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Abstract

We show that two results on covering of edge colored graphs by monochromatic
connected parts can be extended to partitioning. We prove that for any 2-edge-
colored non-trivial r-uniform hypergraph H, the vertex set can be partitioned into
at most a(H ) — r + 2 monochromatic connected parts, where «(H) is the maximum
size of a set of vertices that does not contain any edge. In particular, any 2-edge-
colored graph G can be partitioned into «(G) monochromatic connected parts,
where a(G) denotes the independence number of G. This extends Konig’s theorem,
a special case of Ryser’s conjecture.

Our second result is about Gallai-colorings, i.e. edge-colorings of graphs without
3-edge-colored triangles. We show that for any Gallai-coloring of a graph G, the
vertex set of G can be partitioned into monochromatic connected parts, where the
number of parts depends only on a(G). This extends its cover-version proved earlier
by Simonyi and two of the authors.

1 Introduction

In this paper we prove two results about partitioning edge-colored graphs (and hyper-
graphs) into monochromatic connected parts. Let k be a positive integer. A k-edge-
colored (hyper)graph is a (hyper)graph whose edges are colored with & colors. It was
observed in [5] that a well-known conjecture of Ryser which was stated in the thesis of
his student Henderson [11] can be formulated as follows.

Conjecture 1. If the edges of a graph are colored with & colors then V(G) can be covered
by the vertices of at most a(G)(k — 1) monochromatic connected components (trees).

Ryser’s conjecture (thus Conjecture 1) is known to be true for £ = 2 (when it is
equivalent to Konig’s theorem). After partial results [9], [13], the case k = 3 was solved
by Aharoni [1], relying on an interesting topological method established in [2]. Recently
Kirély [12] showed, somewhat surprisingly, that an analogue of Conjecture 1 holds for hy-
pergraphs: for r > 3, in every k-coloring of the edges of a complete r-uniform hypergraph,
the vertex set can be covered by at most L%J monochromatic connected components (and
this is best possible). The authors in [4] will consider extensions of Kiraly’s result for
non-complete hypergraphs.

The strengthening of Conjecture 1 from covering to partition was suggested in [3] (and
proved for k = 3,a(G) = 1). In this paper we extend the k = 2 case of Conjecture 1 for
hypergraphs and for partitions instead of covers (Theorem 5).

Our second partition result (Theorem 7) is about Gallai-colorings of graphs where the
number of colors is not restricted but 3-edge-colored triangles are forbidden. This extends

the main result of [8] from cover to partition.

We consider hypergraphs H with edges of size at least two, i.e. we do not allow
singleton edges. Let V(H), E(H) denote the set of vertices and the set of edges of
H, respectively. A hypergraph is r-uniform if all edges have r > 2 vertices (graphs
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are 2-uniform hypergraphs). When there is no fear of confusion in context, we just say
hypergraphs briefly. A hypergraph H without any edge is called trivial. The shadow
graph Gy of a hypergraph H is the graph defined by the pairs of vertices covered by some
hyperedge; namely, Gy is the graph on V(H) such that e € E(Gp) if and only if e is
covered by some hyperedge of H.

The definition of independence number of hypergraphs is not completely standard.
The independence number o(H) is the cardinality of a largest subset S of V(H) that
does not contain any edge of H (i.e., the maximum number of vertices in an induced
trivial subhypergraph of H). Another useful variant important in this paper is the strong
independence number oy (H ), the cardinality of a largest subset S of vertices such that
any edge of H intersects S in at most one vertex. In fact, ay(H) = a(Gp). For example,
if H is the Fano plane, a;(H) = 1,«(H) = 4. For a complete r-uniform hypergraph H,
a1(H) = 1,a(H) = r — 1. For r-uniform hypergraphs these numbers are linked by the
following inequality.

Proposition 2. For any non-trivial r-uniform hypergraph H, we have oy (H) < a(H) —
r4 2.

