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Università di Bologna
Italy

{marilena.barnabei,flavio.bonetti,matteo.silimbani4}@unibo.it

Submitted: Feb 7, 2012; Accepted: Aug 17, 2012; Published: Aug 30, 2012

Mathematics Subject Classifications: 05A05, 05A15, 68P10

Abstract

We introduce the Dual Bubble Sort operator B̂ (a sorting algorithm such that, if
σ = α 1β is a permutation, then B̂(σ) = 1α B̂(β)) and consider the set of permuta-
tions sorted by the composition B̂B, where B is the classical Bubble Sort operator.
We show that this set is a permutation class and we determine the generating func-
tion of the descent and fixed point distributions over this class. Afterwards, we
characterize the same distributions over the set of permutations that are sorted by
both B̂2 and B2.
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1 Introduction

A permutation σ is said to contain a permutation τ if there exists a subsequence of σ that
has the same relative order as τ , and in this case τ is said to be a pattern of σ. Otherwise,
σ is said to avoid the pattern τ .
A class of permutations is a downset in the permutation pattern order defined above.
Every class C can be defined by its basis B, namely, the set of minimal permutations
that are not contained in it, and we write C = Av(B). We denote by Avn(B) the set
Av(B) ∩ Sn.
Permutation classes arise naturally when one studies the behaviour of some well-known
sorting algorithms. More precisely, those algorithms that have the property that, if they
are able to sort a permutation σ, then they sort any subpermutation of σ.
The first example was given by D.E.Knuth, who proved in [4] that the set of permutations
sorted by a single application of the Stack Sort operator is the class Av(231). The action
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of the Stack Sort operator has been extensively studied after the seminal paper by J.West
[9].
A further example is the Bubble Sort operator B that can be recursively described as
follows: B(ε) = ε, where ε is the empty permutation, and, if σ = αnβ is a non-empty
permutation, and n its maximal value, then

B(σ) = B(α) β n.

The Bubble Sort operator has the nice property (not shared by the Stack Sort operator,
see [9]) that the set of permutations that are sorted by any power of B form a class, as
proved in [2]. Further properties of the Bubble Sort algorithm have been recently studied
in [1].
An apparently new trivial variation B̂ of the operatorB can be defined as follows: B̂(ε) = ε
and, if σ = α 1 β is a non-empty permutation, then

B̂(σ) = 1α B̂(β).

We call B̂ the Dual Bubble Sort operator.
We observe that the Dual Bubble Sort operator B̂ is related to the operator B by

B̂ = ρB ρ,

where ρ is the usual reverse-complement operator.
Note that the composition C = B̂B is another classical sorting operator introduced by
Knuth in [5], namely, the Cocktail Shaker Sort operator, also known as the Bidirectional
Sort operator.
In the first part of this paper we consider the set of permutations that are sorted by a
single run of the Cocktail (Shaker) Sort operator C. We show that this set is the class
Av(3412, 3421, 4312, 4321), and enumerate the elements in Avn(3412, 3421, 4312, 4321).
Furthermore, we study the distributions of descents and fixed points over this class. In
particular, we show that fixed point free permutations in the class are enumerated by Pell
numbers.
The second part of the paper is devoted to the study of the set of permutations that are
sorted by both B2 and B̂2, namely, permutations in B−2(id) ∩ B̂−2(id). This set turns
out to be the class Av(S), where S is the set of patterns of length 4 of type either 4xxx
or xxx1. The set B−2(id) ∩ B̂−2(id) can be also characterized as the set of permutations
σ satisfying |σ(i) − i| 6 2 for all i. The more general problem of studying the set Td,n
of permutations of length n which satisfy |σ(i) − i| 6 d (whose motivation comes from
coding theory) was first discussed by R.Lagrange in [6], next by D.H.Lehmer in [7] and
lately by T.Kløve in [3].
We show that the set T2,n has the peculiar property that, for n > 5, it contains only
two connected permutations. A permutation σ ∈ Sn is connected if it does not have a
prefix σ′ of length k < n that is a permutation of the symbols 1, 2, . . . , k. This property
allows us to determine the joint distribution of descents and fixed points over T2,d. In
fact, the property above smoothes the way to the study of the distribution of several other
permutation statistics over T2,n. As an example, we deduce the generating function of the
joint distribution of descents and occurrences of the pattern 321 over T2,n.
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2 The Cocktail Sort algorithm

The purpose of this section is to study the set of permutations sorted by a single run of
the Cocktail Sort algorithm C. First of all we show that this set is indeed a class, whose
basis is finite:

Theorem 1. A permutation σ ∈ C−1(id) if and only if σ avoids the patterns 3412, 3421,
4312, and 4321.

