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Abstract

Given five positive integers v,m, k, λ and t where v > k > t and v > m > t, a
t-(v, k,m, λ) general covering design is a pair (X,B) where X is a set of v elements
(called points) and B a multiset of k-subsets of X (called blocks) such that every
m-subset of X intersects (is covered by) at least λ members of B in at least t points.

In this article we present new constructions for general covering designs and we
generalize some others. By means of these constructions we will be able to obtain
some new upper bounds on the minimum size of such designs.

Keywords: covering design; Turán system; lotto design; block design

1 Introduction

Given five positive integers v,m, k, λ and t where v > k > t and v > m > t, a t-(v, k,m, λ)
general covering design (or general cover) is a pair (X,B) where X is a set of v elements
(called points) and B a multiset of k-subsets of X (called blocks) such that every m-subset
of X intersects (is covered by) at least λ members of B in at least t points.

It is easy to verify that a t-(v, k,m, λ) general cover is also a (t − 1)-(v, k,m − 1, λ)
general cover. A t-(v, k,m, λ) general covering design (X,B) is said to be optimal if:

|B| = min{|A| : there is a t-(v, k,m, λ) general covering design (X,A)}.

In this case, the cardinality of B is called the general covering number and denoted by
Cλ(v, k, t,m).

Given a t-(v, k,m, 1) general covering design (X,B), the set C = {X \ B : B ∈ B}
is said to be the collection of the coblocks of (X,B) and the pair (X, C) is called the
complement of (X,B).
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Applications to error-trapping decoding, data compression and lottery systems have
led many special cases of general covering designs to be investigated. Let us describe the
most studied in the literature:

Covering Designs: When m = t and λ = 1, a t-(v, k,m, λ) general covering design
is said to be a (v, k, t) covering design. The general covering number is simply
called covering number and denoted by C(v, k, t). There is an extensive literature
on covering designs. For an excellent survey please refer to [19, 24, 25]. Covering
designs are applied to error-trapping decoding [10]. Here the number of the blocks
determines the complexity of the decoding procedure. So, optimal covering designs
are of special interest.

Turán Systems: When k = t and λ = 1, a t-(v, k,m, λ) general covering design is
said to be a (v, k,m) Turán system. The general covering number is called Turán
number and denoted by T (v, k,m). By taking the coblocks of a (v, k, t) covering
design, we always obtain a (v, v− k, v− t) Turán system. Conversely, if we take the
coblocks of a (v, k,m) Turán system we always obtain a (v, v−k, v−m) covering de-
sign. Therefore: T (v, k,m) = C(v, v − k, v −m) and C(v, k, t) = T (v, v − k, v − t).
For a survey please refer to [8, 13, 28].

Lotto Designs: When λ = 1, a t-(v, k,m, λ) general covering design is said to be a
(v, k, t,m) lotto design (or cover). We will generally use the latter definition in the
following sections. The general covering number is called lotto (or cover) number
and denoted either by L(v, k, t,m) or by C(v, k, t,m). From the definition, both
covering designs and Turán systems can be seen as special cases of lotto designs
where m = t and k = t respectively. Therefore C(v, k, t) = C(v, k, t, t) = T (v, v −
k, v− t) and T (v, k,m) = C(v, k, k,m) = C(v, v− k, v−m). As the name suggests,
lotto designs find application to national lotteries [6, 11, 17], but they are also
applied to data compression algorithms, as described in [15]. Several studies have
focused on establishing upper and lower bounds on C(v, k, t,m). Currently, the
situation is as follows:

- Only for few values of v, k, t and m the cover number C(v, k, t,m) has been
found (see [3, 7, 8, 22]).

- Constructions and lotto tables have been published in international journals
(see [4, 6, 11, 22]).

- Upper bounds on C(v, k, t,m) are available on web sites (see [5, 16, 18]).

- Results on lower bounds have also been published (see [17, 23]).

General covers should not be confused with a class of objects called generalized covering
designs which were recently introduced by Bailey et al. in [1]. Generalized covering designs
simultaneously generalize covering designs and covering arrays. For further information
and details on this class of objects, the reader is referred to the aforementioned reference.
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2 Background

In this section we present definitions and known results on design theory which will be
used throughout this article.

Definition 1. A block design is a pair (X,B) such that:

1. X is a set of elements called points.

2. B is a multiset (collection) of non-empty subsets of X called blocks.

The cardinality of X is said to be the order of a block design (X,B). Two block designs
(X,A) and (X,B) are called disjoint if A ∩ B = ∅. The product of two block designs
(X1,A) and (X2,B) is defined as (X1 ∪X2,AB) where AB = {A ∪B : A ∈ A, B ∈ B}.

Definition 2. A t-(v, k, λ)-design is a a pair (X,B) where X is a set of v elements (called
points) and B a multiset of k-subsets of X (called blocks) such that every t-subset of X
is contained in exactly λ blocks.

