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Abstract

We show that two results on covering of edge colored graphs by monochromatic
connected parts can be extended to partitioning. We prove that for any 2-edge-
colored non-trivial r-uniform hypergraph H, the vertex set can be partitioned into
at most α(H)− r+ 2 monochromatic connected parts, where α(H) is the maximum
size of a set of vertices that does not contain any edge. In particular, any 2-edge-
colored graph G can be partitioned into α(G) monochromatic connected parts,
where α(G) denotes the independence number of G. This extends König’s theorem,
a special case of Ryser’s conjecture.

Our second result is about Gallai-colorings, i.e. edge-colorings of graphs without
3-edge-colored triangles. We show that for any Gallai-coloring of a graph G, the
vertex set of G can be partitioned into monochromatic connected parts, where the
number of parts depends only on α(G). This extends its cover-version proved earlier
by Simonyi and two of the authors.

1 Introduction

In this paper we prove two results about partitioning edge-colored graphs (and hyper-
graphs) into monochromatic connected parts. Let k be a positive integer. A k-edge-
colored (hyper)graph is a (hyper)graph whose edges are colored with k colors. It was
observed in [5] that a well-known conjecture of Ryser which was stated in the thesis of
his student Henderson [11] can be formulated as follows.

Conjecture 1. If the edges of a graph are colored with k colors then V (G) can be covered
by the vertices of at most α(G)(k − 1) monochromatic connected components (trees).

Ryser’s conjecture (thus Conjecture 1) is known to be true for k = 2 (when it is
equivalent to König’s theorem). After partial results [9], [13], the case k = 3 was solved
by Aharoni [1], relying on an interesting topological method established in [2]. Recently
Király [12] showed, somewhat surprisingly, that an analogue of Conjecture 1 holds for hy-
pergraphs: for r > 3, in every k-coloring of the edges of a complete r-uniform hypergraph,
the vertex set can be covered by at most bk

r
c monochromatic connected components (and

this is best possible). The authors in [4] will consider extensions of Király’s result for
non-complete hypergraphs.

The strengthening of Conjecture 1 from covering to partition was suggested in [3] (and
proved for k = 3, α(G) = 1). In this paper we extend the k = 2 case of Conjecture 1 for
hypergraphs and for partitions instead of covers (Theorem 5).

Our second partition result (Theorem 7) is about Gallai-colorings of graphs where the
number of colors is not restricted but 3-edge-colored triangles are forbidden. This extends
the main result of [8] from cover to partition.

We consider hypergraphs H with edges of size at least two, i.e. we do not allow
singleton edges. Let V (H), E(H) denote the set of vertices and the set of edges of
H, respectively. A hypergraph is r-uniform if all edges have r > 2 vertices (graphs
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are 2-uniform hypergraphs). When there is no fear of confusion in context, we just say
hypergraphs briefly. A hypergraph H without any edge is called trivial. The shadow
graph GH of a hypergraph H is the graph defined by the pairs of vertices covered by some
hyperedge; namely, GH is the graph on V (H) such that e ∈ E(GH) if and only if e is
covered by some hyperedge of H.

The definition of independence number of hypergraphs is not completely standard.
The independence number α(H) is the cardinality of a largest subset S of V (H) that
does not contain any edge of H (i.e., the maximum number of vertices in an induced
trivial subhypergraph of H). Another useful variant important in this paper is the strong
independence number α1(H), the cardinality of a largest subset S of vertices such that
any edge of H intersects S in at most one vertex. In fact, α1(H) = α(GH). For example,
if H is the Fano plane, α1(H) = 1, α(H) = 4. For a complete r-uniform hypergraph H,
α1(H) = 1, α(H) = r − 1. For r-uniform hypergraphs these numbers are linked by the
following inequality.

Proposition 2. For any non-trivial r-uniform hypergraph H, we have α1(H) 6 α(H)−
r + 2.

Proof. Suppose that S is strongly independent in H. Take any e ∈ E(H) (it satisfies
|S ∩ e| 6 1 by the definition of S) and any v ∈ e \ S. Then the set T = (S ∪ e) \ {v} is
independent and |T | > |S|+ r − 2.

