
The rotor-router group of directed covers of graphs

Wilfried Huss
Institute of Discrete Mathematics
Vienna University of Technology

Wiedner Hauptstrasse 8-10
1040 Vienna, Austria

wilfried.huss@tuwien.ac.at

Ecaterina Sava
Department of Mathematics C
Graz University of Technology

Steyrergasse 30/III
8010 Graz, Austria

sava@tugraz.at

Submitted: Jun 19, 2012; Accepted: Aug 23, 2012; Published: Sep 6, 2012

Mathematics Subject Classifications: 05C05; 05C25; 82C20

Abstract

A rotor-router walk is a deterministic version of a random walk, in which the
walker is routed to each of the neighbouring vertices in some fixed cyclic order. We
consider here directed covers of graphs (called also periodic trees) and we study
several quantities related to rotor-router walks on directed covers. The quantities
under consideration are: order of the rotor-router group, order of the root element
in the rotor-router group and the connection with random walks.

Keywords: finite graphs, directed covers, periodic trees, rotor-router walks, rotor-
router group, sandpile group.

1 Introduction

Given a finite connected and directed graph G, one can construct, for each vertex i ∈ G,
a labelled undirected rooted tree Ti in the following way. The root vertex of Ti is labelled
with i. Recursively if x is a vertex of Tj with label j ∈ G, then for each k ∈ G the vertex
x has djk successors with label k, where D = (djk) is the adjacency matrix of G. The tree
Ti is called the directed cover of G with root of type i. Random walks on directed covers
of graphs have been studied by Takacs [Tak97], Nagnibeda and Woess [NW02].

Rotor-router walks are deterministic analogues to random walks, which have been first
introduced into the physics literature under the name Eulerian walks by Priezzhev,
D.Dhar et al [PDDK96] as a model of self organized criticality. In a rotor-router walk
on a graph, equip each vertex with an arrow (the rotor) pointing to one of the neighbours
of the vertex. A particle performing a rotor-router walk carries out the following proce-
dure at each step. First it changes the rotor at its current position to point to the next
neighbour, in a fixed order chosen at the beginning, and then moves to the neighbour
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the rotor is now pointing at. These deterministic walks have gained increased interest
in the last years, and in many settings there is remarkable agreement between the be-
haviour of rotor-router walks and the expected behaviour of random walks. Holroyd
and Propp [HP10] proved that many quantities associated to rotor-router walks such as
normalized hitting frequencies, hitting times and occupation frequencies, are concentrated
around their expected values for random walks. See also Cooper and Spencer [CS06],
Doerr and Friedrich [DF06], Angel and Holroyd [AH11], Kleber [Kle05], and
also Cooper, Doerr et al. [CDFS06]. On the other hand, rotor-router walks and
random walks can also have striking differences. In questions concerning recurrence and
transience of rotor-router walks on homogeneous trees, this has been proven by Landau
and Levine [LL09]. For random initial configurations on homogeneous trees, see Angel
and Holroyd [AH11]. In our note [HS12] we have extended their result to rotor-router
walks on directed covers of finite graphs. Furthermore, one can use rotor-router walks
for solving questions regarding the behaviour of random walks: for instance, in [HS11] we
have used a special rotor-router process in order to determine the harmonic measure, that
is, the exit distribution of a random walk from a finite subset of a graph.

In this work, we continue the study of several quantities related to rotor-router walks
such as the order of the rotor-router group and the order of the root element in the
rotor group on directed covers of finite graphs. On homogeneous trees, this was done by
Levine[Lev09]. The remainder of the paper is structured as follows. In Section 2 we
briefly review the definitions and basic properties of: graphs and trees, directed covers of
graphs, rotor-router walks, rotor-router and sandpile groups and the connection between
them. We will follow the notation from [HS12].

Section 3 is dedicated to the study of the rotor-router group on finite pieces of directed
covers Ti of finite graphs G, with i ∈ G. In particular we study the rotor-router group on
balls with respect to the graph metric, that is on T hi = {x ∈ Ti : d(r, x) 6 h}, where r is
the root vertex of the graph and d(r, x) is the length of the shortest path from r to x. To
the graph T hi we add a global sink vertex, which is connected to the root and all leaves.
By counting a certain family of rooted spanning forests, we give a recurrence formula in
Theorem 3.3 for the order of the rotor-router group on directed covers T hi in terms of the
respective orders on the principal subbranches of T hi . Furthermore, in Theorem 3.7 we
show that the order grows doubly exponential in h. The growth depends on the spectral
radius of the adjacency matrix of G. Then, we consider the order of the root element in the
rotor-router group, which can be defined as the number of particles needed at the origin
of T hi , such that after performing a rotor-router walk and stopping the particles when
they hit the sink, we are back to the same rotor-router configuration we started from. We
describe in Theorem 3.9 a recursive way for finding the order of the root element in terms
of the respective orders of the subbranches. A key tool in the proof of this result is the
so-called explosion formula introduced by Angel and Holroyd [AH11].
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2 Preliminaries

Graphs and Trees. Let G = (V,E) be a locally finite and connected directed multi-
graph, with vertex set V and edge set E. For sake of simplicity, we identify the graph G
with its vertex set V , i.e., i ∈ G means i ∈ V . It will be clear from the context whether
we are speaking about vertices or edges. If (i, j) is an edge of G, we write i ∼G j. We
write d(i, j) for the graph distance, that is, the length of the shortest path between i and
j. A directed graph G is strongly connected if for every two vertices i and j there exists a
directed path from i to j and a directed path from j to i.

