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Abstract

We study the interplay between the maximum genus of a graph and bases of
its cycle space via the corresponding intersection graph. Our main results show
that the matching number of the intersection graph is independent of the basis
precisely when the graph is upper-embeddable, and completely describe the range
of matching numbers when the graph is not upper-embeddable. Particular atten-
tion is paid to cycle bases consisting of fundamental cycles with respect to a given
spanning tree. For 4-edge-connected graphs, the intersection graph with respect
to any spanning tree (and, in fact, with respect to any basis) has either a perfect
matching or a matching missing exactly one vertex. We show that if a graph is
not 4-edge-connected, different spanning trees may lead to intersection graphs with
different matching numbers. We also show that there exist 2-edge-connected graphs
for which the set of values of matching numbers of their intersection graphs contains
arbitrarily large gaps.

Keywords: maximum genus; matching; cycle space; fundamental cycle

1 Introduction

The maximum genus of a graph G, γM(G), is the largest genus of an orientable surface
upon which G has a 2-cell embedding. This concept was introduced by Nordhaus, Stewart,
and White [13] in 1971, and immediately attracted considerable attention; a survey of an
early research in this area can be found in [15]. At present, maximum genus seems to
be fairly well understood, especially because it admits a so-called good characterization
in purely combinatorial terms [9, 8, 11, 17] and can be computed in a polynomial time.
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In fact, two essentially different polynomial-time algorithms are known, one by Glukhov
[4] and another one by Furst, Gross, and McGeoch [2]. A third algorithm, based on
intersection properties of fundamental cycles, has been recently proposed by Ren, Zhang,
and Li in [14]. Intersection graphs of fundamental cycles, and more generally, of cycle
bases of a graph, have already been used to characterise the maximum genus, see [5],
[12], and [3]. However, matching properties of these graphs remain largely unknown and
therefore deserve further investigation.

Recall that the fundamental cycle T (e) with respect to a spanning tree T of a graph
G is the only cycle that passes trough a cotree edge e and is contained in T + e. The
idea of using fundamental cycles to study the maximum genus has a fairly long history:
Glukhov [5] and Nebeský [12] determined the maximum genus of a graph by considering
the intersection graphs of bases of its cycle space. Given a graph G and a basis B of its
cycle space, one can define the graph J(G,B) whose vertices are the elements of B and
edges join pairs of elements that have a vertex in common. A particularly important case
arises when the basis BT consisting of fundamental cycles with respect to a spanning tree
T is chosen. In this situation the intersection graph J(G,BT ) is simply denoted by G]T .
The fundamental property of these graphs is that γM(G) can be expressed through their
matching numbers. The following theorem of Fu, Škoviera, and Tsai [3] is a common
generalization of results from [5] and [12]. It is stated here in a slightly modified form,
with ν(H) denoting the matching number of a graph H, the size of a maximum matching
in H.

Theorem 1. Let G be a connected graph. Then

γM(G) = min ν(J(G,B))

where the minimum is taken over all bases B of the cycle space of G. Furthermore, there
is a spanning tree T such that

γM(G) = ν(G]T ). (1)

The purpose of this paper is to reveal a rather unexpected behaviour of the matching
number ν(J(G,B)) for different bases of the cycle space of G. We show in Theorem 2
that this matching number does not depend on the chosen basis precisely when the graph
is upper-embeddable, that is, when G admits a 2-cell embedding with at most two faces.
In Theorem 3 we describe the complete range of matching numbers of the intersection
graphs J(G,B): we prove that G has a basis B with ν(J(G,B)) = k if and only if
γM(G) 6 k 6 bβ(G)/2c, where β(G) is the cycle rank of G.