The general term t-design is often used to indicate any t-(v, k, λ)-design. When λ = 1,
a t-(v, k, 1)-design is often called a Steiner system and denoted by S(v, k, t). If t = 2 and
k = 3, a Steiner system is called a Steiner triple system and denoted by STS(v) and if
t = 3 and k = 4 it is called a Steiner quadruple system and denoted by SQS(v).

When λ > 1, the union of two collections of blocks A and B of t-designs (or general
covering designs) is a multiset union. Therefore, if a block C appears r1 times in A and
r2 times in B, C will appear max{r1, r2} times in A ∪ B.

Many results on the necessary and sufficient conditions for the existence of t-designs
have been found. Here we report the one on Steiner triple systems:

Theorem 3. [20] There exists an STS(v) if and only if v ≡ 1, 3 (mod 6), v > 7.

A t-design (X,B) is said to be α-resolvable if there exists a partition of the collection
B into parts called α-parallel classes (or α-resolution classes) such that each point of X
occurs exactly in α blocks in each class. When α = 1, α is omitted.

Another interesting concept is the one of i-resolvable designs:

Definition 4. A Steiner system S(v, k, t) is called i-resolvable, 0 < i < t, if the collection
of its blocks can be partitioned into Steiner systems S(v, k, i).

With regard to i-resolvable designs, the following two important theorems hold:

Theorem 5. [2] For any positive integer n there exists a 2-resolvable SQS(4n).

Theorem 6. [30] For any positive integer n there exists a 2-resolvable SQS(2pn + 2),
p ∈ {7, 31, 127}.

When k = 2, we often talk in terms of graphs rather than designs.
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Definition 7. The complete graph of order n, denoted by Kn, is a regular graph with n
vertices such that each pair of vertices is an edge.

The number of edges of the complete graph Kn is n(n−1)
2

, that is, all the possible pairs
of vertices.

A 1-factor of a graph G is a set E of edges such that every vertex of G is incident
to exactly one edge of E. A 1-factorization is a partition of the edges of a graph into
1-factors. In term of designs, a 1-factorization of the complete graph Kn corresponds to a
partition of the Steiner system S(n, 2, 2) (i.e. the set of all the pairs from n) into parallel
classes. Clearly, n must be even.

A definition of resolvability can be extended to covering designs as follows:

Definition 8. A (v, k, t) covering design (X,B) is resolvable if B can be partitioned into
parts called parallel classes (or resolution classes) each of which in turn partitions X.

The number of blocks in a parallel class is necessarily v/k.
Let r(q, k) denote the minimum number of parallel classes in a resolvable (kq, k, 2)

covering design. When q = 1, r(q, k) is trivially equal to 1. The following results hold:

Theorem 9. [32] When q > 1, r(q, k) > q + 1. Equality holds if and only if q divides k
and q is the order of an affine plane.

For small values of q:

Theorem 10. [32]

1. r(2, k) = 3 if k is even, 4 if k is odd;

2. r(3, k) = 4 if k ≡ 0 (mod 3), 5 otherwise;

3. r(4, k) = 5 if k ≡ 0 (mod 4), 7 if k ∈ {2, 3}, 6 otherwise.

Another interesting concept is the one of large set of coverings. Given a set X of size v
and a positive integer k, let

(
X
k

)
be the set of all k-subsets of X and let µ(v, k) denote the

minimum number of optimal (v, k, k−1) covering designs (X,B1), (X,B2), . . . , (X,Bµ(v,k))
such that

⋃µ(v,k)
i=1 Bi =

(
X
k

)
. Let λ(v, k) denote instead the maximum number of disjoint

optimal (v, k, k−1) covering designs defined on X. Then a large set of coverings is obtain
when λ(v, k) = µ(v, k). The following results hold:

Theorem 11. [14]

1. µ(8, 4) = 6.

2. µ(9, 4) = 6.

3. µ(10, 4) 6 10.

In the following sections, given a partition X1, . . . , Xn of a set X of size v, a positive
integer m 6 v, and n positive integers a1 6 |X1|, . . . , an 6 |Xn| such that

∑n
i=1 ai = m,

we will assume that [a1, . . . , an] denotes the subset of
(
X
m

)
whose elements M satisfy

|M ∩Xi| = ai, for 1 6 i 6 n.
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3 Point Splicing Constructions

Etzion et al. [15] described a construction for constant weight covering codes called one-
bit splicing. It was actually a construction for (v, k,m) Turán systems. The objective was
to start from a Turán system of order v to obtain a Turán system of order v + 1. In the
next section we present a simple generalization: We start from a general covering design
of order v to obtain a general covering design of order v + n.

3.1 Point Splicing Construction for t-(v, k,m, λ) General Covers

Let (X,B) be a t-(v, k,m, λ) general covering design and n be the size of a set S such that
X ∩ S = ∅ and n 6 k − t+ 1. For every x ∈ X, define B(x) = {B \ {x} : B ∈ B, x ∈ B}.
Choose a ∈ X such that for any x ∈ X we have |B(a)| 6 |B(x)|. Let (X \ {a}, C) be a
(t − 2)-(v − 1, k − n − 1,m − 2, λ) general covering design and B1, B2, and B3 be three
collections of blocks as defined below:

B1 = B.