Let D = (dij)i,j∈G be the adjacency matrix of G, where dij is the number of directed
edges connecting i to j. We write di for the sum of the entries in the i-th row of D, that
is di =

∑
j∈G dij is the degree of the vertex i (or the number of the outgoing edges from

i). The adjacency matrix D is irreducible if for every pair of indices i and j there exists a

natural number n such that d
(n)
ij > 0, where d

(n)
ij represents the (i, j)-entry of the matrix

power Dn. If G is strongly connected, its adjacency matrix is irreducible.
A tree T is a connected, cycle-free graph. A rooted tree is a tree with a distinguished

vertex r, called the root. For a vertex x ∈ T , denote by |x| the height of x, that is the
graph distance from the root to x. For any positive integer h, define the truncated tree
T h = {x ∈ T : |x| 6 h} to be the subgraph of T induced by the vertices at height smaller
or equal to h.

For a vertex x ∈ T \ {r}, denote by x(0) its ancestor, that is the unique neighbour
of x closer to the root r. It will be convenient to attach an additional vertex r(0) to the
root r, which will be considered in the following as a sink vertex. Additionally we fix
a planar embedding of T and enumerate the neighbours of a vertex x ∈ T in counter-
clockwise order

(
x(0), x(1), . . . , x(dx−1)

)
beginning with the ancestor. We will call a vertex y

a descendant of x, if x lies on the unique shortest path from y to the root r. A descendant
of x, which is also a neighbour of x, will be called a child. A cone Cx rooted a x is
the subtree spanned by the descendants of x. The principal branches of T are the cones
rooted at the children of the root r.

The wired tree T̃ h of height h is the multigraph obtained from T h by collapsing all
leaves, i.e. all vertices y ∈ T with d(r, y) = h, together with the ancestor r(0) of the root
to a single vertex s, the sink. We do not collapse multiple edges.

Directed Covers of Graphs. Let now G be a finite, directed and strongly connected
multigraph with adjacency matrix D = (dij). Let m be the cardinality of the vertices of
G, and label the vertices of G by {1, 2, . . . ,m}.

For i ∈ G, the directed cover Ti of G is defined recursively as an undirected rooted
tree whose vertices are labelled by the vertex set {1, 2, . . . ,m} of G. The root r of Ti is
labelled with i ∈ G. Recursively, if x is a vertex in Ti with label j ∈ G, then x has djk
descendants with label k, for each k ∈ G. We define the label function τ : Ti → G as the
map that associates to each vertex in Ti its label in G. The label τ(x) of a vertex x will
be also called the type of x. For a vertex x ∈ Ti, we will not only need its type, but also
the types of its children. In order to keep track of the type of a vertex and the types of
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k →

χi(k) 1 2

i→

1 2
2 2 1

sˆ

s´
r

Figure 1: The wired Fibonacci tree T̃ 5
2 of height 5 and root of type 2.

its children we introduce the generation function χ = (χi)i∈G with χi : {1, . . . , di} → G.
For a vertex x of type i, χi(k) represents the type of the k-th child x(k) of x, i.e.,

if τ(x) = i then χi(k) = τ(x(k)), for k = 1, . . . , di.

As the neighbours
(
x(0), . . . , x(dτ(x))

)
of any vertex x are drawn in clockwise order, the

generation function χ also fixes the planar embedding of the tree and thus defines Ti
uniquely as a planted plane tree.

In order to distinguish between the two graphs G and Ti we use the variables i, j for
vertices in G (and labels or types in T ) and x, y for vertices of T . The tree Ti constructed
in this way is called the directed cover of G with root of type i. Note that, for each i ∈ G,
the directed cover Ti of G is an undirected tree. Such trees are also known as periodic
trees, see Lyons [LP], or trees with finitely many cone types in Nagnibeda and Woess
[NW02]. We say that the cone Cx has cone type τ(x). Note that if x, y ∈ Ti have the
same label, that is τ(x) = τ(y), then the trees Cx and Cy are isomorphic as rooted trees.
Since G is a finite graph, the number of isomorphism classes of Cx, x ∈ Ti is finite.

The graph G is called the base graph or the generating graph for the tree Ti. In the
following we give two basic examples of directed covers of graphs.

Example 2.1 (Fibonacci tree). The Fibonacci tree is the directed cover of the graph
G on two vertices {1, 2}, with adjacency matrix

D =

(
0 1
1 1

)
It is a tree with two cone types: a vertex with label 1 (of type 1) in the tree has only one
child with label 2 and a vertex of type 2 has one child of type 1 and one child of type 2.
In Figure 1 we have a wired Fibonacci tree with root type 2 (the vertices of type 1 are
coloured in blue and those of type 2 in red). The generation function χ is also given in
the picture above.

Example 2.2 (Bi-regular tree T ). The bi-regular tree T with parameters α, β ∈ N is
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sˆ

s´
r

Figure 2: The wired (2, 3)-bi-regular tree T̃ 5
1 of height 5 and root of type 1.

the directed cover of the graph G on two vertices {1, 2}, with adjacency matrix

D =

(
0 α
β 0

)
It is a tree with two cone types: every vertex in T with label 1 has no child with label
1 and α = d12 children with label 2, and every vertex with label 2 has β = d21 children
with label 1 and no child with label 2. Since in this case, on each level there are vertices
of only one type, the function χ has to be: χ1(k) = 2, for k = 1, . . . , α and χ2(k) = 1 for
k = 1, . . . , β.

2.1 Rotor-Router Walks

On a locally finite and connected graph G, a rotor-router walk is defined as below. For each
vertex x ∈ G fix a cyclic ordering c(x) of its neighbours: c(x) =

(
x(0), x(1), . . . , x(dx−1)

)
,

where x ∼G x
(i) for all i = 0, 1, . . . , dx − 1 and dx is the degree of x. The ordering c(x)

is called the rotor sequence of x. A rotor configuration is a function ρ : G → G, with
ρ(x) ∼G x, for all x ∈ G. Hence ρ assigns to every vertex one of its neighbours. By
abuse of notation, we write ρ(x) = i if the rotor at x points to the neighbour x(i), with
i ∈ {0, 1, . . . , dx − 1}.