Proof. Suppose that S is strongly independent in H. Take any e € E(H) (it satisfies
|SNe|l <1 by the definition of S) and any v € e\ S. Then the set T = (SUe) \ {v} is
independent and |T'| > |S| 4+ r — 2. O

We need the simplest extension of connectivity from graphs to hypergraphs (no topol-
ogy involved). A hyperwalk in H is a sequence vy, ey, Vg, €9, . .., U_1, €1, Vg, where for all
1 <7<t wehave v; € e; and v, 41 € e;. We say that v ~ w if there is a hyperwalk from
v to w. The relation ~ is an equivalence relation, and the subhypergraphs induced by
its classes are called the connected components of the hypergraph H. A vertex v that is
not covered by any edge forms a trivial component with one vertex v and no edge. The
vertex sets of the connected components of a hypergraph H coincide with the vertex sets
of the connected components of Gg.

Let H be an edge-colored hypergraph. For a subset S of V(H), the subhypergraph
induced by S in H, that is the hypergraph on the vertex set S with edge set {e €
E(H) | e C S}, is denoted by H[S]. A vertex partition P = {V;,...,V;} of V(H)
is called a connected partition if every H[V;] (1 < i < [) is connected in some color.
Similarly, changing partition to cover, we can define connected cover for every edge-colored
hypergraph. (Note that a proper vertex subset of a monochromatic connected component
is not necessarily connected, so it may not be possible to use it as a part in a connected
partition.) Since partition into vertices is always a connected partition, we can define
cp(H), cc(H) for any edge-colored hypergraph H as the minimum number of classes in a
connected partition or connected cover, respectively. Observe that for trivial hypergraphs
co(H) = cp(H) = a(H) = |V (H)|.

First we will prove the following statement on coverings.

Theorem 3. For any 2-edge-colored hypergraph H, we have cc(H) < ay(H).

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(3) (2012), #P27 3



In fact, the benefit of introducing the concept of o (H) is to provide an upper bound
on cc(H) in terms of o(H). From Proposition 2 one also gets the following important
corollary:

Corollary 4. For any 2-edge-colored non-trivial r-uniform hypergraph H, we have
cc(H) < a(H) —r+2.

One of our main results is the strengthening of Corollary 4 for partitions.

Theorem 5. For any 2-edge-colored non-trivial r-uniform hypergraph H, we have
ep(H) < o(H)—r+2.

The previous results are sharp. To see this, consider the union of one complete -
uniform hypergraph and several isolated vertices. Observe that the partition version of
Theorem 3 does not hold. For example, for the hypergraph H having two edges of size
r intersecting in one vertex, one red and one blue, we have cc(H) = 2 and ep(H) = r(=
a(H) —r+2).

It is worth noting that for » = 2 Theorem 5 extends the k& = 2 case of Conjecture 1.
Now we have the following general property for 2-edge-colored graphs.

Theorem 6. Any 2-edge-colored graph G can be partitioned into o(G) monochromatic
connected parts.

An edge-coloring of a graph is called a Gallai-coloring if there is no rainbow triangle in
it, i.e. every triangle is colored by at most two colors. Gallai-colorings are natural exten-
sions of 2-colorings and have been recently investigated in many papers (for references see
[6]). It is known that any Gallai-colored complete graph has a monochromatic spanning
tree (see e.g. [7]). So we have e¢p(G) = cc(G) = 1 if G is a Gallai-colored complete graph.
Now we focus on Gallai-colored general graphs. Our result is the following:

Theorem 7. For every integer « there exists an integer g = g(a) such that the following
holds. If G is a Gallai-colored graph with o(G) = a, then cp(G) < g.

Theorem 7 extends the result proved by Gyérfds, Simonyi and Té6th [8] that in any
Gallai coloring of a graph G, cc(G) is bounded in terms of a(G). We shall also improve
on a result in [8] about dominating sets of multipartite digraphs.

2 Partitions of 2-edge-colored hypergraphs, proof of
Theorem 5

We first prove the cover version.

Proof of Theorem 3. Let H be a hypergraph 2-edge-colored with red and blue. For every
vertex v € V(H) let R(v), B(v) denote the monochromatic connected components con-
taining v in the hypergraphs of the red and blue edges, respectively. (One or both can be
a single component containing v.)
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From H we construct a bipartite graph G with bipartition V(G) = (R, B), where
R ={R(v)lve V(H)}, B={B(v)lve V(H)} and with edge set E(G) = {R(v)B(v)|v €
V(H)}. By the construction, note that |E(G)| = |V(H)| and G may contain multiple
edges. Also we can regard an edge in E(G) as a vertex in H.