B2 = {B ∪ {s} : B ∈ B(a), s ∈ S}.

B3 = {C ∪ S ∪ {a} : C ∈ C}.

Our objective is to obtain a t-(v + n, k,m, λ) general covering design on the set (X ∪ S)
and we claim that (X ∪ S,B1 ∪ B2 ∪ B3) meets the objective.

Theorem 12. (X ∪ S,B1 ∪ B2 ∪ B3) is a t-(v + n, k,m, λ) general covering design.

Proof. Let M be an m-subset of X ∪ S:

If M ∩ (S ∪ {a}) = ∅ or {a}, then there exist at least λ blocks in B1 that cover M
in t points.

If M ∩ (S ∪ {a}) = {s}, s ∈ S, then there exist at least λ blocks in B1 ∪ B2 that
cover M in t points.

If |M ∩ (S ∪ {a})| = δ, 2 6 δ < t, then there exist at least λ blocks in B3 that cover
M in t points because (X \ {a}, C) is a (t − 2)-(v − 1, k − n − 1,m − 2, λ) general
covering design and therefore a (t− δ)-(v − 1, k − n− 1,m− δ, λ) general covering
design as well.

If |M ∩ (S ∪ {a})| = δ > t, then M is clearly covered by each block B ∈ B3.

Therefore (X ∪ S,B1 ∪ B2 ∪ B3) is a t-(v + n, k,m, λ) general covering design.

By counting arguments, minx∈X |B(x)| 6
⌊
k|B|
v

⌋
, therefore, as a consequence of the

construction above:

Cλ(v+n, k, t,m) 6 n

⌊
k

v
Cλ(v, k, t,m)

⌋
+Cλ(v, k, t,m) +Cλ(v− 1, k−n− 1, t− 2,m− 2).
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3.2 Point Splicing Construction for (v, 6, 4, 6) Covers

We introduce a point splicing construction specific for (v, 6, 4, 6) covers. Similar in spirit
to a construction for (v, 4, 6) Turán systems presented by Etzion et al. [15], it permits us
to obtain a (v + 3, 6, 4, 6) cover from a (v, 6, 4, 6) cover.

Let (X,B) be a (v, 6, 4, 6) cover. For every x ∈ X, let B(x) be defined as in Section
3.1. Choose a ∈ X such that for any x ∈ X we have |B(a)| 6 |B(x)|. Let {b, c, d} be a set
such that X ∩ {b, c, d} = ∅. Let X1,1, X1,2, X2,1, X2,2, X3,1, X3,2 be a partition of X \ {a}.
Then take the following block designs where a pair-by-triple covering denotes a covering
design with k = 3 and t = 2 and a pair-by-quadruple covering one with k = 4 and t = 2:

Three pair-by-triple coverings (X1,1∪X2,1, C1), (X1,2∪X2,2, C2) and (X3,1∪X3,2, C3).

Three pair-by-triple coverings (X1,1∪X2,2,D1), (X1,2∪X2,1,D2) and (X3,1∪X3,2,D3).

Three pair-by-quadruple coverings (X1,1∪X1,2, E1), (X2,1∪X2,2, E2), (X3,1∪X3,2, E3).

The designs above have the following properties:

1. (X \ {a},
⋃3
i=1 Ci) is a (v − 1, 3, 2, 4) cover.

2. (X \ {a},
⋃3
i=1Di) is a (v − 1, 3, 2, 4) cover.

3. (X \ {a},
⋃3
i=1 Ei) is a (v − 1, 4, 2, 4) cover.

4. For any triple {x, y, z} ⊂ X \ {a}, there exists a block B in
⋃3
i=1 Ci ∪ Di ∪ Ei such

that |B ∩ {x, y, z}| > 2.

We can now proceed to build a (v + 3, 6, 4, 6) cover. Define:

B1 = B.

B2 = {B ∪ {p} : B ∈ B(a), p ∈ {b, c, d}}.

B3 = {C ∪ {a, b, c} : C ∈
⋃3
i=1 Ci}.

B4 = {D ∪ {a, b, d} : D ∈
⋃3
i=1Di}.

B5 = {E ∪ {c, d} : E ∈
⋃3
i=1 Ei}.

Theorem 13. (X ∪ {b, c, d},
⋃5
i=1 Bi) is a (v + 3, 6, 4, 6) cover.

Proof. Let M be a 6-subset of X ∪ {b, c, d}:

If M ∩ {a, b, c, d} = ∅ or {a} then M is covered by some block B ∈ B1.

If M ∩{a, b, c, d} = {b} or {c} or {d}, then M is covered by some block B ∈ B1∪B2.

If |M ∩ {a, b, c, d}| = 2, then there exists P ∈ {{a, b, c}, {a, b, d}, {c, d}} such that
P ⊇ (M ∩{a, b, c, d}). Let P = {a, b, c} (the cases when P = {a, b, d} or P = {c, d}
are similar). From property 1, M is covered by some block B ∈ B3.
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If M ∩ {a, b, c, d} = {a, b, c}, then M is covered by some block B ∈ B3.