We need the simplest extension of connectivity from graphs to hypergraphs (no topol-
ogy involved). A hyperwalk in H is a sequence v1, e1, v2, e2, . . . , vt−1, et−1, vt, where for all
1 6 i < t we have vi ∈ ei and vi+1 ∈ ei. We say that v ∼ w if there is a hyperwalk from
v to w. The relation ∼ is an equivalence relation, and the subhypergraphs induced by
its classes are called the connected components of the hypergraph H. A vertex v that is
not covered by any edge forms a trivial component with one vertex v and no edge. The
vertex sets of the connected components of a hypergraph H coincide with the vertex sets
of the connected components of GH .

Let H be an edge-colored hypergraph. For a subset S of V (H), the subhypergraph
induced by S in H, that is the hypergraph on the vertex set S with edge set {e ∈
E(H) | e ⊆ S}, is denoted by H[S]. A vertex partition P = {V1, . . . , Vl} of V (H)
is called a connected partition if every H[Vi] (1 6 i 6 l) is connected in some color.
Similarly, changing partition to cover, we can define connected cover for every edge-colored
hypergraph. (Note that a proper vertex subset of a monochromatic connected component
is not necessarily connected, so it may not be possible to use it as a part in a connected
partition.) Since partition into vertices is always a connected partition, we can define
cp(H), cc(H) for any edge-colored hypergraph H as the minimum number of classes in a
connected partition or connected cover, respectively. Observe that for trivial hypergraphs
cc(H) = cp(H) = α(H) = |V (H)|.

First we will prove the following statement on coverings.

Theorem 3. For any 2-edge-colored hypergraph H, we have cc(H) 6 α1(H).
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In fact, the benefit of introducing the concept of α1(H) is to provide an upper bound
on cc(H) in terms of α(H). From Proposition 2 one also gets the following important
corollary:

Corollary 4. For any 2-edge-colored non-trivial r-uniform hypergraph H, we have
cc(H) 6 α(H)− r + 2.

One of our main results is the strengthening of Corollary 4 for partitions.

Theorem 5. For any 2-edge-colored non-trivial r-uniform hypergraph H, we have
cp(H) 6 α(H)− r + 2.

The previous results are sharp. To see this, consider the union of one complete r-
uniform hypergraph and several isolated vertices. Observe that the partition version of
Theorem 3 does not hold. For example, for the hypergraph H having two edges of size
r intersecting in one vertex, one red and one blue, we have cc(H) = 2 and cp(H) = r(=
α(H)− r + 2).

It is worth noting that for r = 2 Theorem 5 extends the k = 2 case of Conjecture 1.
Now we have the following general property for 2-edge-colored graphs.

Theorem 6. Any 2-edge-colored graph G can be partitioned into α(G) monochromatic
connected parts.

An edge-coloring of a graph is called a Gallai-coloring if there is no rainbow triangle in
it, i.e. every triangle is colored by at most two colors. Gallai-colorings are natural exten-
sions of 2-colorings and have been recently investigated in many papers (for references see
[6]). It is known that any Gallai-colored complete graph has a monochromatic spanning
tree (see e.g. [7]). So we have cp(G) = cc(G) = 1 if G is a Gallai-colored complete graph.
Now we focus on Gallai-colored general graphs. Our result is the following:

Theorem 7. For every integer α there exists an integer g = g(α) such that the following
holds. If G is a Gallai-colored graph with α(G) = α, then cp(G) 6 g.

Theorem 7 extends the result proved by Gyárfás, Simonyi and Tóth [8] that in any
Gallai coloring of a graph G, cc(G) is bounded in terms of α(G). We shall also improve
on a result in [8] about dominating sets of multipartite digraphs.

2 Partitions of 2-edge-colored hypergraphs, proof of

Theorem 5

We first prove the cover version.

Proof of Theorem 3. Let H be a hypergraph 2-edge-colored with red and blue. For every
vertex v ∈ V (H) let R(v), B(v) denote the monochromatic connected components con-
taining v in the hypergraphs of the red and blue edges, respectively. (One or both can be
a single component containing v.)
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From H we construct a bipartite graph G with bipartition V (G) = (R,B), where
R = {R(v)|v ∈ V (H)}, B = {B(v)|v ∈ V (H)} and with edge set E(G) = {R(v)B(v)|v ∈
V (H)}. By the construction, note that |E(G)| = |V (H)| and G may contain multiple
edges. Also we can regard an edge in E(G) as a vertex in H.

Notice that for any two independent edges e = R(v)B(v), e′ = R(u)B(u) ∈ E(G),
there is no monochromatic connected component containing v and u, and hence there is
no edge in H containing both v and u. Therefore the maximum number of independent
edges in G, ν(G), satisfies ν(G) 6 α1(H).