The situation dramatically changes when we restrict to cycle bases consisting of fun-
damental cycles. The analogue of Theorem 2 is no more valid because, together with
the upper-embeddable graphs, there also exist certain non-upper-embeddable graphs G
for which the matching number ν(G]T ) does not depend on the chosen spanning tree.
At the same time, there are graphs G such that ν(G]T ) does depend on the choice of
the spanning tree. The edge connectivity of such graphs is necessarily bounded above
by 3 since every 4-edge-connected graph is upper-embeddable [7, 18]. We display an in-
finite family of 2-edge-connected graphs (Gn)n>1 such that each Gn contains spanning
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trees T1 and T2 with ν(Gn]T1)− ν(Gn]T2) = n and any other spanning tree T has either
ν(Gn]T ) = ν(Gn]T1) or ν(Gn]T ) = ν(Gn]T2). In other words, the range of values of
ν(Gn]T ) contains a gap of size n; such a gap cannot occur if general cycle bases are con-
sidered. We further construct an infinite family of 3-edge-connected graphs (Hn)n>1 such
that each Hn contains spanning trees T1 and T2 with ν(Hn]T1)− ν(Hn]T2) = n. Whether
there exist 3-edge-connected graphs with arbitrarily large gaps in the range of the values
of ν(G]T ) remains open.

The maximum genus algorithm from [14] uses the assumption that ν(G]T ) = γM(G)
for every spanning tree T of an arbitrary graph G and determines γM(G) by randomly
choosing T and computing the value of ν(G]T ). As follows from our results, for graphs
with small edge-connectivity this approach fails.

2 Preliminaries

In the next few paragraphs we collect several basic definitions needed in this paper. A
circuit in a graph G is a connected regular subgraph of valency two. A cycle in G is a
spanning subgraph having all vertices of even valency. The set C(G) of all cycles of G
forms a vector space over the 2-element field GF (2) with sum C1 + C2 defined as the
symmetric difference of the edge-sets of cycles C1 and C2 and with scalar multiplication
0 · C = 0 and 1 · C = C. A cycle basis of G is any basis of C(G). The size of any
cycle basis is denoted by β(G) and is called the Betti number or the cycle rank of G.
Recall that every spanning tree T in a connected graph G gives rise to a cycle basis BT

consisting of all fundamental cycles with respect to T . It follows that, for connected
graphs, β(G) = |E(G)| − |V (G)|+ 1.

Throughout this paper the reader is assumed to be familiar with fundamentals of topo-
logical graph theory as presented, for example, in the monograph of Gross and Tucker [6].
We recall that the maximum genus γM(G) of a connected graph G is the largest genus
among those orientable surfaces into which G has a 2-cell embedding. It is well known
that the maximum genus of every graph G satisfies the inequality γM(G) 6 bβ(G)/2c. A
graph for which the equality holds is called upper-embeddable.

It is often convenient to express the maximum genus of a graph G through an equiv-
alent quantity, its Betti deficiency ξ(G). This is defined by setting

ξ(G) = β(G)− 2γM(G). (2)

Betti deficiency has two complementary combinatorial characterisations. The first of
them is a theorem of Xuong [17] stating that for every connected graph G one has

ξ(G) = min ξ(G, T ) (3)

where ξ(G, T ) denotes the number of components of the cotree G−E(T ) with odd number
of edges and the minimum is taken over all spanning trees T of G. A spanning tree reaching
this minimum is called a Xuong tree. Every Xuong tree also attains the minimum of
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formula (1) in Theorem 1 (see for example [1]) but not necessarily vice versa. Examples
of graphs with a spanning tree that satisfies (1) but is not a Xuong tree are easy to find.

The second characterisation requires a little more terminology. Recall that a leaf of a
graph is a 2-edge-connected subgraph maximal under inclusion. A leaf is cyclically even if
its Betti number is even, and is cyclically odd otherwise. The following result was proved
by Khomenko and Glukhov [8] and independently, though in a slightly different form, by
Nebeský [11]: For every connected graph G one has

ξ(G) = max ol(G− A)− |A| (4)

where ol(H) denotes the number of cyclically odd leaves of a graph H and the maximum
is taken over all subsets A ⊆ E(G). An accessible proof of this formula can be found in
[16, Theorem 2] within a broader context of signed graphs.