If M ∩ {a, b, c, d} = {a, b, d}, then M is covered by some block B ∈ B4.

If M ∩ {a, b, c, d} = {a, c, d}, then M is a set of the form {a, c, d, x, y, z} where
{x, y, z} is any triple of X \ {a}. From property 4, it follows that there exists a
block T ∈

⋃3
i=1 Ci ∪ Di ∪ Ei such that |T ∩ {x, y, z}| > 2. Moreover, since {a, c, d}

pairwise intersects in two points with {a, b, c}, {a, b, d} and {c, d}, it follows that
|M ∩ B| > 4 for some B ∈

⋃5
i=3 Bi, B ⊃ T . The same arguments apply to the case

in which M ∩ {a, b, c, d} = {b, c, d}.

If M ∩{a, b, c, d} = {a, b, c, d} then M is clearly covered by some block B ∈
⋃4
i=3 Bi.

The pair (X ∪ {b, c, d},
⋃5
i=1 Bi) is therefore a (v + 3, 6, 4, 6) cover.

This construction implies the following upper bound formula:

C(v + 3, 6, 4, 6) 6 3

⌊
6

v
C(v, 6, 4, 6)

⌋
+ C(v, 6, 4, 6) + 2C(v3,1 + v3,2, 3, 2)

+ C(v1,1 + v2,1, 3, 2) + C(v1,2 + v2,2, 3, 2)

+ C(v1,1 + v2,2, 3, 2) + C(v1,2 + v2,1, 3, 2)

+ C(v1,1 + v1,2, 4, 2) + C(v2,1 + v2,2, 4, 2) + C(v3,1 + v3,2, 4, 2),

where
∑3

i=1

∑2
j=1 vi,j = v − 1.

4 Trapping-triples Construction for (v, 6, 3,m) Covers

In his paper [12], de Caen presented a construction for (v, 3,m) Turán systems. It was
based on the partition of a set X into m− 1 quasi-equal parts, that is, parts whose sizes
pairwise differ by one unit at most. For m = 4, de Caen’s construction coincides with the
one given by Turán in [31] who conjectured that it always produces optimal Turán systems
with T (v, 3, 4) blocks. The conjecture has been shown to be true for v 6 13 ([29]). Etzion
et al. [15] extended de Caen’s construction to (v, 4, 3,m) covers. It can be further extended
to (v, 6, 3,m) covers as follows: Let X be a set of v elements and X0, X1, . . . , Xm−2 be
a partition of X into m − 1 quasi-equal parts. For i = 0, 1, . . . ,m − 2, let (Xi,Bi) be a
(vi, 2, 1) covering design with wi blocks B1

i , B
2
i , . . . , B

wi
i , where wi = dvi/2e, and let us

select hi (vi, 4, 2) covering designs (Xi,A1
i ), (Xi,A2

i ), . . . , (Xi,Ahii ) such that (Xi,
⋃hi
j=1A

j
i )

is a (vi, 4, 3) covering design, where hi = w(i+1) mod (m−1). Let us define

Ci =

hi⋃
j=1

Aji{B
j
(i+1) mod (m−1)},

where i = 0, 1, . . . ,m− 2.

Theorem 14. (X,
⋃m−2
i=0 Ci) is a (v, 6, 3,m) cover.
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Proof. Let us analyze how a given m-subset M of X0∪X1∪ . . .∪Xm−2 is covered in three
points by some block C in C0 ∪ C1 ∪ . . . ∪ Cm−2:

1. Let |M ∩ Xl| > 3 for some l ∈ {0, 1, . . . ,m − 2}. From the definition of
⋃hl
j=1A

j
l ,

it follows that for some p ∈ {1, 2, . . . , hl} there exists a block A ∈ Apl such that
|M ∩ A| > 3. This implies |M ∩ C| > 3 where C = A ∪Bp

(l+1) mod (m−1).

2. Let |M ∩Xi| 6 2, for 0 6 i 6 m−2. Then there exists at least one and at most
⌊
m
2

⌋
different parts Xjn of X such that |M∩ Xjn| = 2. This implies that there must exist
l ∈ {0, 1, . . . ,m − 2} such that |M ∩Xl| = 2 and |M ∩X(l+1) mod (m−1)| > 1. From
the definition of hl and B(l+1) mod (m−1), it follows that there exists p ∈ {1, 2, . . . , hl}
such that |M ∩ Bp

(l+1) mod (m−1)| > 1. Since (Xl,Apl ) is a (vl, 4, 2) covering design,

there must exist a block A ∈ Apl such that |M ∩ A| = 2 and therefore |M ∩C| > 3
where C = A ∪Bp

(l+1) mod (m−1).

We have therefore shown that, for any m-subset M of X, there exists a block C ∈
⋃m−2
i=0 Ci

such that |M ∩ C| > 3. That is, (X,
⋃m−2
i=0 Ci) is a (v, 6, 3,m) cover.

From Theorem 5 and Theorem 6 we can derive a general upper bound formula for
(v, 6, 3,m) covers.