By König’s theorem, the edges of G have a transversal of ν(G) vertices, i.e., there is
a subset T ⊆ V (G) such that |T | = ν(G) and T intersects all edges of G in at least one
vertex. Then the monochromatic components of H corresponding to the vertices of T
form a desired covering of V (H).

Let us remark that Conjecture 1 for k = 2 (its proof is implicitly in [5, 7]) implies
Theorem 3 directly as follows. The shadow graph GH of H can be covered by α(GH) =
α1(H) monochromatic connected components and so cc(H) 6 α1(H) also holds.

Next, we turn to the proof of the partition version.

Proof of Theorem 5. Let H be a non-trivial r-uniform hypergraph with independence
number α(H). The proof goes by induction on α(H). In the base case, when α(H) = r−1,
i.e. H is a 2-edge-colored complete r-uniform hypergraph, it follows from Corollary 4 that
one monochromatic component covers the vertices.

Suppose α(H) > r − 1. By Corollary 4, V (H) can be covered by the vertices of p red
components, R1, . . . , Rp, and q blue components, B1, . . . , Bq, so that

p+ q 6 α(H)− r + 2. (1)

We may assume that p, q are both positive, since if one of them is zero, we already have
the desired partition in the other color. Set R = (

⋃
16i6pRi) \ (

⋃
16i6q Bi) and B =

(
⋃

16i6q Bi) \ (
⋃

16i6pRi). If R or B is empty, we have again the required partition. Thus
we may assume that both R and B are non-empty, so α(H[R]) > 1, and α(H[B]) > 1.
Observe that

α(H[R]) + α(H[B]) 6 α(H) (2)

since no edge of H can meet both R and B. Therefore α(H[B]) 6 α(H)−1 and α(H[R]) 6
α(H) − 1. If H[R] is non-trivial, then cp(H[R]) 6 α(H[R]) − r + 2 by the inductive
hypothesis, but if H[R] is trivial then cp(H[R]) = |R| = α(H[R]). Similarly, if H[B] is
non-trivial, then cp(H[B]) 6 α(H[B])−r+2, if H[B] is trivial then cp(H[B]) = α(H[B]).

Case 1. H[R] is non-trivial (and H[B] is either non-trivial or trivial).
Thus R (the vertex set of H[R]) has a connected partition PR into at most α(H[R])−

r + 2 parts. The set B (the vertex set of H[B]) has a connected partition PB into at
most α(H[B]) parts. Hence PR ∪ {B1, . . . , Bq} and PB ∪ {R1, . . . , Rp} are two connected
partitions on V (H). Using (1),(2) we have

(|PR|+ q) + (|PB|+ p) 6 (α(H[R])− r + 2) + α(H[B]) + p+ q 6 2(α(H)− r + 2),
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therefore one of the previous connected partitions has at most α(H) − r + 2 parts, as
desired.

The case when H[B] is non-trivial goes similarly.

Case 2. H[R] and H[B] are both trivial.
Assume p > q, and select a vertex v from R, without loss of generality v ∈ Rp. Observe

that no blue edge contains v, because H[R] is trivial. Hence every edge containing v is
in Rp, implying that α(H \ Rp) 6 α(H)− 1. If p > 1 then H \ Rp is non-trivial, thus by
induction H \Rp has a connected partition with at most (α(H)− 1)− r+ 2 parts, adding
Rp we obtain the required partition for H. We conclude p = q = 1.

Let S be a maximal (non-extendable) independent set of H in the form R ∪ B ∪M .
By definition of S (and as H is non-trivial) there exists a hyperedge intersecting M ∪ R
or M ∪ B in exactly r − 1 vertices (since no edge can intersect both R and B), assume
the former. Therefore r 6 |M |+ |R|+ 1, this yields

α(H)−r+2 > |S|−r+2 = |R|+|B|+|M |−r+2 > |R|+|B|+|M |−(|M |+|R|+1)+2 = |B|+1,

thus the red componentR1 and vertices ofB gives a partition ofH into at most α(H)−r+2
connected parts.

