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Abstract

We give bijective proofs that, when combined with one of the combinatorial
proofs of the general ballot formula, constitute a combinatorial argument yielding
the number of lattice paths from (0, 0) to (n, rn) that touch or cross the diagonal
y = rx at exactly k lattice points. This enumeration partitions all lattice paths
from (0, 0) to (n, rn). While the resulting formula can be derived using results from
Niederhausen, the bijections and combinatorial proof are new.
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1 Introduction

In this paper we consider lattice paths from (0, 0) to (n, rn) with the following properties.

1. The paths use only unit steps right and units steps up.

2. The paths touch exactly k lattice points of the line y = rx after leaving (0, 0). The
paths can cross y = rx or not at these lattice points. The point (0, 0) is not included
among these k lattice points, but (n, rn) is.

3. The paths may cross the line y = rx any number of times at non-lattice points.
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Our main result is a combinatorial proof that the number of such paths is

(r + 1)krk

(r + 1)n− k

(
(r + 1)n− k

rn

)
. (1)

Our proof is based on two bijections; it also assumes a combinatorial proof of the general
ballot formula (e.g., Goulden and Serrano [3]) as well. In addition, since every lattice
path from (0, 0) to (n, rn) is counted in one of these sets of paths for exactly one k, we
have a combinatorial proof of the formula

n∑
k=1

(r + 1)krk

(r + 1)n− k

(
(r + 1)n− k

rn

)
=

(
(r + 1)n

n

)
.

Alternatively, expression (1) gives the number of random walks of rn+n steps using step
sizes of −1 and +r that return to the origin k − 1 times before ending at the origin for
the kth time.

Formula (1) does not appear to be explicitly stated anywhere in the literature, although
it can be derived from some results by Niederhausen [7]. He proves that the number
of paths that touch at least k of the lattice points (rather than exactly k) is given by
(r + 1)k

(
(r+1)n−k

rn

)
. Thus the number of paths that touch exactly k of the lattice points is

(r+1)k
(
(r+1)n−k

rn

)
−(r+1)k+1

(
(r+1)n−(k+1)

rn

)
, which can be simplified to give the expression in

formula (1). Niederhausen’s proof uses Sheffer sequences, though, rather than bijections.
Other variations and special cases of formula (1) appear elsewhere. The case r = 1 is

proved by McGregor, Narayana, and Özsoyoglu [5], by Engelberg [1], and by Feller [2].
Mohanty [6] considers a restricted version of the general case in which the lattice paths
are not allowed to cross the line y = rx. The recent survey paper by Humphreys [4]
mentions some additional variations.

Our first bijection shows that paths from (0, 0) to (n, rn) that do not touch a lattice
point of y = rx except at the start and finish can be partitioned into r + 1 sets of equal
size. This partition is based on how far below the line y = rx each path goes when it
first steps over the line. Our second bijection is between paths from (0, 0) to (n, rn) that
touch y = rx exactly k times after the start but do not go below it and paths from (0, 0)
to (n− k, rn) that never touch the line y = rx after the start. The latter are counted by
the general ballot theorem. Our two bijections and the ballot theorem together give us
the formula (1).

2 The bijections

Let Lr,n be the set of lattice paths from (0, 0) to (n, rn) that do not touch a lattice point
on the line y = rx except at (0, 0) and (n, rn). (The paths in Lr,n can cross the line
y = rx, just not at a lattice point.) Since unit up steps cannot cross the line y = rx other
than at a lattice point, for each path p in Lr,n there is some i, 0 6 i 6 r, such that the
first time p goes below the line y = rx it does so with a unit right step that lands on a
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lattice point of y = rx− i, and from there on p remains below y = rx until the end. (For
paths that never go below y = rx we say i = 0, and for paths that never go above y = rx
we say i = r.) Partition Lr,n into r + 1 disjoint subsets Lr,n,i, based on the value of i for
each path. Our first result is the following.

Theorem 1. There is an explicit bijection φi : Lr,n,i 7→ Lr,n,r for each i, 0 6 i 6 r − 1.