Theorem 15. Let n be any positive integer. For v = 4n or v = 2pn + 2 with p ∈
{7, 31, 127}, the following inequality holds:

C((m− 1)v, 6, 3,m) 6
v2(v − 1)(m− 1)

24
.

Proof. Let X be a set of (m− 1)v points. Let v = 4n or v = 2pn + 2 where n is a positive
integer and p ∈ {7, 31, 127}. For i = 0, 1, . . . ,m− 2:
Let Xi be a part of X and |Xi| = v. Let B1

i , B
2
i , . . . , B

w
i be a partition of Xi where

|B1
i | = |B2

i | = . . . = |Bw
i | = 2. Therefore w = v

2
.

From Theorem 5 and Theorem 6 it follows that there exists a Steiner quadruple system
(Xi,Ai) which is 2-resolvable. This implies that the collection Ai of blocks can be parti-
tioned into r parts A1

i ,A2
i , . . . ,Ari , each of which is the collection of blocks of a Steiner

system S(v, 4, 2). The value of r is

v(v − 1)(v − 2)

4 · 3 · 2
· 4 · 3
v(v − 1)

=
v − 2

2
,

where v(v−1)(v−2)
4·3·2 is the number of blocks of an SQS(v) and v(v−1)

4·3 is the number of blocks
of an S(v, 4, 2). Let Ahi be an additional collection of blocks such that Ahi = Ari and
h = r + 1. Clearly, h = v

2
= w.
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We now have all the elements to apply the construction presented in Theorem 14
which develops as follows:∣∣∣∣∣

m−2⋃
i=0

Ci

∣∣∣∣∣ =

∣∣∣∣∣
h⋃
j=1

Aj0{B
j
1} ∪

h⋃
j=1

Aj1{B
j
2} ∪ . . . ∪

h⋃
j=1

Ajm−2{B
j
0}

∣∣∣∣∣
= (m− 1)

(
v(v − 1)(v − 2)

4 · 3 · 2
+
v(v − 1)

4 · 3

)
= (m− 1)

(
v(v − 1)(v − 2) + 2v(v − 1)

24

)
= (m− 1)

(
v(v − 1)(v − 2 + 2)

24

)
=
v2(v − 1)(m− 1)

24
.

As a consequence of Theorem 15, the following upper bound on the minimum size of
(3v, 6, 3, 4) covers can be stated:

Corollary 16. Let n be any positive integer. For v = 4n or v = 2pn + 2 with p ∈
{7, 31, 127},

C(3v, 6, 3, 4) 6
v2(v − 1)

8
.

5 Trapping-quadruples Constructions

In the following section we present a construction for (v, k, 4, 6) covers and sufficient
conditions for its application will be discussed. Then, by requiring additional conditions
to be satisfied, a construction for (v, k, 4, 5) covers will be derived.

5.1 Construction of (v, k, 4, 6) Covers

Let X be a set of v elements, v even, and X1, X2 be a partition of X into two equal parts.
Let n = v

2
. Moreover, let k be an even number, k > 4 and h = k

2
. Suppose there exists

a resolvable (n, h, 2) covering design with p parallel classes, p 6 5. Let P1,P2, . . . ,Pp be
the parallel classes defined on X1 and R1,R2, . . . ,Rp be the parallel classes defined on
X2. For i = 1, 2, let (Xi,Bi) be a (n, k, 4) covering design. We assume therefore that
n > k > h. Under this assumption, Theorem 9 implies p > 3. Define

B = B1 ∪ B2 ∪
p⋃
i=1

PiRi.

Theorem 17. (X,B) is a (v, k, 4, 6) cover.

Proof. Let us analyze how a 6-subset M of X1 ∪X2 is covered in 4 points by some block
B ∈ B:
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1. M ∈ [6, 0] ∪ [5, 1] ∪ [4, 2]. Then there exists a block B ∈ B1 such that |B ∩M | > 4
since (X1,B1) is a (n, k, 4) covering design.

2. M ∈ [0, 6] ∪ [1, 5] ∪ [2, 4]. Then there exists a block B ∈ B2 such that |B ∩M | > 4
since (X2,B2) is a (n, k, 4) covering design too.

3. M ∈ [3, 3]. Let T = M ∩X1 and S = M ∩X2.

(a) Suppose that the triple T is contained in a block P of a parallel class Pi,
i ∈ {1, 2, . . . , p}. Then from the definition of Ri it follows that there exists
a block R ∈ Ri such that |R ∩ M | > 1. This implies |M ∩ B| > 4 where
B = P ∪ R. We can proceed symmetrically when the triple S is contained in
a block of a parallel class Rj, j ∈ {1, 2, . . . , p}.