Proof. It is well known ([1], see also [2]) that the Bubble Sort algorithm is such that

B(σ) = id ⇐⇒ σ ∈ Av(321, 231)

and, hence,
B̂(σ) = id ⇐⇒ σ ∈ Av(321, 312).

This implies that

C(σ) = id ⇐⇒ B(σ) ∈ Av(321, 312) ⇐⇒ σ ∈ B−1(Av(321, 312)).

Proposition 8 in [1] states that if π ∈ Sn−1 (n > 4), π = n− 1π′, then

B−1(Av(π)) = Av(n− 1nπ′, n n− 1 π′).

This result implies that

C(σ) = id ⇐⇒ σ ∈ Av(3412, 3421, 4312, 4321).

The preceding theorem yields immediately the following result that will be useful in the
rest of this section:

Proposition 2. Let σ ∈ Av(3412, 3421, 4312, 4321). If the maximal symbol n appears in
σ at position i 6 n−2, then the symbol n−1 must be placed either at position n or n−1.

Denote by cn the cardinality of the set Avn(3412, 3421, 4312, 4321). We determine the
generating function of the sequence cn by considering first the connected permutations in
Avn(3412, 3421, 4312, 4321).

Proposition 3. Denote by ccn the number of connected permutations in
Avn(3412, 3421, 4312, 4321). Then, for n > 2,

ccn = 3n−2

Proof. We observe that 21 is the only connected permutation in
Av2(3412, 3421, 4312, 4321). Let now n be an integer, n > 3. Every connected permuta-
tion σ in
Avn−1(3412, 3421, 4312, 4321) yields exactly 3 different connected permutations of length
n in the same class either by:
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i) replacing the symbol n− 1 by n, and inserting n− 1 at the last position, or

ii) replacing the symbol n− 1 by n, and inserting n− 1 at the second last position, or

iii) inserting the symbol n at the second last position.

On the other hand, it is easily seen that the same operations applied to a non-connected
permutation yield longer non-connected permutations.

Now, by Proposition 2, all connected permutations in Avn(3412, 3421, 4312, 4321) are
obtained in this way.

Theorem 4. The generating function of the sequence cn is

Γ(x) =
∑
n>0

cnx
n =

1− 3x

1− 4x+ 2x2
.

Proof. By Proposition 3, the generating function of the sequence ccn is the following:

CΓ(x) =
∑
n>1

ccnx
n = x+

x2

1− 3x
.

Recall that every permutation σ can be decomposed into a non-empty connected prefix
α and an arbitrary suffix β and that σ belongs to the class
Av(3412, 3421, 4312, 4321) if and only if both α and β avoid the same patterns. This
implies that

Γ(x) =
1

1− CΓ(x)
.

We observe that the sequence cn appears (shifted by one term) as seq. A006012 in [8],
even though the current interpretation is not present.

We now turn our attention to the study of the descent distribution on
Av(3412, 3421, 4312, 4321). We recall that a permutation σ has a descent at position i
whenever σ(i) > σ(i+ 1).
We first study the case of connected permutations, which can be divided into 3 types,
according to the generation rule described in the proof of Proposition 3. More precisely,
we say that a connected permutation α in Avn(3412, 3421, 4312, 4321) is:

• of type 0 if α is obtained from a permutation σ ∈ Avn−1(3412, 3421, 4312, 4321) by
applying the operation i);

• of type 1 if α is obtained from a permutation σ ∈ Avn−1(3412, 3421, 4312, 4321) by
applying the operation ii);
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• of type 2 if α is obtained from a permutation σ ∈ Avn−1(3412, 3421, 4312, 4321) by
applying the operation iii).