A rotor-router walk is defined by the following rule. Let x be the current position of
the particle, and ρ(x) = i the state of the rotor at x. In one step of the walk two things
happen. First the position of the rotor at x is incremented to point to the next neighbour
x(i+1) in the ordering c(x), that is, ρ(x) is set to i + 1 (with addition performed modulo
dx). Then the particle moves to position x(i+1). The rotor-router walk is obtained by
repeatedly applying this rule.

Suppose now that G is a finite graph with m vertices and fix a vertex s in G, which
will represent the sink.

Rotor-Router Group. Given a rotor configuration ρ on G, write ex(ρ) for the rotor
configuration resulting from starting a particle at x and letting it perform a rotor-router
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walk until it reaches the sink s. If a particle visits a vertex infinitely often, it also visits all
of its neighbours infinitely often; since G is connected and finite, the particle eventually
reaches the sink.

The set of edges
{(
x, ρ(x)

)
: x ∈ G \ {s}

}
in a rotor configuration forms a spanning

subgraph of G in which every vertex except the sink s has out-degree one. If this subgraph
contains no cycles, we call it an oriented spanning tree of G. Write Rec(G) for the set of
oriented spanning trees of G, which is also called the set of recurrent configurations. It is
easy to see that if ρ ∈ Rec(G), then also ex(ρ) ∈ Rec(G). For a proof, see Landau and
Levine [LL09, Lemma 2.1]. Another interesting property of the rotor configurations is
that if ρ1, ρ2 ∈ Rec(G) and ex(ρ1) = ex(ρ2), then ρ1 = ρ2; see once again [LL09] for a
proof. This means that the operation ex of adding a particle at x and routing it to the
sink acts invertibly on the set of recurrent rotor configurations.

The rotor-router group RR(G) of G is defined as the subgroup of the permutation group
of Rec(G) generated by

{
ex : x ∈ G \ {s}

}
. For any two vertices x and y, the operators ex

and ey commute. This is the so-called abelian property of rotor-router walks. Hence the
group RR(G) is abelian. Furthermore, RR(G) acts transitively on Rec(G). More details
can be found in [LL09].

Sandpile Group. A chip configuration σ on G, also called a sandpile on G, is a vector in
Zm−1 of non-negative integers indexed by the non-sink vertices of G, where σ(x) represents
the number of chips at the vertex x. A chip configuration σ is called stable if σ(x) < dx,
for every non-sink vertex x. A vertex x is unstable if σ(x) > dx. An unstable vertex
may topple, by sending one chip to each neighbour. If σ is not stable then one can show
that by successively toppling unstable vertices, in finitely many steps we arrive at a stable
configuration σ◦. A stable chip configuration σ is called recurrent if there exists a nonzero
chip configuration δ such that (σ+ δ)◦ = σ. The sandpile group SP(G) may be thought of
as the set of recurrent chip configurations under the operation (σ+δ)◦ of addition followed
by stabilization. The order of the sandpile group SP(G) is given by the determinant of
the reduced Laplacian ∆′, compare with [HLM+08, Lemma 2.8]. The graph Laplacian of
G is the matrix ∆ with entries

∆ij =

{
di − dii for i = j,

−dij for i 6= j.

The reduced Laplacian is obtained by deleting from the Laplacian matrix ∆ of G the row
and the column corresponding to the sink. By the matrix-tree theorem, this determinant
equals the number of oriented spanning trees of G rooted at the sink.

Theorem 2.3. The rotor-router group RR(G) for a connected finite graph G with a global
sink is isomorphic to its sandpile group SP(G).

The proof can be found in [LL09, Theorem 2.5].
Notation: two non-negative functions f(n) and g(n) have the same growth and we

write f(n) � g(n) if there exist constants c1, c2 such that c1g(n) 6 f(n) 6 c2g(n).
For the rest, we fix the following:
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• G finite graph with m vertices labelled by {1, 2, . . . ,m}.

• Ti directed cover of G with root r of type i ∈ G.

• T̃ hi the wired directed cover of height h and root type i.

• τ(x) label function and χi(k) generation function.

3 Order of the Rotor-Router Group

In this section we want to describe the rotor-router group on directed covers of finite
graphs. For homogeneous trees, this was done in Levine[Lev09], and the method used
there fails when one considers non-homogeneous structures. Because of the non homo-
geneity, our approach is also quite technical. We will relate the rotor-router group of a
wired directed cover of a graph with the rotor-router group of its principal subbranches.
Denote by thi the number of spanning trees of T̃ hi .

From Section 2.1, in order to find an expression for the order |RR(T̃ hi )| of the rotor-

router group of T̃ hi , it is enough to count the number thi of the spanning trees, since

|RR(T̃ hi )| = thi . We will count spanning trees in terms of a class of spanning forests of the
original tree T hi , which we define next.

Definition 3.1. We say that a spanning forest of a graph H is rooted at a set of vertices
S ⊂ H if every connected component of the forest contains exactly one vertex of S.

Denote by H/S the multigraph obtained from H by contracting S into a single vertex
s, while keeping multiple edges that may have been created by this process.

Lemma 3.2. There is a bijection between the set of spanning trees of H/S and the set of
spanning forests of H which are rooted at S.