(b) Suppose instead that T is not contained in any block of any class Pi, 1 6 i 6 p,
and S is not contained in any block of any class Rj, 1 6 j 6 p. Then for
some i1, i2, i3 ∈ {1, 2, . . . , p}, where i1 < i2 < i3, and for some j1, j2, j3 ∈
{1, 2, . . . , p}, where j1 < j2 < j3, there must exist I1 ∈ Pi1 , I2 ∈ Pi2 , I3 ∈ Pi3 ,
J1 ∈ Rj1 , J2 ∈ Rj2 and J3 ∈ Rj3 such that |T ∩Il| = |S∩Jl| = 2, for 1 6 l 6 3.
This is because the pairs in T (and the pairs in S) pairwise intersect in one
point and cannot be contained in different blocks of a same parallel class by
definition. Since p 6 5, there must exist y, z ∈ {1, 2, 3} such that iy = jz. This
implies |(Iy ∪ Jz) ∩M | = 4.

We have shown that, for any 6-subset M of X, there exists a block B ∈ B such that
|M ∩B| > 4. Hence (X,B) is a (v, k, 4, 6) cover.

Under the conditions of the construction presented in this section, we have

C(v, k, 4, 6) 6 2C(v/2, k, 4) +
pv2

k2
.

Remark 18. From the construction mentioned above, we deduce that it is not always true
that a given 6-subset M of X1 ∪X2, M ∈ [4, 2] ∪ [2, 4], is covered in four points by some
block B ∈

⋃p
i=1PiRi, but it is true if the size of each parallel class is less than four. Let

us investigate the reason. Let M ∈ [4, 2] (the case when M ∈ [2, 4] can be dealt with in a
similar way) and suppose that the size of each parallel class is q < 4. For i = 1, 2, . . . , p,
the four points of the quadruple M∩X1 cannot lie in four different blocks of Pi (as the size
of each class is less than four) and therefore |(M ∩X1) ∩ P | > 2 for some block P ∈ Pi.
On the other hand, there exists a parallel class Rj, for some j ∈ {1, 2, . . . , p}, which
contains a block R such that |M ∩ R| = 2. This implies that, for some P ∈ Pj, we have
|M ∩ (P ∪ R)| > 4 and the above-mentioned construction can be improved by replacing
B1 and B2 with the collections C1 and C2 of two (n, k, 4, 5) covers (X1, C1) and (X2, C2).
This improvement implies the following better upper bound for (v, k, 4, 6) covers:

C(v, k, 4, 6) 6 2C(v/2, k, 4, 5) +
pv2

k2
.
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5.2 Construction of (v, k, 4, 5) Covers

Let us consider again the construction presented in Section 5.1 but instead of requiring
that the number of parallel classes be p 6 5, we require that the size of the parallel classes
be q = 2.

Theorem 19. (X,B) is a (v, k, 4, 5) cover.

Proof. Let us analyze how a 5-subset M of X1 ∪X2 is covered in 4 points by some block
B ∈ B:

1. M ∈ [5, 0] ∪ [4, 1] ∪ [1, 4] ∪ [0, 5]. Then M is covered by some block B ∈ B1 ∪ B2 for
the same considerations made in Theorem 17, points 1 and 2.

2. M ∈ [3, 2]∪ [2, 3]. Let |M ∩X1| = 3 (the case when |M ∩X2| = 3 can be dealt with
in a similar way). For i = 1, 2, . . . , p, the three points of the triple M ∩X1 cannot
lie in three different blocks of Pi (as the size of each class is less than three). By
similarly following the same arguments made in Remark 18, we deduce that for some
j ∈ {1, 2, . . . , p} there exist P ∈ Pj and R ∈ Rj such that |M ∩ (P ∪R)| > 4.

Under the conditions of the construction presented in Theorem 19, we have

C(v, k, 4, 5) 6 2C(v/2, k, 4) + 4p.

Now, let us note that C(k, k, 4) is trivially equal to 1 and that C(3k, 2k, 4, 5) = 3 [9].
Moreover, since C(vm, km, t) 6 C(v, k, t) [19], we have C(16m, 8m, 4) 6 C(16, 8, 4) = 30
[18]. These facts, combined with Theorem 10, Theorem 17, Remark 18 and Theorem 19,
lead to the following upper bounds for covers:

Theorem 20. For k > 2, we have:

1. C(4k, 2k, 4, 5) 6 14 if k is even;

2. C(4k, 2k, 4, 5) 6 18 if k is odd;

3. C(6k, 2k, 4, 6) 6 42 if k ≡ 0 (mod 3);

4. C(6k, 2k, 4, 6) 6 51 if k ≡ 1, 2 (mod 3);

5. C(8k, 2k, 4, 6) 6 140 if k ≡ 0 (mod 4).

Points 1 and 2 of Theorem 20 derive from Theorem 10 and Theorem 19. Points 3 and
4 from Theorem 10, Theorem 17 and Remark 18. Point 5 from Theorem 10 and Theorem
17.