Notice that for any two independent edges e = R(v)B(v), ¢ = R(u)B(u) € E(G),
there is no monochromatic connected component containing v and u, and hence there is
no edge in H containing both v and u. Therefore the maximum number of independent
edges in G, v(G), satisfies v(G) < oy (H).

By Konig’s theorem, the edges of G have a transversal of v(G) vertices, i.e., there is
a subset 7' C V(G) such that |T'| = v(G) and T intersects all edges of G in at least one
vertex. Then the monochromatic components of H corresponding to the vertices of T
form a desired covering of V(H). O

Let us remark that Conjecture 1 for k = 2 (its proof is implicitly in [5, 7]) implies
Theorem 3 directly as follows. The shadow graph Gy of H can be covered by a(Gy) =
oy (H) monochromatic connected components and so cc(H) < aq(H) also holds.

Next, we turn to the proof of the partition version.

Proof of Theorem 5. Let H be a non-trivial r-uniform hypergraph with independence
number «a(H). The proof goes by induction on a(H). In the base case, when a(H) = r—1,
i.e. H is a 2-edge-colored complete r-uniform hypergraph, it follows from Corollary 4 that
one monochromatic component covers the vertices.

Suppose a(H) > r — 1. By Corollary 4, V(H) can be covered by the vertices of p red
components, Ry, ..., R, and ¢ blue components, By,..., B, so that

p+qg<alH)—r+2. (1)

We may assume that p,q are both positive, since if one of them is zero, we already have
the desired partition in the other color. Set R = (U1<Z<p )\ (U1<Z<q ;) and B =
(Uicicg Bi) \ (U <icp Ii)- If R or B is empty, we have again the required partition. Thus
we may assume that both R and B are non-empty, so o(H[R]) > 1, and a(H[B]) > 1.
Observe that

a(H[R]) + a(H[B]) < a(H) (2)
since no edge of H can meet both R and B. Therefore a(H[B]) < a(H)—1and a(H[R]) <
a(H) — 1. If H[R] is non-trivial, then ¢p(H|[R]) < a(H[R]) — r + 2 by the inductive

hypothesis, but if H[R] is trivial then cp(H[R]) = |R| = a(H[R]). Similarly, if H[B] is
non-trivial, then ¢p(H|[B]) < a(H|[B]) —r+2, if H[B] is trivial then e¢p(H|[B]) = a(H|[B]).

Case 1. H[R] is non-trivial (and H[B] is either non-trivial or trivial).

Thus R (the vertex set of H[R]) has a connected partition Pg into at most a(H[R]) —
r + 2 parts. The set B (the vertex set of H[B]) has a connected partition Pg into at
most «(H|[B]) parts. Hence PrU{By,...,B,} and PgU{Ry,...,R,} are two connected
partitions on V(H). Using (1),(2) we have

(IPrl +q) + (IPsl +p) < (a(H[R]) =7 +2) + a(H[B]) + p + q < 2(a(H) =7 +2),
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therefore one of the previous connected partitions has at most «(H) — r + 2 parts, as
desired.
The case when H|[B] is non-trivial goes similarly.

Case 2. H[R] and H[B] are both trivial.

Assume p > ¢, and select a vertex v from R, without loss of generality v € R,. Observe
that no blue edge contains v, because H|R| is trivial. Hence every edge containing v is
in R,, implying that a(H \ R,) < a(H) — 1. If p > 1 then H \ R, is non-trivial, thus by
induction H \ R, has a connected partition with at most (a(H)— 1) —r + 2 parts, adding
R, we obtain the required partition for H. We conclude p = ¢ = 1.