3 Matchings in cycle spaces

The following theorem is formally one of many characterisations of upper-embeddable
graphs, but in fact it is a result about cycle spaces of graphs. It characterises graphs in
which the intersection graphs of any two cycle bases have the same matching number.
Surprisingly, this class coincides with the class of all upper-embeddable graphs.

Theorem 2. A connected graph G is upper-embeddable if and only if the intersection
graphs of any two cycle bases have the same matching number. Furthermore, if G is
upper-embeddable, then the matching number coincides with γM(G) = bβ(G)/2c.

Proof. Assume that G is upper-embeddable. Theorem 1 implies that minB ν(J(G,B)) =
γM(G) = bβ(G)/2c, where the minimum is taken over all bases B of the cycle space of G.
Hence, for an arbitrary fixed cycle basis D of G we get

ν(J(G,D)) > min
B

(J(G,B)) = bβ(G)/2c.

On the other hand, the graph J(G,D) has β(G) vertices, and therefore

ν(J(G,D)) 6 bβ(G)/2c.

It follows that ν(J(G,D)) = bβ(G)/2c for every cycle basis D of G whenever G is upper-
embeddable, as claimed.

For the converse assume that G is not upper-embeddable. We intend to show that G
has two cycle bases B1 and B2 such that ν(J(G,B1)) 6= ν(J(G,B2)). Let B1 be the basis
BT consisting of the fundamental cycles with respect to a Xuong tree T of G (or with
respect to any spanning tree T of G that attains the minimum in Theorem 1). It follows
that ν(G]T ) = γM(G). Take an arbitrary maximum matching M of G]T and choose any
two vertices u and v of G]T that are not matched by M ; the existence of such vertices
follows from the fact that G is not upper-embeddable. Since M is a maximal matching, u
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and v are not adjacent in G]T . Recall that u and v are fundamental cycles with respect
to T , so there exist cotree edges e and f of G such that u = T (e) and v = T (f). Define
the set B2 by setting B2 = (B1 − {T (f)}) ∪ {T (e) + T (f)}. It is easy to see that B2 is
again a cycle basis and that J(G,B1) is isomorphic to a subgraph of J(G,B2) via the
injective homomorphism φ : J(G,B1) → J(G,B2) which maps T (f) to T (e) + T (f) and
otherwise sends an element C ∈ B1 to C ∈ B2. The image φ(M) of the matching M
is a matching in J(G,B2). Since T (e) and T (e) + T (f) = φ(T (f)) have a nonempty
intersection, they are adjacent as vertices of J(G,B2). Thus we can extend the matching
φ(M) of J(G,B2) with the edge joining T (e) to T (e) + T (f), thereby obtaining a larger
matching M ′. Consequently,

ν(J(G,B2)) > |M ′| > |M | = ν(J(G,B1)),

and the result follows.

Our next result strenghtens Theorem 2 and provides a complete description of the
matching numbers of intersection graphs J(G,B) for different cycle bases of a graph G.
In its proof we use several concepts from matching theory; for details we refer the reader to
Lovász and Plummer [10]. A connected component of a graph is called odd if it has an odd
number of vertices; the number of odd components of a graph H is denoted by ω(H). The
matching deficiency of a graph H, denoted θ(H), is the number of vertices not covered by
a maximum matching of H, that is, θ(H) = |V (G)| − 2ν(H). The Berge Formula states
that the matching deficiency of an arbitrary graph G satisfies the equation

θ(G) = max{ω(G−X)− |X|}, (5)

where the maximum is taken over all sets X ⊆ V (G). If v1, v2, . . . , vn is the set of
vertices not covered by a maximum matching of G and a set X ⊆ V (G) satisfies θ(G) =
ω(G−X)− |X|, then the vertices vi belong to different odd components of G−X. The
Berge Formula and its proof can be found in [10].

Theorem 3. Let G be a connected graph. Then G has a cycle basis B with ν(J(G,B)) = k
if and only if γM(G) 6 k 6 bβ(G)/2c.