Here below some examples follow, where p indicates the number of parallel classes and
q the size of each of them:
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k = 3, p = 4 and q = 3. In this case, the resolvable (9, 3, 2) covering design with
12 blocks from Theorem 10 is the well-known resolvable Steiner system S(9, 3, 2).
From Theorem 20 point 3, we have C(18, 6, 4, 6) 6 42, which matches the current
best known upper bound for C(18, 6, 4, 6)1[21].

k = 2, p = 5 and q = 3. In this case, from Theorem 10, we have the 1-factors of
the 1-factorization of the complete graph K6. From Theorem 20 point 4, we have
C(12, 4, 4, 6) 6 51, which matches the best upper bound for C(12, 4, 4, 6) [18], (i.e.
for the Turán number T (12, 4, 6) and therefore for the covering number C(12, 8, 6)
as well).

k = 2, p = 3 and q = 2. In this case, from Theorem 10, we have the 1-factors
of the 1-factorization of the complete graph K4. From Theorem 20 point 1, we
obtain C(8, 4, 4, 5) 6 14. Since an SQS(8) exists, we have C(8, 4, 3) = T (8, 4, 5) =
C(8, 4, 4, 5) = 14. It is worth noting that in this case, from the construction yielding
Theorem 19, blocks and coblocks not only have the same size but are identical: the
constructed (8, 4, 5) Turán system and its complement, a Steiner system S(8, 4, 3),
are the same design.

6 Trapping-quintuples Constructions

Tables of upper bounds for covers are published in [5, 16, 21, 22]. We target values with
parameters k = 6, t = 5 and m = 7 and we provide new upper bounds for C(v, 6, 5, 7),
(v = 26, 28, 29).

Theorem 21. C(28, 6, 5, 7) 6 2910.

Proof. Let X be a set such that |X| = 28. Divide X into two separate sets X1 and X2 such
that |X1| = 10 and |X2| = 18. Let X2,1, X2,2 and X2,3 be a partition of X2 into three equal
parts. For i = 1, 2, 3 and j = 1, 2, . . . , 5, let Bi,j be the 1-factors of the 1-factorization
of the complete graph K6 on X2,i. From Theorem 11, there exist ten Steiner quadruple
systems (X1,Q1), (X1,Q2), . . . , (X1,Q10) such that

⋃10
i=1Qi =

(
X1

4

)
. Let (X1,D) be a

(10, 6, 5, 6) cover and (X2, E) be a (18, 6, 5) covering design. Define A1,1 = Q1, A1,2 = Q2,
A1,3 = Q3, A1,4 = A1,5 = Q4, A2,1 = Q5, A2,2 = Q6, A2,3 = Q7, A2,4 = A2,5 = Q4,
A3,1 = Q8, A3,2 = Q9, A3,3 = Q10, A3,4 = A3,5 = Q4. We claim that

C = D ∪ E ∪
3⋃
i=1

5⋃
j=1

Ai,jBi,j

is the collection of blocks of a (28, 6, 5, 7) cover.
Let us analyze how a 7-subset M of X1 ∪X2 is covered in 5 points by a block C ∈ C:

1Bertolo et al. (cf. [6]) applied an analogous technique to the case when v = 19, t = 4 and k = m = 6
from which the bound C(18, 6, 4, 6) 6 42 can be derived almost straightforwardly. However, they did not
investigate the conditions under which the technique generalizes to other values of v, k and m, nor did
they determine upper bounds of the kind presented in Theorem 20.
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1. M ∈ [7, 0] ∪ [6, 1]. Then M is covered by some block C ∈ D.

2. M ∈ [2, 5] ∪ [1, 6] ∪ [0, 7]. Then M is covered by some block C ∈ E .

3. M ∈ [4, 3] and |M∩X2,i| > 2 for some i ∈ {1, 2, 3}. Then, for some j ∈ {1, 2, 3, 4, 5},
there exists a block B belonging to Bi,j such that |M ∩ B| = 2. Since (X1,Ai,j) is
a (10, 4, 3) covering design, there must exist a block A ∈ Ai,j such that |M ∩A| > 3
and therefore |M ∩ C| > 5 where C = A ∪B.

4. M ∈ [4, 3] and |M ∩X2,i| = 1 for i = 1, 2, 3. Since
⋃3
i=1

⋃5
j=1Ai,j is the collection of

all the quadruples from X1, for some r ∈ {1, 2, 3} and some s ∈ {1, 2, 3, 4, 5} there
exists a block A ∈ Ar,s such that |M ∩ A| = 4. On the other hand, there exists a
block B ∈ Br,s such that |M ∩B| = 1. This implies |M ∩C| = 5 where C = A∪B.

5. M ∈ [3, 4]. In this case, at least two points of M ∩ X2 belong to X2,i for some
i ∈ {1, 2, 3}. Therefore |M ∩ X2,i| > 2 and the same arguments made at point 3
apply.