Let S be a maximal (non-extendable) independent set of H in the form RU B U M.
By definition of S (and as H is non-trivial) there exists a hyperedge intersecting M U R
or M U B in exactly » — 1 vertices (since no edge can intersect both R and B), assume
the former. Therefore r < |M| + |R| + 1, this yields

a(H)—r+2 > |S|—r+2 = |R|+|B|+|M|—r+2 > |R|+|B|+|M|—(|M|+|R|+1)+2 = | B|+1,

thus the red component R; and vertices of B gives a partition of H into at most a(H)—r+2
connected parts. O

3 Partitions of Gallai-colored graphs, proof of
Theorem 7

We need some notions introduced in [8]. If D is a digraph and U C V(D) is a subset of
its vertex set then N (U) = {v € V(D)|3u € U (u,v) € E(D)} is the outneighborhood
of U. A multipartite digraph is a digraph D whose vertices are partitioned into classes
Ay, ..., A; of independent vertices. Let S C [t]. A set U = U;egA; is called a dominating
set of size |S| if for any vertex v € U;ggA; there is a w € U such that (w,v) € E(D).
The smallest |S| for which a multipartite digraph D has a dominating set U = U,;csA;
is denoted by k(D). Let (D) be the cardinality of the largest independent set of D
whose vertices are from different partite classes of D. (We sometimes refer to them as
transversal independent sets.) An important special case is when |A;| = 1 for each i € [t].
Then it follows that 8(D) = «(D) and k(D) = (D), the usual domination number of D,
the smallest number of vertices in D whose closed outneighborhoods cover V(D). In [8],
the following are shown:

Theorem 8 ([8]). Suppose that D is a multipartite digraph such that D has no cyclic
triangle. If B(D) =1 then k(D) = 1 and if 5(D) = 2 then k(D) < 4.

Theorem 9 ([8]). For every integer [ there exists an integer h = h(f3) such that the
following holds. If D is a multipartite digraph without cyclic triangles and (D) = f,
then k(D) < h.

To keep the paper self-contained we give a proof for this statement with a slightly
better bound than the one presented in [8].
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Proof of Theorem 9. Set h(1) =1, h(2) =4 and h(B) = f+(B+1)h(6—1) for 8 > 3. The
proof goes by induction on 5. By Theorem 8, we may assume that 5 > 3 and the theorem
is proved for 5 —1. Let D be a multipartite digraph with no cyclic triangle and 5(D) = 5.
For each x € V(D), let Z(®) be the partite class containing z. Let ky, ..., ks be 3 vertices
of D, each from a different partite class, such that [Ny ({ki,...,ks}) U (U cic AL
is maximal. Let K, = {Z®) | 1 < i < B}. For each partite class Z ¢ K, let Zy =
Z N Ny (Uicicp Z®:)). For every i with 1 < i < 3, let Z; be the set of vertices in Z \ Z,
that are not sending an edge to k;, but sending an edge to k; for all j < 4. Finally, let
Zp+1 denote the remaining part of Z, the set of those vertices of Z that do not belong
to Ny (Ucics Z*)) and send an edge to all vertices ki, ..., ks. (We will refer to the set
Z; as the i-th part of Z.) The subgraph D; of D induced by the i-th parts of the partite
classes of D\ (U1<z‘<ﬁ Zki)) is also a multipartite digraph with no cyclic triangle. For
every ¢ with 1 <7 < 3, since adding k; to any transversal independent set of D; we get a
larger transversal independent set, it follows that 5(D;) < 5 — 1.

Suppose that 5(Dgi1) = B. Let {l1,...,l3} be a transversal independent set of Dg,.

Claim 10. For every x € (Ny({ki,..., ks}) U (Ui<ics ZFD)) \ (Ui<ics ZW) | we have
ze N ({ly,...,1g}).
Proof. Suppose that © € Ny({ki,...,ks}) \ Uicicp Z@) . Then there exists an integer
1 <ig < B such that (k;,,z) € E(D). Recall that (I;, k;,) € E(D) for every 1 < i < .
Since {z,l1,...,l3} is not independent and D has no cyclic triangle, z € N.({l1,...,15}),
as desired. Thus we may assume that = € J, ;4 Z&:)  Recall that (z,1;) ¢ E(D) for
every 1 <i < f. Since {z,l;,...,lz} is not independent, x € N, ({l1,...,ls}). O]
Thus we have Ny ({k1,...,ks}) U (Uicicp Z®)y € Ny({ly,...,lg}) U (Uncics AOMN
Since ly € (No({l, -, IsNU(Urcicp 2NN (NL ({1, - - ks HDU(Urciep 2%7)), it follows

‘NJr({klv“'akﬁ}) U ( U Z(ki)> N+({l1,...,lﬁ}) U ( U Z(li)>

1<i<p 1<i<p

<

Y

which contradicts the choice of ky, ..., kg. Thus (Ds1) < 5 — 1.