Proof. If B is a cycle basis with ν(J(G,B)) = k, then k > γM(G) by Theorem 1, and k 6
bβ(G)/2c, because J(G,B) has β(G) vertices. This establishes the necessary condition of
the theorem.

To prove the sufficiency, we construct, for every integer k with γM(G) 6 k 6 bβ(G)/2c,
a basis B such that ν(J(G,B)) = k. Assume that the graph G has Betti deficiency
ξ(G) = d. Recall that by (2) we have d = β(G) − 2γM(G). We start our construction
with a basis BT where T is a spanning tree of G that attains the minimum in Theorem 1;
obviously, ν(J(G,BT )) = γM(G). Take an arbitrary maximum matching M of J(G,BT )
and note that M leaves precisely d vertices unmatched. Consequently, d = θ(J(G,B)).
Denote the unmatched vertices by v1, v2, . . . , vd. As each vj is a fundamental cycle with
respect to T , there exists a cotree edge ej of G such that vj = T (ej). Let B0 = BT and let

Bi = Bi−1 − {T (e2i)} ∪ {T (e2i−1) + T (e2i)} (6)
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for i = 1, 2, . . . , bd/2c. Each Bi is obviously a basis of the cycle space of G.
As in the proof of Theorem 2, it is easy to see that J(G,Bi−1) is isomorphic to a

subgraph of J(G,Bi) via the injective homomorphism that sends the vertex T (e2i) to
T (e2i−1) + T (e2i) and maps all other vertices identically. In the rest of the proof we will
slightly abuse the notation by identifying the vertices of J(G,Bi−1) with those in J(G,Bi)
according to this injective homomorphism. As the vertex T (e2i) in J(G,Bi−1) and the
vertex T (e2i−1) + T (e2i) in J(G,Bi) are the only vertices where J(G,Bi−1) and J(G,Bi)
differ, no confusion can occur.

Our aim is to show that ν(J(G,Bi)) = γM(G)+i for each i 6 bd/2c. Clearly, it suffices
to prove the following claim.

Claim.
(a) The graph J(G,Bi) has θ(J(G,Bi)) = d− 2i for each i > 0.
(b) The graph J(G,Bi) with i 6 bd/2c − 1 has a maximum matching Mi that leaves

unmatched exactly the vertices v2i+1, v2i+2, . . . , vd.

We proceed by induction on i. The case i = 0 follows from the choice of T by putting
M0 = M . Assume that i > 0. From the induction hypothesis and the Berge Formula
(5) we get that there is a set X ⊆ V (J(G,Bi−1)) such that J(G,Bi−1)−X has precisely
θ(J(G,Bi−1))+ |X| odd components, and the vertices v2i−1, v2i, . . . , vd belong to different
odd components of J(G,Bi−1) − X. The definition of Bi implies that v2i−1 and v2i are
joined by an edge in J(G,Bi) and therefore we can set Mi = Mi−1 ∪ {v2i−1v2i}. Clearly,
the vertices v2i+1, v2i+2, . . . , vd remain unmatched by Mi.

Now we prove that J(G,Bi) does not contain a matching larger than Mi, that is,
θ(J(G,Bi)) = θ(J(G,Bi−1))− 2. Since Mi leaves θ(J(G,Bi−1)− 2 vertices uncovered, we
obtain θ(J(G,Bi)) 6 θ(J(G,Bi−1))− 2. On the other hand, the Berge Formula (5) yields
that

θ(J(G,Bi)) = max
Y⊆V (J(G,Bi))

ω(J(G,Bi))− |Y |.

Notice that the difference between graphs J(G,Bi−1) and J(G,Bi) is only at the vertex v2i:
its neighbourhood in J(G,Bi) is the union of the neighbourhoods of v2i−1 and v2i in
J(G,Bi−1). By the induction hypothesis the vertices v2i−1 and v2i belong to different odd
components of J(G,Bi−1)−X. It follows that the graph J(G,Bi)−|X| has θ(J(G,Bi−1))+
|X| − 2 odd components. Therefore

θ(J(G,Bi)) = max
Y⊆V (J(G,Bi))

{ω(J(G,Bi))− |Y |}

> θ(J(G,Bi))− |X| = θ((J(G,Bi−1))− 2.