6. M ∈ [5, 2] and |M ∩ X2,i| = 2 for some i ∈ {1, 2, 3}. Again, the same arguments
made at point 3 apply.

7. M ∈ [5, 2] and |M ∩X2,p1| = 1, |M ∩X2,p2| = 1 for some p1, p2 ∈ {1, 2, 3}, p1 < p2.
Note that the five quadruples from M ∩ X1 belong to the collections of blocks
of five different Steiner quadruple systems (X1,Qi1), (X1,Qi2), . . . , (X1,Qi5), where
i1, i2, . . . , i5 ∈ {1, 2, . . . , 10} and i1 < i2 < . . . < i5. This is because they pairwise
intersect in three points and two quadruples cannot intersect in three points if they
belong to the same Steiner quadruple system. From the definition of

⋃3
i=1

⋃5
j=1Ai,j,

it follows that for some r1, r2 ∈ {1, 2, 3}, where r1 < r2, and for some s1, s2 ∈
{1, 2, 3, 4, 5}, there exist two blocks A1 ∈ Ar1,s1 and A2 ∈ Ar2,s2 such that |M∩A1| =
4 and |M ∩ A2| = 4. It must also be the case that {rl} ∩ {p1, p2} 6= ∅ for some
l ∈ {1, 2} as X2 is split into three parts. For this l, there exists a block B ∈ Brl,sl
such that |M ∩B| = 1 and therefore |M ∩ C| = 5 where C = Al ∪B.

We have shown that, for any 7-subset M of X, there exists a block C ∈ C such that
|M ∩ C| > 5. Since C(10, 6, 5, 6) 6 14, C(10, 4, 3) = 30 and C(18, 6, 5) 6 1546 ([16, 18]),
the following inequality holds:

C(28, 6, 5, 7) 6 C(10, 6, 5, 6) + C(18, 6, 5) + 45C(10, 4, 3)

6 14 + 1546 + 1350

= 2910.

The previous best-known bound was 2952 ([16]).

The upper bound C(26, 6, 5, 7) 6 1872 (old best-known bound 1897 [16]) can be
obtained similarly by splitting the starting set X into four parts X1, X2,1, X2,2 and X2,3

such that |X1| = 10, |X2,1| = 6, |X2,2| = |X2,3| = 5.
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Theorem 22. C(29, 6, 5, 7) 6 3627.

Proof. Let X = {a, 2, 3, . . . , 28}, X1 = {a, 2, 3, . . . , 10} and X2 = {11, 12, . . . , 28}. Let
(X, C) be a (28, 6, 5, 7) cover obtained by applying the construction of Theorem 21. From
the same construction, let (X1,D) be the following (10, 6, 5, 6) cover computed by means
of the software described in [27]:

(X1,D) = (X1,{{a, 2, 3, 4, 5, 6}, {a, 2, 3, 6, 7, 9}, {a, 2, 4, 7, 9, 10}, {a, 2, 4, 8, 9, 10},
{a, 3, 4, 6, 8, 10}, {a, 3, 5, 7, 9, 10}, {a, 4, 5, 7, 8, 9}, {a, 5, 6, 7, 8, 10},
{2, 3, 4, 6, 7, 8}, {2, 3, 5, 6, 8, 9}, {2, 3, 5, 7, 8, 10}, {2, 4, 5, 6, 9, 10},
{3, 4, 5, 7, 9, 10}, {4, 6, 7, 8, 9, 10}}).

We will show that the element a occurs 548 times in C. By applying the point splicing
construction of Section 3.1, we will have:

C(29, 6, 5, 7) 6 548 + |C|+ C(27, 4, 3, 5).

Given a set V , if there exists a Steiner quadruple system (V,A), every element v ∈ V

occurs exactly 4|A|
v

times in A. In our case, since |
⋃3
i=1

⋃5
j=1 Bi,j| = 45, the element a

occurs 45 · 4·30
10

= 540 times in
⋃3
i=1

⋃5
j=1Ai,jBi,j. Moreover, a occurs 8 times in D and

therefore 548 times in C. Since C(27, 4, 3, 5) 6 C(13, 4, 3) + C(14, 4, 3) = 78 + 91 = 169
(see [18, 21]) and, from Theorem 21, |C| = 2910, we have C(29, 6, 5, 7) 6 3627.

Note: The 3627 blocks of the cover presented in Theorem 22 have been transformed and
further reduced to 3607 blocks by local search. The blocks are listed in [26].

7 Conclusions

Improving upper bounds on the minimum size of general covering designs is a challenging
problem. In order to obtain good upper bounds, combinatorial constructions involving
unions and intersections of different kind of combinatorial designs are very effective and
we think it is worth keeping exploiting these techniques.
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417-423.

[32] E.R. van Dam, W.H. Haemers, M.B.M. Peek. Equitable resolvable coverings, J. Com-
bin. Des. 11 (2003), 113-123.

the electronic journal of combinatorics 19(3) (2012), #P28 16

https://docs.google.com/open?id=0BzDGzgSTFaawdXhvRVA1OUo2b1k
https://docs.google.com/open?id=0BzDGzgSTFaawdXhvRVA1OUo2b1k

	Introduction
	Background
	Point Splicing Constructions
	Point Splicing Construction for t-(v,k,m,) General Covers
	Point Splicing Construction for (v,6,4,6) Covers

	Trapping-triples Construction for (v,6,3,m) Covers
	Trapping-quadruples Constructions
	Construction of (v,k,4,6) Covers
	Construction of (v,k,4,5) Covers

	Trapping-quintuples Constructions
	Conclusions