3 Partitions of Gallai-colored graphs, proof of

Theorem 7

We need some notions introduced in [8]. If D is a digraph and U ⊆ V (D) is a subset of
its vertex set then N+(U) = {v ∈ V (D)|∃u ∈ U (u, v) ∈ E(D)} is the outneighborhood
of U . A multipartite digraph is a digraph D whose vertices are partitioned into classes
A1, . . . , At of independent vertices. Let S ⊆ [t]. A set U = ∪i∈SAi is called a dominating
set of size |S| if for any vertex v ∈ ∪i/∈SAi there is a w ∈ U such that (w, v) ∈ E(D).
The smallest |S| for which a multipartite digraph D has a dominating set U = ∪i∈SAi
is denoted by k(D). Let β(D) be the cardinality of the largest independent set of D
whose vertices are from different partite classes of D. (We sometimes refer to them as
transversal independent sets.) An important special case is when |Ai| = 1 for each i ∈ [t].
Then it follows that β(D) = α(D) and k(D) = γ(D), the usual domination number of D,
the smallest number of vertices in D whose closed outneighborhoods cover V (D). In [8],
the following are shown:

Theorem 8 ([8]). Suppose that D is a multipartite digraph such that D has no cyclic
triangle. If β(D) = 1 then k(D) = 1 and if β(D) = 2 then k(D) 6 4.

Theorem 9 ([8]). For every integer β there exists an integer h = h(β) such that the
following holds. If D is a multipartite digraph without cyclic triangles and β(D) = β,
then k(D) 6 h.

To keep the paper self-contained we give a proof for this statement with a slightly
better bound than the one presented in [8].
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Proof of Theorem 9. Set h(1) = 1, h(2) = 4 and h(β) = β+(β+1)h(β−1) for β > 3. The
proof goes by induction on β. By Theorem 8, we may assume that β > 3 and the theorem
is proved for β−1. Let D be a multipartite digraph with no cyclic triangle and β(D) = β.
For each x ∈ V (D), let Z(x) be the partite class containing x. Let k1, . . . , kβ be β vertices
of D, each from a different partite class, such that |N+({k1, . . . , kβ}) ∪ (

⋃
16i6β Z

(ki))|
is maximal. Let K1 = {Z(ki) | 1 6 i 6 β}. For each partite class Z 6∈ K1, let Z0 =
Z ∩N+(

⋃
16i6β Z

(ki)). For every i with 1 6 i 6 β, let Zi be the set of vertices in Z \ Z0

that are not sending an edge to ki, but sending an edge to kj for all j < i. Finally, let
Zβ+1 denote the remaining part of Z, the set of those vertices of Z that do not belong
to N+(

⋃
16i6β Z

(ki)) and send an edge to all vertices k1, . . . , kβ. (We will refer to the set
Zi as the i-th part of Z.) The subgraph Di of D induced by the i-th parts of the partite
classes of D \ (

⋃
16i6β Z

(ki)) is also a multipartite digraph with no cyclic triangle. For
every i with 1 6 i 6 β, since adding ki to any transversal independent set of Di we get a
larger transversal independent set, it follows that β(Di) 6 β − 1.

Suppose that β(Dβ+1) > β. Let {l1, . . . , lβ} be a transversal independent set of Dβ+1.

Claim 10. For every x ∈
(
N+({k1, . . . , kβ}) ∪ (

⋃
16i6β Z

(ki))
)
\ (
⋃

16i6β Z
(li)), we have

x ∈ N+({l1, . . . , lβ}).

Proof. Suppose that x ∈ N+({k1, . . . , kβ}) \
⋃

16i6β Z
(li). Then there exists an integer

1 6 i0 6 β such that (ki0 , x) ∈ E(D). Recall that (li, ki0) ∈ E(D) for every 1 6 i 6 β.
Since {x, l1, . . . , lβ} is not independent and D has no cyclic triangle, x ∈ N+({l1, . . . , lβ}),
as desired. Thus we may assume that x ∈

⋃
16i6β Z

(ki). Recall that (x, li) 6∈ E(D) for
every 1 6 i 6 β. Since {x, l1, . . . , lβ} is not independent, x ∈ N+({l1, . . . , lβ}).

Thus we have N+({k1, . . . , kβ}) ∪ (
⋃

16i6β Z
(ki)) ⊆ N+({l1, . . . , lβ}) ∪ (

⋃
16i6β Z

(li)).