This completes the induction step as well as the proof of the theorem.

We finish this section by applying Theorem 2 to 4-edge-connected graphs.

Corollary 4. If G is a 4-edge-connected graph, then ν(J(G,B)) = bβ(G)/2c irrespectively
of the chosen basis B of the cycle space of G.

Proof. Every 4-edge-connected graph is upper-embeddable by a result of Jungerman [7]
and Xuong [18]. The conclusion now follows from Theorem 2.
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4 Matchings of fundamental cycles

In this section we focus on bases of the cycle space that only consist of fundamental cycles.
We show that the properties of intersection graphs of fundamental cycles are in several
ways different from those that come from general cycle bases. We start with a corollary
of Theorem 2.

Corollary 5. If G is an upper-embeddable graph, then ν(G]T1) = ν(G]T2) for any two
spanning trees T1 and T2 of G. �

In view of Theorem 2 it is natural to ask whether this corollary can be reversed. As
the next example shows, the answer is ‘no’.

Example 6. Let An be a circuit on n > 3 vertices with a loop attached to every vertex. It
is not difficult to see that γM(An) = 1 and that An is not upper-embeddable. Observe that
any two spanning trees T1 and T2 give rise to the same cycle basis B which consists of the
unique circuit C of length n and n circuits Ci for i = 1, 2, . . . , n of length 1 corresponding
to the loops of An. Hence, any two spanning trees T1 and T2 of An give rise to isomorphic
intersection graphs An]T1 and An]T2, all of them isomorphic to the complete bipartite
graph K1,n. Therefore ν(An]T1) = ν(An]T2) = 1 for any two spanning trees T1 and T2

of An. This shows that the analogue of Theorem 2 for cycle bases consisting of fundamental
cycles is false. �

We have seen in Corollary 4 that the intersection graphs of any two cycle bases of a 4-
edge-connected graphs have the same matching number. We now investigate the situation
in 2-edge-connected graphs and 3-edge-connected graphs.

Our first aim is to show that the set of values of the matching numbers ν(G]T ) for a
2-edge-connected graph G may contain gaps of arbitrary size. To construct the required
graphs, take a path on 2n + 2 vertices and, starting from its second edge, replace every
other edge with a pair of parallel edges. Let Nn denote the resulting graph. Next, join
the two pendant vertices of Nn with n parallel edges and denote the resulting graph by
Ln. Clearly, Ln is 2-edge-connected but is not 3-edge-connected. An example of this
construction is shown in Figure 1.

Figure 1: The graph L3 (left) and its spanning subgraph N3 (right)

We determine the maximum genus of Ln.
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Proposition 7. The graph Ln has ξ(Ln) = n for n > 2 even, and has ξ(Ln) = n− 1 for
n > 1 odd. Consequently, for every positive integer n we have

γM(Ln) =

⌊
n + 1

2

⌋
.

Proof. Consider the graph Ln for a fixed n. Take any two adjacent vertices that are joined
by a single edge, denote this edge by e, and set A = {e}. Clearly, Ln − A is connected
and has either n + 1 cyclically odd leaves if n is even, or n cyclically odd leaves if n is
odd. From (4) we then get that ξ(Ln) > ol(Ln − A) − |A|, which equals either n for n
even, or equals n− 1 for n odd. On the other hand, for any spanning tree S of Ln − e the
expression (3) yields that ξ(Ln) 6 ξ(Ln, S), which again equals either n, when n is even,
or equals n− 1, when n is odd. This establishes the Betti deficiency of Ln. The formula
for the maximum genus of Ln follows immediately from (2) and the fact that β(Ln) = 2n
for every n > 1.

We now turn our attention to matchings in the intersection graphs Ln]T of fundamen-
tal cycles of the graph Ln.