Let σ ∈ Avn−1(3412, 3421, 4312, 4321) be a permutation with k descents. Denote by σ(0),
σ(1), and σ(2) the 3 permutations of length n generated by σ. For example, if σ = 3 1 5 2 4,
then

σ(0) = 3 1 6 2 4 5 σ(1) = 3 1 6 2 5 4 σ(2) = 3 1 5 2 6 4.

Moreover, we have:

• if σ is of type 0, then σ(0) has k descents, while σ(1) and σ(2) have k + 1 descents;

• if σ is of type 1, then also σ(0), σ(1), and σ(2) have k descents;

• if σ is of type 2 then σ(1) has k + 1 descents, while σ(0) and σ(2) have k descents.

Let ccn,k denote the number of non-empty connected elements in
Avn(3412, 3421, 4312, 4321) with k descents. Then, we have:

Proposition 5. The bivariate generating function of the sequence ccn,k is

CΨ(x, y) =
∑
n > 1
k > 0

ccn,kx
nyk =

x− 3x2 + x2y + 3x3 − 4x3y + x3y2 − x4 + 2x4y − x4y2

1− 3x+ 3x2 − 3x2y − x3 + 2x3y − x3y2
.

Proof. Denote by a
(i)
n,k, i = 0, 1, 2, the number of connected permutations in

Avn(3412, 3421, 4312, 4321) of type i with k descents, hence, ccn,k = a
(0)
n,k+a

(1)
n,k+a

(2)
n,k. The

following recurrences can be easily deduced from previous considerations:

a
(0)
n,k = a

(0)
n−1,k + a

(1)
n−1,k + a

(2)
n−1,k = ccn−1,k

a
(1)
n,k = a

(0)
n−1,k−1 + a

(1)
n−1,k + a

(2)
n−1,k−1

a
(2)
n,k = a

(0)
n−1,k−1 + a

(1)
n−1,k + a

(2)
n−1,k

These three identities yield the following relations, for n > 4:

ccn,k = 2ccn−1,k + ccn−1,k−1 − ccn−2,k + ccn−2,k−1 + a
(1)
n−1,k − a

(1)
n−1,k−1, (1)

a
(1)
n,k = ccn−1,k−1 − a(1)n−1,k−1 + a

(1)
n−1,k. (2)

Let now
CΨ(1)(x, y) =

∑
n > 1
k > 0

a
(1)
n,kx

nyk

be the generating function of the sequence a
(1)
n,k. Identities (1) and (2) yield

CΨ(x, y) = x− 2x2 + x3 − x3y
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+ (2x+ xy − x2 + x2y)CΨ(x, y) + (x− xy)CΨ(1)(x, y), (3)

CΨ(1)(x, y) =
(CΨ(x, y)− x)xy

1− x+ xy
, (4)

where the correction terms of x-degree less than 4 are due to the fact that Identities (1)
and (2) hold for n > 4. Combining Identities (3) and (4) we get the assertion.

We can exploit the above result to deduce the descent distribution over the set
Av(3412, 3421, 4312, 4321), using the same arguments as in the proof of Proposition 4:

Theorem 6. The bivariate generating function of the sequence cn,k is

Ψ(x, y) =
∑
n,k>0

cn,kx
nyk =

1

1− CΨ(x, y)
=

=
1− 3x+ 3x2 − 3x2y − x3 + 2x3y − x3y2

1− 4x+ 6x2 − 4x2y − 4x3 + 6x3y − 2x3y2 + x4 − 2x4y + x4y2
.

The first values of the integers cn,k are shown in the following table:

n/k 0 1 2 3 4 5 6
1 1
2 1 1
3 1 4 1
4 1 10 9
5 1 20 41 6
6 1 35 133 61 2
7 1 56 350 336 49
8 1 84 798 1336 465 20
9 1 120 1638 4300 2789 380 4

Now we want to study the distribution of fixed points on the setAv(3412, 3421, 4312, 4321),
namely, the sequence fn,h of the number of permutations in Avn(3412, 3421, 4312, 4321)
with h fixed points. First of all, we have the following result:

Proposition 7. The number of fixed point-free elements in Avn(3412, 3421, 4312, 4321),
n > 1, is the (n− 1)-th Pell number Pn−1, namely,

fn,0 = Pn−1.