Since l1 ∈
(
N+({l1, . . . , lβ})∪(

⋃
16i6β Z

(li))
)
\
(
N+({k1, . . . , kβ})∪(

⋃
16i6β Z

(ki))
)
, it follows∣∣∣∣∣N+({k1, . . . , kβ}) ∪

( ⋃
16i6β

Z(ki)

)∣∣∣∣∣ <
∣∣∣∣∣N+({l1, . . . , lβ}) ∪

( ⋃
16i6β

Z(li)

)∣∣∣∣∣ ,
which contradicts the choice of k1, . . . , kβ. Thus β(Dβ+1) 6 β − 1.

By induction on β, Di (1 6 i 6 β + 1) can be dominated by at most h(β − 1) partite
classes. Let K2 be the appropriate (β + 1)h(β − 1) partite classes such that

⋃
Z∈K2

Z
dominates

⋃
16i6β+1 V (Di). Hence we constructed a dominating set

⋃
Z∈K1∪K2

Z of D
containing at most β + (β + 1)h(β − 1) partite classes.

This completes the proof of Theorem 9.

To prepare the proof of Theorem 7 we need the following lemma about trees.

Lemma 11. Let t > 1 be an integer. Let T be a tree of order at least t. Then there exist
two sets R ⊆ C ⊆ V (T ) such that |R| = t, |C| 6 2t, T [C] is connected, and either T \ R
is connected or V (T ) = R.
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Proof. If |V (T )| = t, then the lemma holds by choosing R = C = V (T ). Thus we may
assume that |V (T )| > t + 1. For each edge xy ∈ E(T ), let T xxy denote the component
of T \ xy containing x. Note that |{x} ∪ (

⋃
y∈N(x) V (T yxy))| = |V (T )| > t + 1 for every

x ∈ V (T ). We choose a vertex x0 ∈ V (T ) and a subset A0 ⊆ N(x0) such that

(i) |{x0} ∪ (
⋃
y∈A0

V (T yx0y))| > t+ 1, and

(ii) subject to (i), |{x0} ∪ (
⋃
y∈A0

V (T yx0y))| is minimized.

By the definition of x0 and A0, we have A0 6= ∅. Set a = |{x0} ∪ (
⋃
y∈A0

V (T yx0y))|.

Claim 12. a 6 2t.

Proof. Suppose that a > 2t + 1. If |A0| = 1, say A0 = {y0}, then |{y0} ∪
(
⋃
y∈N(y0)\{x0} V (T yy0y))| = a − 1(> t + 1), which contradicts the definition of x0 and

A0. Thus |A0| > 2. Then there exists a vertex y1 ∈ A0 such that |V (T y1x0y1)| 6 (a− 1)/2.
Hence

|{x0} ∪
( ⋃
y∈A0\{y1}

V (T yx0y)
)
| = a− |V (T y1x0y1)| > a− a− 1

2
=
a+ 1

2
>

2t+ 2

2
= t+ 1,

which contradicts the definition of A0.

Write
⋃
y∈A0

V (T yx0y) = {x1, . . . , xa−1}, we may assume that the elements of this set are
ordered in a non-increasing order by the distance from x0. Let C = {x0}∪(

⋃
y∈A0

V (T yx0y))
and R = {xi | 1 6 i 6 t}. Then |R| = t, |C| 6 2t and both T [C] and T \ R are
connected.

Now we are ready to prove Theorem 7. Let g(1) = 1 and g(α) = max{h(α)(α2 + α−
1), 2h(α)g(α− 1) + h(α) + 1} for α > 2.

Proof of Theorem 7. We show that cp(G) 6 g(α(G)) with the function g defined above.
We may assume that |V (G)| > g(α). We proceed by induction on α. If α = 1, then G is
complete, and hence, as mentioned in the introduction, there is a connected monochro-
matic spanning subgraph of G, as desired. Thus we may assume that α > 2. Let T0 be a
maximum connected spanning monochromatic subtree of G in the coloring c. We may as-
sume that every edge of T0 has color 1. It was proved in [7] that the largest monochromatic
subtree in every Gallai-coloring of a graph G has at least |V (G)|(α2 + α − 1)−1 vertices.
Using this, since |V (G)| > g(α) > h(α)(α2+α−1), |V (T0)| > h(α) follows. By Lemma 11,
there exist two sets R and C with R ⊆ C ⊆ V (T0) such that |R| = h(α), |C| 6 2h(α),
T0[C] is connected, and either T0 \R is connected or V (T0) = R. Write C = {u1, . . . , um}.
Note that h(α) 6 m 6 2h(α). We may assume that R = {u1, . . . , uh(α)}. For every i
with 1 6 i 6 m, let Ui be the set of vertices in V (G) \ V (T0) that are not adjacent to ui,
but adjacent to uj for all j < i. For every i with 1 6 i 6 m, we have α(G[Ui]) 6 α − 1
because adding ui to any independent set of G[Ui] we get a larger independent set. By the
inductive assumption, for every i with 1 6 i 6 m, there exists a partition Pi of Ui such
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that |Pi| 6 g(α−1) and, for every U ∈ Pi, G[U ] has a connected spanning monochromatic
subgraph with respect to c.