Proposition 8. For every positive integer n, the graph Ln has a spanning tree U such
that the graph Ln]U has a perfect matching; in particular, ν(Ln]U) = n.

Proof. Choose any spanning tree U of Ln within the spanning subgraph Nn. The funda-
mental cycles of Ln with respect to U can be split into two sets C and D of n elements
each in the following way. The set C will include the fundamental cycles corresponding
to the edges from E(Ln)−E(Nn) while D will have the rest. Clearly, no two members of
D intersect, while every element of C intersects all other elements of C ∪D. Thus Ln]U
is isomorphic to the union of the complete graph Kn on the set C with the complete
bipartite graph Kn,n on the partite sets C and D. A perfect matching in Ln]U can now
be constructed by simply choosing a bijection C → D and matching an element of C to
its image in D.

The following result shows that for a 2-edge-connected graph G not only the range of
values of ν(G]T ) can be nontrivial but it can also contain arbitrarily large gaps.

Theorem 9. For every positive integer n there exists a 2-edge-connected graph Gn such
that

max
T

ν(Gn]T )−min
T

ν(Gn]T ) = n

where T ranges over all spanning trees of Gn. Moreover, for every spanning tree S of Gn

the value of ν(Gn]S) coincides with one of the two extremal values.

Proof. For each n > 1 set Gn = L2n; clearly, Gn is 2-edge-connected. Theorem 1 and
Proposition 7 imply that for the spanning tree S described in the proof of Proposition 7
we have

min
T

ν(Gn]T ) = ν(L2n]S) = γM(L2n) = b(2n + 1)/2c = n.
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On the other hand, the spanning tree U from Proposition 8 gives

max
T

ν(Gn]T ) = ν(L2n]U) = 2n.

It is not difficult to see that if T is a spanning tree of L2n, then ν(Gn]T ) = 2n. On the
other hand, if T contains any edge outside L2n, then ν(G]T ) = n. The result follows.

We proceed to 3-edge-connected graphs. We intend to show that for any integer n
there is a 3-edge-connected graph Hn such that ν(Hn]T1) − ν(Hn]T2) = n for suitable
spanning trees T1 and T2 of Hn. Denote by v1, v2, . . . , v4n+4 the vertices along the longest
path of N2n+1, starting from a pendant vertex of N2n+1. For every i = 1, 2, . . . , 2n + 1,
subdivide one of the edges between v2i and v2i+1 with a vertex ui. Join the vertex ui to
the vertex un+1+i for every i = 1, 2, . . . , n and join the vertex un+1 to v1. Join v1 to v4n+4

with n parallel edges and denote the resulting graph by On. It is not difficult to see that
the graph On is 3-edge-connected. The result of this process for n = 4 is illustrated in
Figure 2.

Figure 2: The graph O4

Proposition 10. The graph On has ξ(On) = n for n > 2 even, and has ξ(On) = n − 1
for n > 1 odd. Consequently, for every positive integer n we have

γM(On) = 1 +

⌈
3n

2

⌉
.

Proof. Consider the graph On for a fixed n. Let A be the set consisting of the edges v1v2

and v1u2n+1 and of all edges uiun+1+i for 1 6 i 6 n. Clearly, |A| = n+2. The graph On−A
is connected and has 2n+2 cyclically odd leaves if n is even, and 2n+1 cyclically odd leaves
if n is odd. From (4) we then get that ξ(On) > ol(On−A)−|A|, which equals either n for
n even, or equals n− 1 for n odd. Let X be the set of edges of On constructed as follows.
First, include in X all edges of On of the form vivi+1 for each 1 6 i 6 4n+4, with indices
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taken modulo 4n + 4, except for of the edges v2n+1v2n+2, v2n+2v2n+3, and v2n+3v2n+4. Add
to X the edges v2iui for all 1 6 i 6 n + 1 and v2i+1ui for all n + 1 6 i 6 2n + 1. Clearly,
X is a spanning tree of On; for n = 4 this spanning tree is illustrated in Figure 3 (left).
The expression (3) yields that ξ(On) 6 ξ(On, X), which equals either n, when n is even,
or equals n− 1, when n is odd. This establishes the Betti deficiency of On. The formula
for the maximum genus of On follows from (2) and the fact that β(On) = 4n+2 for every
n > 1.