Proof. Let p ∈ Lr,n,i. By definition, there must be some step pm in the path p such that
pm is the first step that goes below y = rx, pm lands on a lattice point of y = rx− i, and
after step pm the path p lies completely below y = rx until (n, rn). Create a new path p′

by rotating by 180◦ the initial part of p up through and including step pm. This rotation
maps points on the line y = rx to points on the line y = rx− i, so after leaving (0, 0) p′

lies strictly below y = rx through step p′m and touches a lattice point of y = rx − i for
the first time at step p′m. Since p′ agrees with p after the mth step, the rest of path p′

must lie below y = rx until (n, rn) as well. Thus p′ ∈ Lr,n,r. (See, for example, Figure 1.)
Also, note that each path in Lr,n,r must end with r unit steps up. Thus each path in

Lr,n,r must reach a lattice point on the line y = rx− i at least once and therefore must do
so somewhere for the first time. Thus the mapping is reversible. (For example, the path
p′ ∈ Lr,n,r in Figure 1 touches a lattice point of y = rx − i three times. The part of p′

through the first time p′ touches a lattice point of y = rx− i is reversed to obtain a path
in Lr,n,i.)

The proof of Theorem 1 bears some similarity to the combinatorial proof of the general
ballot theorem by Goulden and Serrano [3], in that both proofs partition paths based on
the first passage time across the line y = rx to a lattice point on y = rx − i, and both
proofs feature a rotation of the initial part of the path.

Theorem 2. There is an explicit bijection between paths from (0, 0) to (n, rn) that touch
the line y = rx in exactly k places after (0, 0) but never go below it and paths from (0, 0)
to (n− k, rn) that do not touch the line y = rx after (0, 0).

Proof. Given a path in the first group, remove, starting at the end of the path, each step
in the path that touches the line y = rx. This produces a path in the second group. To
reverse the mapping, find the last place the path touches a lattice point of y = rx + r.
There must be such a point because the path touches (0, r). Insert a unit right step at
this place in the path. This creates a new path that touches the line y = rx a second
time. This new path must have a last place that it touches a lattice point of y = rx+ r.
Insert a unit right step at this place in the new path. Continue this process until the path
touches (n, rn). Since we always choose the last place a path touches a lattice point of
y = rx+ r, this is a reversal of the original mapping. See, for example, Figure 2.
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(n,rn)

(0,0)
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p
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Figure 1: Bijection between paths in Lr,n,i and Lr,n,r. The initial part of p is rotated to
obtain p′.

3 Main Result

For our main result we need the general ballot theorem (for instance, [3]): The number of
paths from (0, 0) to (n,m), m > rn, that never touch the line y = rx after (0, 0) is given
by

m− rn
m+ n

(
m+ n

m

)
.

Our main result is a combinatorial proof of the following theorem.

Theorem 3. The number of lattice paths from (0, 0) to (n, rn) that touch or cross the
line y = rx at exactly k lattice points after (0, 0) but can stay above, below, or cross it in
any number of other places is

(r + 1)krk

(r + 1)n− k

(
(r + 1)n− k

rn

)
.

Proof. By Theorem 2 and the ballot theorem, the number of these paths that never go
below y = rx is

rk

(r + 1)n− k

(
(r + 1)n− k

rn

)
.
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(0,0)
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Figure 2: Bijection between paths touching y = rx at k places after the start, ending at
(n, rn), and paths touching y = rx nowhere after the start, ending at (n− k, rn)

Given such a path p that never goes below y = rx, divide it into k segments based
on the locations p touches or crosses the line y = rx: The first segment p1 is from
(x0, rx0) = (0, 0) to the first return at (x1, rx1), the second segment p2 is from (x1, rx1)
to the second return at (x2, rx2), and so forth. Since the jth segment pj does not touch
the line y = rx except at (xj−1, rxj−1) and (xj, rxj), applying the bijection in Theorem 1
to pj (via Lr,n,0 ↔ Lr,n,r ↔ Lr,n,i) maps it to r + 1 paths from (xj−1, rxj−1) to (xj, rxj)
that do not touch a lattice point on the line y = rx except at (xj−1, rxj−1) and (xj, rxj).
This bijection can be applied to any of the k segments of p independently of the others,
though, and so p corresponds to (r+ 1)k lattice paths from (0, 0) to (n, rn) that touch or
cross the line y = rx at the same k lattice points after (0, 0) that p does. Moreover, each
of these (r+1)k correspondences is reversible, as the mapping in Theorem 1 is a bijection.
Thus we have a partition of the lattice paths we are trying to count into

rk

(r + 1)n− k

(
(r + 1)n− k

rn

)
classes, one for each path p that never goes below y = rx, and each class has size (r+ 1)k.
Thus there are

(r + 1)krk

(r + 1)n− k

(
(r + 1)n− k

rn

)
total paths.

Summing up over all values of k in Theorem 3 yields the total number of lattice paths
from (0, 0) to (n, rn) and thus completes a combinatorial proof of the following identity.
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Corollary 1.
n∑

k=1

(r + 1)krk

(r + 1)n− k

(
(r + 1)n− k

rn

)
=

(
(r + 1)n

n

)
.
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