Proof. Let F be a spanning forest of H and denote by F/S the spanning subgraph of H/S
obtained by contracting S into a single vertex s. If F has a connected component which
does not contain a vertex of S, its contraction F/S is still not connected. On the other
hand, if F has a connected component which contains at least two vertices of S, collapsing
S into a single vertex creates a cycle in F/S. Hence F/S is a spanning tree of H/S if and
only if F is a spanning forest rooted at S.

Let ES be the set of edges e of H such that not both endpoints of e are contained in
S. Consider the map ψ : H→ H/S, defined by

ψ(v) =

{
s, for v ∈ S
v, otherwise,

and its natural extension to the edge set E of H which we also call ψ. Then ψ is a bijection
between ES and the edges of H/S. Since every spanning forest F of H rooted at S is a
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subset of ES, the map ψ naturally extends to a map ψ̂ : F 7→ F/S, which maps F onto

its contraction. Hence ψ̂ is injective, since the tree F/S is fully defined by its edge set.
Now let T be a spanning tree of H/S, and define F = {ψ−1(e) : e is a edge of T}.

Then F is a forest from which we may obtain a spanning forest rooted at S by adding
every vertex of S which is not contained in a connected component of F as a single vertex
component. This construction is again injective. Hence there exists a bijection between
the set of spanning trees of H/S and the set of spanning forests of H rooted on S.

Back to the truncated tree T hi , let us introduce the down and up sinks

s´ = {r(0)} and sˆ = {x ∈ T hi : |x| = h}, (1)

where r(0) is the ancestor of the root r, an additional vertex connected with the root r of
T hi , and let

S = s´ ∪ sˆ. (2)

With the notation introduced above we have T̃ hi = T hi /S. According to Lemma 3.2, in
order to compute the order of the rotor-router group, one has to count the number of
spanning forests of T hi rooted at S. We partition the spanning forests into two types. For
all i ∈ G denote by

F h
i,´ = the number of spanning forests of T hi rooted at S,

which contain an edge from r to s´,
F h
i,ˆ = the number of spanning forests of T hi rooted at S,

which contain a path from r to sˆ.
Using this notation we have that∣∣RR(T̃ hi )

∣∣ = thi = F h
i,´ + F h

i,ˆ. (3)

and the order of the rotor-router group can be calculated recursively as follows.

Theorem 3.3. The order of the rotor-router group RR(T̃ hi ) is given by
∣∣RR(T̃ hi )

∣∣ =
F h
i,´ + F h

i,ˆ, and the number of spanning forests F h
i,´ and F h

i,ˆ with i ∈ G can be calcu-
lated recursively as: 

F h
i,´ =

∏
j∈G

(
F h−1
j,´ + F h−1

j,ˆ
)dij

F h
i,ˆ = F h

i,´
∑
j∈G

dijF
h−1
j,ˆ

F h−1
j,´ + F h−1

j,ˆ
.

(4)

The initial values are F 1
i,´ = 1 and F 1

i,ˆ = di, for all i ∈ G.

Proof. Let T hi be a tree with root r of type i ∈ G, and of height h. For k = 1, . . . , di, we
denote by T h−1

χi(k) the cone of the k-th child r(k) of the root r in T hi . By the construction of

the directed cover, the root r(k) of T h−1
χi(k) is of type χi(k).
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Every spanning forest F that is counted in F h
i,´ contains the edge (r, s´). In this case,

whenever the edge (r(k), r) is contained in F , its restriction to T h−1
χi(k) does not contain a

path from r(k) to the upper sink of T h−1
χi(k). On the other hand, if the forest F does not

contain the edge (r(k), r), then the restriction of the spanning forest to the first level cone
must contain a path from r(k) to the upper sink. Otherwise the connected component
containing r(k) would not contain a sink vertex. As we can freely choose which of the
vertices {(r(k), r) : k = 1, . . . , di} are part of the forest, we get

F h
i,´ =

∑
w∈{´,ˆ}di

di∏
k=1

F h−1
χi(k),wk

where w = (w1, w2, . . . , wdi) is a word of length di over the alphabet {´, ˆ}. In order to
reduce the previous equation to the form given in (4), take a j ∈ G with dij 6= 0. This
implies that for some k = 1, . . . , di we have χi(k) = j (this happens exactly dij times)
and F h

i,´ can be factorized as

F h
i,´ =

(
F h−1
j,´ + F h−1

j,ˆ
) ∑
w∈{´,ˆ}di−1

di−1∏
k=1

F h−1
χi(k),wk

This procedure can be repeated exactly dij times, and we obtain

F h
i,´ =

(
F h−1
j,´ + F h−1

j,ˆ
)dij ∑

w∈{´,ˆ}di−dij

di−dij∏
k=1

F h−1
χi(k),wk

By proceeding in the same way for all j ∈ G for which dij 6= 0, we get

F h
i,´ =

∏
j∈G: dij 6=0

(
F h−1
j,´ + F h−1

j,ˆ
)dij ,

which can be obviously extended to all j ∈ G, and we have proved the first part of (4).
Consider now a spanning forest F with root of type i connected to the upper sink sˆ.

This means there exists an ` ∈ {1, . . . , di} such that the edge (r, r(`)) is contained in F
and the restriction of F to the cone of r(`) is itself a spanning forest connected to the
upper sink und is thus counted by F h−1

χi(`),ˆ. All the other principal subbranches can be
assigned spanning forests independently. This gives the factorization

F h
i,ˆ =

di∑
`=1

F h−1
χi(`),ˆ

∑
w∈{´,ˆ}di−1

di∏
k=1
k 6=`

F h−1
χi(k),wk
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Using the same argument as in the first part of the proof this can be written as

F h
i,ˆ =

di∑
`=1

F h−1
χi(`),ˆ

∏
k∈G

(
F h−1
k,´ + F h−1

k,ˆ
)dik−δk,χi(`)

=

di∑
`=1

F h−1
χi(`),ˆ

F h−1
χi(`),´ + F h−1

χi(`),ˆ

∏
k∈G

(
F h−1
k,´ + F h−1

k,ˆ
)dik (5)

where δi,j is the Kronecker delta. With the formula for F h
i,´ we already showed in the first

part of the proof (5) is equal to

F h
i,ˆ = F h

i,´
di∑
`=1

F h−1
χi(`),ˆ

F h−1
χi(`),´ + F h−1

χi(`),ˆ
,

which is equivalent to (4) as desired.

