slightly better than the GM* method
presented in [8] at least for n = 10 (they are equivalent for n < 10).
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