Proof. It is well known that the Pell numbers (see seq. A000129 in [8]) satisfy the following
recurrence:

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 (n > 1).

On the other hand, it is easily checked that

f1,0 = 0, f2,0 = 1.
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Let σ be a fixed point free permutation in Avh(3412, 3421, 4312, 4321). Then, we can
construct three longer fixed point free permutations in Av(3412, 3421, 4312, 4321) either
by

a. adding the symbols h+ 2 and h+ 1 at the two last positions in this order, or

b. inserting the symbol h+ 1 at the second last position, or

c. replacing the symbol h with h+ 1 and inserting h at the end of the permutation.

It is an immediate consequence of Proposition 2 that every fixed point free permutation
in Avn(3412, 3421, 4312, 4321), n > 1, is obtained exactly once in this way. This yields:

fn,0 = 2fn−1,0 + fn−2,0,

as wished.

The integers fn,h, h > 0, can be determined making use of the following result:

Proposition 8. Let σ be a permutation in Av(3412, 3421, 4312, 4321), and σ′ be the per-
mutation obtained from σ by adding a fixed point p and increasing by one all the symbols
e > p. Then σ′ ∈ Av(3412, 3421, 4312, 4321).

Proof. Suppose that σ′ contains the pattern cdab, with l = max(a, b) < c, d. Since σ
avoids cdab, the fixed point p must appear in this pattern. Suppose that p = c and let
j be the position of a in σ′. In this case, the j − 3 positions of σ preceding j and not
containing c and d can be occupied only by symbols less then l. We have l − 2 of these
symbols different from a and b. Since l < c < j, we have l − 2 6 j − 4, hence we get a
contradiction.

The last result implies that every permutation σ ∈ Avn(3412, 3421, 4312, 4321) with h
fixed points can be uniquely obtained from a fixed point free permutation in
Avn−h(3412, 3421, 4312, 4321). Hence:

Theorem 9. We have:

fn,h =

(
n

h

)
Pn−h−1.

The first values of the integers fn,k are shown in the following table:

n/k 0 1 2 3 4 5 6 7 8 9
2 1 0 1
3 2 3 0 1
4 5 8 6 0 1
5 12 25 20 10 0 1
6 29 72 75 40 15 0 1
7 70 203 252 175 70 21 0 1
8 169 560 812 672 350 112 28 0 1
9 408 1521 2520 2436 1512 630 168 36 0 1
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3 Permutations sorted by both B2 and B̂2

It has been proved in [2] that a permutation σ is sorted by k iterations of the Bubble
Sort operator whenever i − σ(i) 6 k for every i. It is straightforward to verify that a
permutation has the property above if and only if it avoids every pattern of length k + 2
of type xxx...x1.
Recall that

B̂ = ρB ρ,

where ρ is the usual reverse-complement operator. This implies immediately that a per-
mutation σ is sorted by k iterations of B̂ whenever σ(i)−i 6 k for every i, or equivalently,
if and only if σ avoids every pattern of length k + 2 of type (k + 2)xxx...x. In particular,
we have:

Theorem 10. A permutation σ belongs to B−2(id) ∩ B̂−2(id) if and only if

• |σ(i)− i| 6 2 for every i, or equivalently

• σ belongs to Av(S), where S is the set of patterns of length 4 of type either 4xxx or
xxx1.

From now on, we will denote by T2 the set B−2(id)∩ B̂−2(id). Obviously, T2 ∩ Sn = T2,n.
The sequence of the cardinalities of the sets T2,n appears in [8] as seq. A002524.
The set T2,n has the peculiar property that, for n > 5, it contains only two connected
permutations. More precisely, we have:

Proposition 11. The only connected elements in T2 are:

a. the permutations 1, 21, 321, 231, 312 and 3412;

b. the permutation πn ∈ Sn, n > 4, defined as follows:

– if n = 2s 
π2s(1) = 2
π2s(2s) = 2s− 1
π2s(2h) = 2h+ 2 1 6 h 6 s− 1
π2s(2h+ 1) = 2h− 1 1 6 h 6 s− 1