Next, we evaluate asymptotically the behaviour of
∣∣RR(T̃ hi )

∣∣ = F h
i,´ + F h

i,ˆ, for large
values of h.

Lemma 3.4. For i ∈ G and h ∈ N, the sequence γhi defined by

γhi =
F h
i,ˆ
F h
i,´

is convergent. If the spectral radius r(D) > 1 then the limit Υi = limh→∞ γ
h
i is positive.

Recall that the spectral radius r(A) of a square matrix A is the maximal absolute value
of all the eigenvalues of A. To prove Lemma 3.4 we will need two additional results.

Proposition 3.5. Let A ∈ Rm×m be a non-negative matrix and let v ∈ Rm be a positive
vector. If there is a number b > 0 such that Av 6 bv, then r(A) 6 b.

For the proof see Ding and Zhou [DZ09, Proposition 2.2]. The next result is a
simple application of Tarski’s Fixed point Theorem for increasing functions on lattices,
see Kennan [Ken01, Theorem 3.3].

Theorem 3.6. Suppose f is an increasing and strictly concave function from Rm to Rm

such that f(0) > 0, f(a) > a for some positive vector a, and f(b) < b for some vector
b > a. Then f has a unique positive fixed point.

Proof of Lemma 3.4. Let us fix i ∈ G for the rest of the proof. The initial value is γ1
i = di.

Substituting in the definition of γhi the recurrence relations (4) for F h
i,ˆ and F h

i,´, we get

γhi =
∑
j∈G

dijF
h−1
j,ˆ

F h−1
j,´ + F h−1

j,ˆ
=
∑
j∈G

dij
γh−1
j

1 + γh−1
j

, for h ∈ N. (6)
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In order to prove that γhi is convergent in h, we show that γhi is monotone and bounded.
We first show by induction on h that γhi is strictly decreasing. We know that γ1

i = di, and
the induction basis γ2

i < γ1
i follows from

γ2
i =

∑
j∈G

dij
γ1
j

1 + γ1
j

<
∑
j∈G

dij = di = γ1
i .

For the inductive step, we assume that γhi < γh−1
i , and we prove that γh+1

i < γhi . This
follows from

γh+1
i =

∑
j∈G

dij
γhj

1 + γhj
<
∑
j∈G

dij
γh−1
j

1 + γh−1
j

= γhi .

The sequence γhi is also bounded, i.e., 0 6 γhi < di, therefore it converges to a limit.
Denote by Υi = limh→∞ γ

h
i and Υ = (Υ1, . . . , Υm) ∈ Rm

>0. Then the limit vector Υ is a
solution of the fixed point equation

Υi =
∑
j∈G

dij
Υj

1 + Υj
. (7)

In order to prove the positivity of the limit vector Υ we apply Theorem 3.6 to the function
f = (f1, . . . , fm) : Rm → Rm with

fi(x) =
∑
j∈G

dij
xj

1 + xj
and x = (x1, . . . , xm).

The function f is obviously strictly concave and increasing. From the first part of the
proof we have f(b) < b for b being the vector of initial values b = (d1, . . . , dm).

Let now r(D) > 1 and assume that for all positive vectors a = (a1, . . . , am) we have
f(a) 6 a, which can be written as

D


a1

1+a1
...
am

1+am

 6 a. (8)

Let a? = max{ai : i = 1, . . . ,m}, then (8) implies 1
1+a?

Da 6 a, hence Da 6 (1+a?)a, and
from Proposition 3.5 it follows that r(D) 6 1 + a?. Since a was arbitrary, a? can be made
arbitrary small, thus r(D) 6 1 which is a contradiction to our assumption. Therefore
there exists a positive vector a = (a1, . . . , am) such that f(a) > a. Theorem 3.6 now
ensures the existence of a unique positive fixed point of f , hence the equation (7) has a
unique positive solution in addition to the trivial solution.

It remains to show that the limit vector cannot be zero. Let γ̄hi be the sequence defined
as γhi in (6) with initial values γ̄1

i = ai. The vector a is such that f(a) > a. It is easy
to see that the sequence γ̄hi is increasing and γ1

i − γ̄1
i > 0. By induction on h, supposing

γhi − γ̄hi > 0, we get

γh+1
i − γ̄h+1

i =
∑
j∈G

dij

(
γhj

1 + γhj
−

γ̄hj
1 + γ̄hj

)
=
∑
j∈G

dij
γhj − γ̄hj

(1 + γhj )(1 + γ̄hj )
> 0,
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therefore γhi − γ̄hi is non-negative. Hence γhi is bounded from below by γ̄hi , and the limit
Υi is positive.

Theorem 3.7. Let G be a finite, directed and strongly connected graph with vertex set
{1, 2, . . . ,m} and adjacency matrix D. Let Ti be the directed cover of G with root r of type

i and T̃ hi be the wired tree defined as above. If r(D) > 1, then the order of the rotor-router

group RR(T̃ hi ) grows doubly exponential:

log
∣∣RR(T̃ hi )

∣∣ � r(D)h, for all i ∈ G, (9)

where r(D) is the spectral radius (Perron-Frobenius eigenvalue) of D.