Proposition 11. For every positive integer n, the graph On has a spanning tree Y such
that the graph On]Y has a perfect matching; in particular, ν(On]Y ) = n.

Proof. Let Y = {v1v2, v2v3, . . . , v4n+3v4n+4, v2u1, v4u2, . . . , v4n+2u2n+1}. Clearly, Y is a
spanning tree of On; for n = 4 this spanning tree is illustrated in Figure 3 (right).
Let A be the set consisting of all vertices of On]Y that correspond to the fundamen-
tal cycles containing the edges between v1 and v4n+4, and let B be the set consisting
of all vertices of On]Y that correspond to the fundamental cycles containing the edges
v3u1, v5u2, . . . , v4n+3u2n+1. Let C = V (On]T )− (A ∪B). The subgraph of On]Y induced
by A is a complete graph on n vertices, the subgraph induced by B is an edgeless graph
on 2n + 1 vertices, and the subgraph induced by C is a complete graph on n + 1 vertices.
It is not difficult to see that every vertex from A is adjacent to every vertex from B ∪ C
and every vertex from C is adjacent to precisely four vertices from B. By the König-Hall
Theorem [10], the subgraph induced by B ∪C contains a matching M1 of size n + 1. Let
B′ be the set of vertices from B not covered by M1. The subgraph induced by A ∪ B′

contains a perfect matching M2, by the König-Hall Theorem again. Clearly, M1 ∪ M2 is
a perfect matching of On]Y .

Figure 3: Spanning trees of the graph H4 (dashed): X (left) and Y (right)

Theorem 12. For every positive integer n there exists a graph 3-edge-connected Hn such
that

max
T

ν(Hn]T )−min
T

ν(Hn]T ) = n

where T ranges over all spanning trees of Hn.
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Proof. For each n > 1 set Hn = O2n; clearly, Hn is 3-edge-connected. Theorem 1 and
Proposition 10 imply that for the spanning tree X described in the proof of Proposition 10
we have

min
T

ν(Hn]T ) = ν(O2n]X) = γM(O2n) = b(2n + 1)/2c = n.

On the other hand, the spanning tree Y from Proposition 11 gives

max
T

ν(Hn]T ) = ν(O2n]Y ) = 2n.

The result follows.

5 Concluding remarks

1. The proof of Theorem 3 and polynomial-time algorithms for determining the maximum
genus of a graph of Furst et al. [2] and Glukhov [4] lead to a polynomial-time algorithm
for the following problem.

PROBLEM: Cycle basis matching problem
INSTANCE: Connected graph G, integer k
TASK: Find a cycle basis B of G such that ν(G,B) = k,

or output ‘NO’ if such a basis does not exist.

Indeed, both maximum genus algorithms output a Xuong tree T of a graph G attaining
the minimum in Theorem 1. The bases Bi defined for i = 0, . . . , bξ(G)/2c by equation
(6) in the proof of Theorem 3 have the property that ν(J(G,Bi)) = γM(G) + i for each i.
It follows that if k is between γM(G) and bβ(G)/2c the algorithm can output one of the
bases Bi and otherwise it outputs ‘NO.’

2. In Theorem 3 we have shown that for every graph G the matching numbers ν(J(G,B))
fill in the whole interval between γM(G) and bβ(G)/2c. This is no longer true if the bases
restrict to fundamental cycles: as shown in Theorem 9, for every integer n there exists
a 2-edge-connected graph Gn such that the range of values of the matching numbers of
Gn]T contains a gap of size n. As there can be no gap if a graph is 4-edge-connected, by
Corollary 4, the following problem suggests itself.

Problem. Does there exist, for any given n > 1, a 3-edge-connected graph G such that
the range of matching numbers of G]T contains a gap of size n?
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