By induction on 5, D; (1 < i< [+ 1) can be dominated by at most h(8 — 1) partite
classes. Let Ky be the appropriate (8 + 1)h(8 — 1) partite classes such that (J,cx, Z
dominates J, ;5,1 V(D;). Hence we constructed a dominating set (J,ex, i, Z of D
containing at most 8+ (8 + 1)h(8 — 1) partite classes.

This completes the proof of Theorem 9. O]

To prepare the proof of Theorem 7 we need the following lemma about trees.

Lemma 11. Let t > 1 be an integer. Let T be a tree of order at least t. Then there exist
two sets R C C C V(T) such that |R| =t, |C| < 2t, T[C] is connected, and either T\ R
is connected or V(T') = R.
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Proof. If |V(T)| = t, then the lemma holds by choosing R = C' = V(7). Thus we may
assume that |[V(T)| > t + 1. For each edge vy € E(T), let Ty, denote the component
of T'\ zy containing . Note that [{z} U (U,cnew V(T )| = [V(T)| > ¢ + 1 for every
x € V(T). We choose a vertex o € V(T') and a subset Ay C N(x¢) such that

(i) {zo} U (Uyen, V(TH,)) =t +1, and
(ii) subject to (i), {zo} U (U,eca, V(TH,))| is minimized.

By the definition of zy and Ay, we have Ay # 0. Set a = [{zo} U (U,ca, V(T%,))I-
Claim 12. a < 2¢.
Proof. Suppose that a > 2t + 1. If |Ag] = 1, say Ay = {wo}, then |[{yo} U

(Upenwongzor V(Tiny))l = a — 1(=> ¢ + 1), which contradicts the definition of 2 and
Ap. Thus [Ag| > 2. Then there exists a vertex y; € Ag such that [V(T%, )| < (a —1)/2.
Hence

a—l_a—l—l 2t + 2
2 2 2

{wdu (U V@)l =a—IV(T%,) > a-

y€A\{y1}

WV

= {41,

which contradicts the definition of Aj. O
Write U, c 4, V(T%,) = {21, .., Za-1}, Wwe may assume that the elements of this (Set a;e)z
V(TY

ordered in a non-increasing order by the distance from zo. Let C' = {zo}U(U,c4, o
and R = {z; | 1 < i < t}. Then |R| = ¢, |C] < 2t and both T[C] and T\ R are

connected. O

Now we are ready to prove Theorem 7. Let g(1) = 1 and g(a) = max{h(a)(a® + o —
1),2h(a)g(a — 1) + h(a) + 1} for o > 2.

Proof of Theorem 7. We show that ep(G) < g(a(G)) with the function g defined above.
We may assume that |[V(G)| > g(a). We proceed by induction on . If o = 1, then G is
complete, and hence, as mentioned in the introduction, there is a connected monochro-
matic spanning subgraph of G, as desired. Thus we may assume that o > 2. Let T be a
maximum connected spanning monochromatic subtree of GG in the coloring c. We may as-
sume that every edge of Tj has color 1. It was proved in [7] that the largest monochromatic
subtree in every Gallai-coloring of a graph G has at least [V (G)|(a? + a — 1)7! vertices.
Using this, since [V(G)| = g(a) = h(a)(a?+a—1), |V (Ty)| = h(a) follows. By Lemma 11,
there exist two sets R and C' with R C C' C V(T}) such that |R| = h(«a), |C| < 2h(«),
To[C] is connected, and either Ty \ R is connected or V (Ty) = R. Write C' = {uy, ..., up}.
Note that h(a) < m < 2h(a). We may assume that R = {ui,...,upe)}. For every i
with 1 <@ < m, let U; be the set of vertices in V(G) \ V(Tj) that are not adjacent to u;,
but adjacent to u; for all j < i. For every ¢ with 1 < i < m, we have a(G[U;]) < a — 1
because adding u; to any independent set of G[U;] we get a larger independent set. By the
inductive assumption, for every ¢« with 1 < ¢ < m, there exists a partition P; of U; such
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that |P;| < g(a—1) and, for every U € P;, G|U] has a connected spanning monochromatic
subgraph with respect to c.