Proof. Recall first that
∣∣RR(T̃ hi )

∣∣ = F h
i,´+F h

i,ˆ. In order to simplify the system of equations

(4) let us make the following substitution: for i ∈ G denote by xhi = logF h
i,´ and yhi =

logF h
i,ˆ and apply the logarithm function to (4). We getxhi =

∑
j∈G

dijx
h−1
j +

∑
j∈G

dij log
(
1 + γh−1

j

)
yhi = xhi + log

(
γhi
)
.

(10)

Consider now the following vectors in Rm:

xh =

x
h
1
...
xhm

 , yh =

y
h
1
...
yhm

 , γh =

γ
h
1
...
γhm

 .

Then (10) can be written in matrix form asxh = D
(
xh−1 + log

(
1 + γh−1

))
yh = xh + log

(
γh
)
,

(11)

where the function log in (11) is applied componentwise to the entries of the vectors γh and
(1 + γh) respectively. The initial values are x1 = (0, . . . , 0)T , y1 = (log d1, . . . , log dm)T ,
and γ1 = (d1, . . . , dm)T . Then the solution of (11) is given by

xh =
h−1∑
k=1

Dk log(1 + γh−k). (12)

From Lemma 3.4 the entries of the vector log
(
1 + γh−k

)
are bounded: for all i ∈

{1, 2, . . . ,m} and k = 1, . . . , h

0 < log(1 + Υi) 6 log(1 + γh−ki ) 6 log(1 + γ1
i ) = log(1 + di).

the electronic journal of combinatorics 19(3) (2012), #P30 12



All Υi and di are positive. Write ci = log(1 + Υi) and Ci = log(1 + di). Then(
h−1∑
k=1

Dk

)
c 6 xh 6

(
h−1∑
k=1

Dk

)
C, (13)

where c = (c1, . . . , cm)T and C = (C1, . . . , Cm)T . The sum
(∑h−1

k=1 D
k
)

behaves like Dh

for big values of h, and the exponential growth rate of the matrix power Dh as h → ∞
is controlled by the eigenvalue of D with the largest absolute value. Since D is a non-
negative and irreducible matrix, according to Perron-Frobenius theorem for irreducible
matrices, there exists a positive real number r(D) (the spectral radius of D), called the
Perron-Frobenius eigenvalue which is the eigenvalue of D with the largest absolute value.
By (13), we can conclude that the behaviour of xh, for h → ∞ is given by the greatest
eigenvalue r(D) > 1 of D, i.e., for all i

xhi � r(D)h.

Since yh differs from xh only by a bounded and decreasing quantity, see (11), it holds
yhi � r(D)h. Using

log
∣∣RR(T̃ hi )

∣∣ = log
(
F h
i,´ + F h

i,ˆ
)

= log
(
F h
i,´
(
1 + γhi

))
= xhi + log

(
1 + γhi

)
.

and Lemma 3.4, we get the desired.

Example 3.8 (The Fibonacci tree). For the Fibonacci tree, the system of equations (4)
can be written as[

F h
1,´ = F h−1

2,´ + F h−1
2,ˆ

F h
1,ˆ = F h−1

2,ˆ

[
F h

2,´ =
(
F h−1

1,´ + F h−1
1,ˆ
)(
F h−1

2,´ + F h−1
2,ˆ
)

F h
2,ˆ = F h−1

1,ˆ
(
F h−1

2,´ + F h−1
2,ˆ
)

+ F h−1
2,´
(
F h−1

1,´ + F h−1
1,ˆ
)

The two sequences γh1 and γh2 are given recursively by

γh1 =
γh−1

2

1 + γh−1
2

and γh2 =
γh−1

1

1 + γh−1
1

+
γh−1

2

1 + γh−1
2

.

The initial values are γ1
1 = 1, γ1

2 = 2 and the limit values are

Υ1 = lim
h→∞

γh1 =
√

2− 1 and Υ2 = lim
h→∞

γh2 =

√
2

2
.

The Perron-Frobenius eigenvalue of D is 1+
√

5
2

, which is also related with the Fibonacci

numbers Fn by limn→∞
Fn+1

Fn
= 1+

√
5

2
. Finally, regarding the order of the rotor-router group

RR(T̃ hi ) we have

log
∣∣RR(T̃ hi )

∣∣ � (1 +
√

5

2

)h

.
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3.1 Order of the Root Element in the Rotor-Router Group

Levine [Lev09] computed the order of the root element in the rotor-router group on
homogeneous trees. His approach holds only for homogeneous trees, and it fails in our
case. We describe here the order of the root element in terms of the respective orders on
the principal subbranches. Our method is yet another useful application of the explosion
formula introduced in [AH11, Theorem 11].

Like before, Ti is the directed cover of G with root r of type τ(r) = i. The principal
branches of Ti are the subtrees Tχi(k) rooted at the children r(k) of the root r with type
χi(k) = τ(r(k)) and k = 1, 2, . . . , di. Hence Ti has as principal branches di =

∑
j∈G dij

subtrees. Recall the definition of the truncated wired tree T̃ hi , with the same root r and
sink S = s´ ∪ sˆ.

Suppose now that we have one particle at the root r of T̃ hi , and we let it perform a
rotor-router walk until it hits the sink S, where it stops. Denote by r̂h the element of the
rotor-router group RR(T̃ hi ) corresponding to this process. Similarly, for all k = 1, . . . , di,

denote by r̂
(k)
h−1 the element of the rotor-router group RR

(
T̃ h−1
χi(k)

)
corresponding to one

particle performing rotor-router walk on the principal subbranch T̃ h−1
χi(k) starting at r(k).