– if n = 2s+ 1 
π2s+1(1) = 2
π2s+1(2s) = 2s+ 1
π2s+1(2h) = 2h+ 2 1 6 h 6 s− 1
π2s+1(2h+ 1) = 2h− 1 1 6 h 6 s

c. the permutation τn := π−1n , n > 4.
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Proof. It is obvious that the listed permutations are connected elements in T2 and that,
for n 6 4, these are the only ones. Let now σ be a connected permutation in T2,n, n > 5.
It is evident that σ(1) is either 2 or 3. In the first case, σ(2) 6= 1, otherwise σ is not
connected. Furthermore, σ(2) 6= 3, otherwise σ(3) would be forced to be equal to 1,
contradicting the connectedness condition. Iterating these arguments, we deduce that, if
σ(1) = 2, then σ = πn.
The case σ(1) = 3 can be treated similarly, getting σ = τn.

For example, we have
π6 = 2 4 1 6 3 5

τ6 = 3 1 5 2 6 4,

and
π7 = 2 4 1 6 3 7 5

τ7 = 3 1 5 2 7 4 6.

We examine the generating function

A(x, y, z) =
∑
n

∑
σ∈T2,n

xnydes(σ)zfix(σ) =
∑
n,d,r

tn,d,rx
nydzr

of the joint distribution of descents and fixed points on the set T2. Here the integer
tn,d,r denotes the number of permutations in T2,n with d descents and r fixed points.
To this aim, we first study the generating function of the same distribution on the set
CT2 =

⋃
n>0CT2,n of non-empty connected permutations in T2.

Denote by ctn,d,r the number of elements in CT2,n with d descents and r fixed points. As
an immediate consequence of Proposition 11, we have:

Proposition 12. The only non-zero coefficients ctn,d,r are the following:

a. ct1,0,1 = ct2,1,0 = ct3,2,1 = ct4,2,0 = 1;

b. ct3,1,0 = ct4,1,0 = 2;

c. if n > 5, n = 2s, ct2s,s−1,0 = ct2s,s,0 = 1;

d. if n > 5, n = 2s+ 1, ct2s+1,s,0 = 2.

Denote by

CA(x, y, z) =
∑
n

∑
σ∈CT2,n

xnydes(σ)zfix(σ) =
∑
n,d,r

ctn,d,rx
nydzr.

Proposition 12 allows us to find an expression for CA(x, y, z). In fact, we have:

CA(x, y, z) = xz+x2y+2x3y+x3y2z+2x4y+x4y2+
∑
s>3

(x2sys−1+x2sys)+
∑
s>2

2x2s+1ys =

xz + x2y + 2x3y + x3y2z + 2x4y + x4y2 +
x5y2(2 + x+ xy)

1− x2y
.

This gives the following result:
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Proposition 13.

CA(x, y, z) =
xz + x2y + 2x3y − x3yz + x3y2z + 2x4y − x5y3z − x6y2

1− x2y
.

Every σ ∈ T2 can be represented as the juxtaposition of a connected non-empty prefix
σ̄ and a suffix σ′. Needless to say, both σ̄ and σ′ (up to renormalization) belong to T2,
des(σ) = des(σ̄) + des(σ′), and fix(σ) = fix(σ̄) + fix(σ′). This allows us to determine
an expression for the generating function A(x, y, z):

Theorem 14. We have:

A(x, y, z) =
1

1− CA(x, y, z)
=

=
1− x2y

1− xz − 2x2y − 2x3y + x3yz − x3y2z − 2x4y + x5y3z + x6y2
.

As a final observation, we point out that every connected permutation in T2 except 321
avoids the pattern 321. Hence, the joint distribution of descents and occurrences of the
pattern 321 can be easily obtained by similar arguments:

B(x, y, t) =
∑
n

∑
σ∈T2,n

xnydes(σ)tocc321(σ) =

=
1− x2y

1− x− 2x2y − x3y − x3y2t− 2x4y + x5y3t+ x6y2

where occ321(σ) denotes the number of occurrences of the pattern 321 in σ.
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