Let Uy = V(G) \ (V(T0) U (Uy<jenm Ui) ) - Recall that Ty[C] is a connected monochro-
matic tree and c is a Gallai-coloring of G. For every v € Uy, since v is adjacent to every
vertex of C, all of E(v,C) are colored with the same color, say ¢,. Note that ¢, # 1
for every v € Uy by the definition of Tj). Let [ be the number of colors used on edges of
E(Uy, C). We may assume that 2,...,[+ 1 are the colors used on these edges. For each i
with 2 <i<l+1,let A, ={veU|c, =i} Notethat {Ay, ..., Ajy1} is a partition of
Up. Since c is a Gallai coloring of G, each edge between A; and A; is colored with either
color ¢ or j for 4,7 with 2 <i,7 < I+ 1 and 7 # j.

We construct the multipartite digraph D on Uy as follows:
(i) Ay, ..., A4 are the partition classes of D.

(ii) For 4,j with 2 <4,j <l+1andi# j,v e A and v € A;, let (v,v') € E(D) if and
only if vv" € E(G) and c(vv') = i.

Note that 5(D) < a and D has no cyclic triangle. By Theorem 9, there exist at most
h(c) partite classes dominating V(D), say By,...,B,. Let Byjy = -+ = Bp) = 0. For
every ¢ with 1 < i < h(a), let B! be the set of vertices in U \ <U1<i<h(a) Bi) that are
dominated by B;, but not dominated by B; for all j < i, and let B! = {w;} U B; U Bj.
For each ¢ with 1 < ¢ < h(«), note that G[B!'] has a connected monochromatic spanning
subgraph. Therefore P = {V(1p)\ R, BY,..., B} } U (Ur<icm Pi) is a partition of V(G)
satisfying that G[U] has a connected spanning monochromatic subgraph with respect to
¢ for every U € P. Furthermore,

Pl < (h(e@)+ 1)+ D IPI<S (@ + 1)+ Y gla—-1)=

1<i<m 1<i<m

= (ha)+1)+mgla—1) < (h(a) + 1)+ 2h(a)g(a —1).

This completes the proof of Theorem 7. n

4 Conclusion, open problems

The quantities cc(G), cp(G) can be far apart, even for 2-edge-colored graphs. For example,
let G be a star with 2¢ edges and color t edges in both colors. Then cc(G) = 2,¢cp(G) =
t + 1. Nevertheless, the extension of Conjecture 1 to partitions of complete graphs has
been formulated in [3]. Probably this remains true for Ryser’s conjecture in general.

Conjecture 13. If the edges of G are colored with k colors then cp(G) < a(G)(k — 1).

As mentioned before, Conjecture 13 is proved for a(G) = 1,k = 3 in [3]. Note that
cc(G) < a(G)k is obvious for any k-edge-colored graph G. For k-edge-colored complete
graphs K, Haxell and Kohayakawa [10] proved cp(K) < k, this is just one off from
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Conjecture 13. It would be interesting to attack the case k = 3 in Conjecture 13 since its
cover version, Conjecture 1 is available ([1]).

As mentioned in the introduction, Kirdly [12] solved completely the cover problem
for complete r-uniform complete hypergraphs (r > 3). (The number of colors k can be
arbitrary.) It seems that the analogue for partition is not easy. A first test case might be
the following.

Problem 14. Suppose that a complete 3-uniform hypergraph H is 6-edge-colored. Is it
true that cp(H) < 27 (ce(H) < 2.)

In general, the cover problem of hypergraphs for general « or ; seems difficult, even
to find the right conjecture is a challenge. We shall address this question in [4].
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