Write 〈r̂h〉 for the cyclic subgroup of RR(T̃ hi ) generated by r̂h, and
〈(
r̂

(1)
h−1, . . . , r̂

(di)
h−1

)〉
for the cyclic subgroup of

⊕di
k=1 RR

(
T̃ h−1
χi(k)

)
generated by the element

(
r̂

(1)
h−1, . . . , r̂

(di)
h−1

)
. By

[Lev09, Theorem 3.3] and from the isomorphism between the sandpile and the rotor-router
group of a tree, we have

RR(T̃ hi )/〈r̂h〉 '
di⊕
k=1

T̃ h−1
χi(k)

/〈(
r̂

(1)
h−1, . . . , r̂

(di)
h−1

)〉
(14)

For simplicity of notation, we denote by Rh
i the order of the element r̂h in the rotor-router

group RR(T̃ hi ), that is, the cardinality of the cyclic group 〈r̂h〉, i.e. Rh
i = |〈r̂h〉|. Recall

the definition of the down and up sinks s´ and sˆ respectively and let

Shi,´ = the number of particles stopped in s´ afterRh
i particles

have been routed from r,
Shi,ˆ = the number of particles stopped in sˆ afterRh

i particles
have been routed from r,

for i ∈ G. Then
Rh
i = Shi,´ + Shi,ˆ. (15)

Write Rh−1
χi(k) for the number of particles started at the origin r(k) of the branch T h−1

χi(k).

Theorem 3.9. The order Rh
i of the root element in the rotor-router group is given by

Rh
i = Shi,´ + Shi,ˆ and Shi,´, Shi,ˆ can be computed recursively as follows:

Shi,´ = lcm
({
Rh−1
χi(k) : for k = 1, . . . , di

})
Shi,ˆ = Shi,´

∑
j∈G

dij
Sh−1
j,ˆ

Rh−1
j

,
(16)
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for all i ∈ G. Here lcm represents the least common multiple. The starting values are
given by S1

i,´ = 1 and S1
i,ˆ = di, for all i ∈ G.

The proof of this result uses the explosion formula introduced in [AH11, Theorem 11].
Since we will need this formula in the proof, we first adapt it here to our case.

3.1.1 Explosion Formula

The explosion formula, introduced in [AH11, Theorem 11], gives a recursive formula for
computing the number En(Ti, ρ) of particles which escape to infinity when we start n
rotor-router walks at the root r of a tree Ti. The initial configuration of rotors on Ti is ρ.
For the tree Ti and principal branches Tχi(k), rooted at the children r(k) of r, write ρχi(k)

for the restriction of the rotor configuration ρ on Tχi(k), with k = 1, . . . , di.
Let us first introduce some notations, following mainly the notations from [AH11,

Theorem 11]. Let en = en(Ti, ρ) = 1[particle n escapes to infinity], where 1 represents the
indicator function, so that En =

∑n
k=1 ek. Moreover, let e(Ti, ρ) be the escape se-

quence (e1, e2, . . .). Let N+ = {1, 2, . . .} and for sequences in NN+ we denote addition
by (a1, a2, . . .) + (b1, b2, . . .) := (a1 + b1, a2 + b2, . . .). Define the shift operator θ by

θ(a1, a2, . . .) := (0, a1, a2, . . .)

and the explosion operator X by

X(a1, a2, . . .) := (1a1 , 0, 1a2 , 0, . . .)

where 1k denotes a string of k 1s, or the empty string if k = 0. We define a majorization
order � on sequences (a1, a2, . . .) � (b1, b2, . . .) if and only

∑n
1 aj 6

∑n
1 bj for all n. For

a = (a1, a2, . . .) denote by ak = ak its k-th element. For a finite sequence a the length is
denoted by |a| and an is its n times repetition. We now adapt [AH11, Theorem 11] for
directed covers of finite graphs.

Theorem 3.10 (Explosion formula). Let G be a finite graph with m vertices and Ti its
directed cover with root r of type i. Fix a rotor configuration ρ on Ti. Then

e(Ti, ρ) = X

(
ρ(r)∑
k=1

θe
(
Tχi(k), ρχi(k)

)
+

di∑
k=ρ(r)+1

e
(
Tχi(k), ρχi(k)

))
.

Remark 3.11. In case of a finite tree T hi , we define the escape sequence e such that
en(T hi , ρ) = 1 if the n-th particle reaches the upper sink sˆ before reaching s´, and 0
otherwise. Then the explosion formula can be also written in the form

e(T hi , ρ) = X

(
ρ(r)∑
k=1

θe
(
T h−1
χi(k), ρχi(k)

)
+

di∑
k=ρ(r)+1

e
(
T h−1
χi(k), ρχi(k)

))
,

with initial values e(T 0
i , ρ) = (1, 1, . . .) for all i ∈ G.
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Proof of Theorem 3.9. Fix an i ∈ G. As in the proof of Theorem 3.3 let T hi be a tree with
root r of type i ∈ G, and of height h. For k = 1, . . . , di, we denote by T h−1

χi(k) the cone of

the k-th child r(k) of the root r in T hi . By the construction of the directed cover, the root
r(k) of T h−1

χi(k) is of type χi(k).
It is enough to consider only the zero rotor configuration 0, that is, at all vertices the

rotors point to the ancestors. Recall that Rh
i is the order of the root element in the rotor-

router group of T hi . Hence, after Rh
i particles have performed a rotor-router walk (stopped

at the sink S) we are back to the configuration 0. In other words, the escape sequence
e(T hi , 0) is periodic with period Rh

i . Write e(T hi ) for the finite sequence consisting of the
first full period of e(T hi , 0). Using the explosion formula we can write e(T hi ) in terms of
the escape sequences of the principal subtrees T h−1

χi(k), with i = 1, . . . , di.