Let U0 = V (G) \
(
V (T0) ∪

(⋃
16i6m Ui

))
. Recall that T0[C] is a connected monochro-

matic tree and c is a Gallai-coloring of G. For every v ∈ U0, since v is adjacent to every
vertex of C, all of E(v, C) are colored with the same color, say cv. Note that cv 6= 1
for every v ∈ U0 by the definition of T0. Let l be the number of colors used on edges of
E(U0, C). We may assume that 2, . . . , l+ 1 are the colors used on these edges. For each i
with 2 6 i 6 l + 1, let Ai = {v ∈ U0 | cv = i}. Note that {A2, . . . , Al+1} is a partition of
U0. Since c is a Gallai coloring of G, each edge between Ai and Aj is colored with either
color i or j for i, j with 2 6 i, j 6 l + 1 and i 6= j.

We construct the multipartite digraph D on U0 as follows:

(i) A2, . . . , Al+1 are the partition classes of D.

(ii) For i, j with 2 6 i, j 6 l + 1 and i 6= j, v ∈ Ai and v′ ∈ Aj, let (v, v′) ∈ E(D) if and
only if vv′ ∈ E(G) and c(vv′) = i.

Note that β(D) 6 α and D has no cyclic triangle. By Theorem 9, there exist at most
h(α) partite classes dominating V (D), say B1, . . . , Bp. Let Bp+1 = · · · = Bh(α) = ∅. For

every i with 1 6 i 6 h(α), let B′i be the set of vertices in U0 \
(⋃

16i6h(α)Bi

)
that are

dominated by Bi, but not dominated by Bj for all j < i, and let B′′i = {ui} ∪ Bi ∪ B′i.
For each i with 1 6 i 6 h(α), note that G[B′′i ] has a connected monochromatic spanning
subgraph. Therefore P = {V (T0) \R,B′′1 , . . . , B′′h(α)}∪

(⋃
16i6mPi

)
is a partition of V (G)

satisfying that G[U ] has a connected spanning monochromatic subgraph with respect to
c for every U ∈ P . Furthermore,

|P| 6 (h(α) + 1) +
∑

16i6m

|Pi| 6 (h(α) + 1) +
∑

16i6m

g(α− 1) =

= (h(α) + 1) +mg(α− 1) 6 (h(α) + 1) + 2h(α)g(α− 1).

This completes the proof of Theorem 7.

4 Conclusion, open problems

The quantities cc(G), cp(G) can be far apart, even for 2-edge-colored graphs. For example,
let G be a star with 2t edges and color t edges in both colors. Then cc(G) = 2, cp(G) =
t + 1. Nevertheless, the extension of Conjecture 1 to partitions of complete graphs has
been formulated in [3]. Probably this remains true for Ryser’s conjecture in general.

Conjecture 13. If the edges of G are colored with k colors then cp(G) 6 α(G)(k − 1).

As mentioned before, Conjecture 13 is proved for α(G) = 1, k = 3 in [3]. Note that
cc(G) 6 α(G)k is obvious for any k-edge-colored graph G. For k-edge-colored complete
graphs K, Haxell and Kohayakawa [10] proved cp(K) 6 k, this is just one off from
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Conjecture 13. It would be interesting to attack the case k = 3 in Conjecture 13 since its
cover version, Conjecture 1 is available ([1]).

As mentioned in the introduction, Király [12] solved completely the cover problem
for complete r-uniform complete hypergraphs (r > 3). (The number of colors k can be
arbitrary.) It seems that the analogue for partition is not easy. A first test case might be
the following.

Problem 14. Suppose that a complete 3-uniform hypergraph H is 6-edge-colored. Is it
true that cp(H) 6 2? (cc(H) 6 2.)

In general, the cover problem of hypergraphs for general α or α1 seems difficult, even
to find the right conjecture is a challenge. We shall address this question in [4].
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