In order to adapt the explosion formula to the finite sequence e(T hi ), all the escape
sequences involved need to be extended such that they have the same length, the common

length being the least common multiple lcm
(
Rh−1
χi(1), . . . , R

h−1
χi(di)

)
of orders of the root

elements of the principal branches. Let now

fh−1
i (k) :=

lcm
(
Rh−1
χi(1), . . . , R

h−1
χi(di)

)
Rh−1
χi(k)

.

be the number of repetitions needed for the escape sequence e
(
T h−1
χi(k)

)
. We can then write

the explosion formula for the first Rh
i particles as

e(T hi ) = X
(
vh−1
i

)
with vh−1

i =

di∑
k=1

e
(
T h−1
χi(k)

)fh−1
i (k)

. (17)

Hence e(T hi ) is a sequence of length Rh
i = Shi,´ + Shi,ˆ consisting of ”zeros“ and ”ones“,

with Shi,´ being the number of 0’s and Shi,ˆ being the number of 1’s. Since the number of
0’s in a string X(a) is equal to |a|, we get

Shi,´ = |vh−1
i | = lcm

(
Rh−1
χi(1), . . . , R

h−1
χi(di)

)
.

On the other hand, because Shi,ˆ equals the number of 1’s in the escape sequence e(T hi ),
the explosion formula (17) gives

Shi,ˆ =

Rhi∑
`=1

e(T hi )` =

Rhi∑
`=1

X
(
vh−1
i

)
`

=

Sh
i,∑́
`=1

(
di∑
k=1

e
(
T h−1
χi(k)

)fh−1
i (k)

)
`

. (18)

In the last equality we used the fact that for any finite sequence a,
∑|a|

`=1 a` =
∑|X(a)|

`=1 X(a)`
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holds. By exchanging the order of summation in (18), we obtain

Shi,ˆ =

di∑
k=1

Sh
i,∑́
`=1

(
e
(
T h−1
χi(k)

)fh−1
i (k)

)
`

=

di∑
k=1

fh−1
i (k)

Rh−1
χi(k)∑
`=1

e
(
T h−1
χi(k)

)
`

=

di∑
k=1

fh−1
i (k)Sh−1

χi(k),ˆ = Shi,´
di∑
k=1

Sh−1
χi(k),ˆ
Rh−1
χi(k)

= Shi,´
∑
j∈G

dij
Sh−1
j,ˆ

Rh−1
j

,

which proves the theorem.

We give now an alternative way of writing the system (16). Using (15), let us add the
two equations in (16), and then divide the result through Rh

i . We get
Shi,´ = lcm

({
Rh−1
χi(k) : for k = 1, . . . , di

})
1 =

Shi,´
Rh
i

(
di + 1−

∑
j∈G

dij
Sh−1
j,´

Rh−1
j

)
(19)

Because of the lcm involved in (16), it is hard to derive asymptotics for Rh
i .

Connection with the Random Walk. Let (Xt) be a simple random walk on Ti which
starts at the root r of Ti and define the stopping times σi (which depend on the root r
with type τ(r) = i) as

σi = inf{t > 0 : Xt ∈ s´ ∪ sˆ}
and hitting probabilities Hi,´ and Hi,ˆ as

Hi,´ = Pr[Xσi = s´] and Hi,ˆ = Pr[Xσi ∈ sˆ] (20)

Write Hh
i,´ and Hh

i,ˆ for the corresponding probabilities on the truncated tree T hi . It is easy
to see that Hi,´ (or Hi,ˆ) can be expressed as the quotient between the number of particles
Shi,´ (or Shi,ˆ) that are routed in the sink s´ (or sˆ) and the total number of particles Rh

i

started at the root, that is

Hi,´ =
Shi,´
Rh
i

and Hi,ˆ =
Shi,ˆ
Rh
i

.

One can also obtain that Hi is the solution of the same equation (19), by factorizing the
random walk (Xt) with respect to the first step

1 = Hh
i,´
(
di + 1−

di∑
k=1

Hh−1
χi(k),´

)
= Hh

i,´
(
di + 1−

m∑
j=1

dijH
h−1
j,´
)
, (21)

with the initial value H1
i,´ = 1/(di + 1).
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Example 3.12 (Fibonacci Tree). Consider the order of the root element in the rotor-

router group RR(T̃ hi ) of the wired Fibonacci tree T̃ hi . In this case the equation (19) is
given as: S

h
1,´ = Rh−1

2

Rh
1 = Sh1,´

(
2−

Sh−1
2,´

Rh−1
2

) S
h
2,´ = lcm

(
Rh−1

1 , Rh−1
2

)
Rh

2 = Sh2,´

(
3−

Sh−1
1,´

Rh−1
1

−
Sh−1

2,´
Rh−1

2

)

Computations suggest that on the Fibonacci tree, the sequences Shi,´ and Rh
i are relatively

prime.

Example 3.13 (Bi-regular tree). For the (α, β)-bi-regular tree the recurrence relation
(19) for the order of the root element reduces to the simple form

Rh
1 = Rh−1

2 (α + 1)− αRh−2
1

Rh
2 = Rh−1

1 (β + 1)− βRh−2
2 ,

which has the explicit solution

Rh
1 =


(αβ)k − 1

αβ − 1
(α + 1)β + 1, for h = 2k

(αβ)k+1 − 1

αβ − 1
(α + 1), for h = 2k + 1.

For Rh
2 the solution is the same, with the roles of α and β exchanged.

Acknowledgements. We are grateful to Elmar Teufl for useful disscusions, and also to
the referees whose comments and suggestions improved the paper.
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