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Abstract

Flips of diagonals in colored triangle-free triangulations of a convex polygon are
interpreted as moves between two adjacent chambers in a certain graphic hyperplane
arrangement. Properties of geodesics in the associated flip graph are deduced. In
particular, it is shown that: (1) every diagonal is flipped exactly once in a geodesic
between distinguished pairs of antipodes; (2) the number of geodesics between these
antipodes is equal to twice the number of standard Young tableaux of a truncated
shifted staircase shape.

1 Introduction

It was shown in [1] that the diameter of the flip graph on the set of all colored triangle-free
triangulations of a convex n-gon (to be defined in Subsection 2.1) is exactly n(n − 3)/2.
Observing that this is the number of diagonals in a convex n-gon, it was conjectured by
Richard Stanley that all diagonals are flipped in a geodesic between two antipodes.

In this paper Stanley’s conjecture is proved for distinguished pairs of antipodes (Corol-

lary 5.3 below). The proof applies a C̃n-action on arc permutations, which yields an
embedding of the flip graph in a graphic hyperplane arrangement. Geodesics between
distinguished antipodes in the flip graph are then interpreted as minimal galleries from a
given chamber c to the negative chamber −c, while diagonals are interpreted as separating
hyperplanes.

∗Research of both authors was supported in part by an internal grant from Bar-Ilan University.
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The set of geodesics between these antipodes is further studied in Section 9. It is
shown that the number of these geodesics is equal to twice the number of Young tableaux
of a truncated shifted staircase shape. Motivated by this result, product formulas for
this number, as well as for other truncated shapes, were found by Greta Panova [9] and
Ronald C. King and the authors [2].

2 Triangle-Free Triangulations

In this Section we recall basic concepts and main results from [1].

2.1 Basic Concepts

Label the vertices of a convex n-gon Pn (n > 4) by the elements 0, . . . , n−1 of the additive
cyclic group Zn. Consider a triangulation (with no extra vertices) of the polygon. Each
edge of the polygon is called an external edge of the triangulation; all other edges of the
triangulation are called internal edges, or chords.

Definition 2.1 A triangulation of a convex n-gon Pn is called internal-triangle-free, or
simply triangle-free, if it contains no triangle with 3 internal edges. The set of all triangle-
free triangulations of Pn is denoted TFT (n).

A chord in Pn is called short if it connects the vertices labeled i−1 and i+ 1, for some
i ∈ Zn. A triangulation is triangle-free if and only if it contains only two short chords [1,
Claim 2.3].

A proper coloring (or orientation) of a triangulation T ∈ TFT (n) is a labeling of the
chords by 0, . . . , n− 4 such that

1. One of the short chords is labeled 0.

2. If a triangle has exactly two internal edges then their labels are consective integers
i, i+ 1.

It is easy to see that each T ∈ TFT (n) has exactly two proper colorings. The set of all
properly colored triangle-free triangulations is denoted CTFT (n).

Each chord in a triangulation is a diagonal of a unique quadrangle (the union of two
adjacent triangles). Replacing this chord by the other diagonal of that quadrangle is a flip
of the chord. A flip in a colored triangulation preserves the color of the flipped diagonal.

Definition 2.2 The colored flip graph Γn is defined as follows: the vertices are all the
colored triangle-free triangulations in CTFT (n). Two triangulations are connected in Γn
by an edge labeled i if one is obtained from the other by a flip of the chord labeled i.

See Figure 2.1 for a drawing of Γ7, where the coloring of a triangulation is displayed
by shading the triangle with the short chord labeled 0 and two external edges as sides.
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Figure 1: Γ7

2.2 A C̃n−4-Action on Triangle-Free Triangulations

Let C̃n be the affine Weyl group generated by

S = {s0, s1, . . . , sn−1, sn}

subject to the Coxeter relations
s2i = 1 (∀i), (1)

(sisj)
2 = 1 (|j − i| > 1), (2)

(sisi+1)
3 = 1 (1 6 i 6 n− 2), (3)

and
(sisi+1)

4 = 1 (i = 0, n− 1). (4)

The group C̃n−4 acts naturally on CTFT (n) by flips: Each generator si flips the chord
labeled i in T ∈ CTFT (n), provided that the result still belongs to CTFT (n). If this is
not the case then T is unchanged by si.

Proposition 2.3 [1, Proposition 3.2] This operation determines a transitive C̃n−4-action
on CTFT (n).

This affine Weyl group action on CTFT (n) was used to calculate the diameter of Γn.

Theorem 2.4 [1, Theorem 5.1] The diameter of Γn (n > 4) is n(n− 3)/2.
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For any colored triangle-free triangulation T , denote by TR the colored triangle-free
triangulation obtained by reversing the labeling in T ; namely, the chord labeled i in T is
labeled n− 4− i in TR (0 6 i 6 n− 4).

Theorem 2.5 [1, Proposition 5.6] For every n > 4 and T ∈ CTFT (n), the distance
between T and TR in Γn is exactly n(n− 3)/2.

3 A C̃n−2-Action on Arc Permutations

3.1 Arc Permutations

Let Sn be the symmetric group on the letters 1, . . . , n. Denote a permutation π ∈ Sn by
the sequence [π(1), . . . , π(n)] and transpositions by (i, j).

Intervals in the cyclic group Zn are subsets of the form {i, i + 1, . . . , i + k}, where
addition is modulo n.

Definition 3.1 A permutation π ∈ Sn is an arc permutation if, for every 1 6 k 6 n, the
first k letters in π form an interval in Zn (where n ≡ 0, namely, the letter n is identified
with zero).

Example. π = [1, 2, 5, 4, 3] is an arc permutation in S5, but π = [1, 2, 5, 4, 3, 6] is not an
arc permutation in S6, since {1, 2, 5} is an interval in Z5 but not in Z6.

The following claim is obvious.

Claim 3.2 The number of arc permutations in Sn is n2n−2.

Proof. There are n options for π(1) and two options for every other letter except the last
one. �

Denote by Un the set of arc permutations in Sn.

Definition 3.3 Define φ : Un → Zn × Zn−22 as follows:

1.
φ(π)1 := π(1).

2. For every 2 6 i 6 n− 1, if {π(1), . . . , π(i− 1)} is the arc [k,m] then π(i) is either
k − 1 or m+ 1. Let

φ(π)i :=

{
0, if π(i) = k − 1;

1, if π(i) = m+ 1.

φ is clearly a bijection.
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3.2 A C̃n−2-Action

Let {σi : 1 6 i 6 n− 1} be the Coxeter generating set of the symmetric group Sn, where
σi is identified with the adjacent transposition (i, i+ 1).

Definition 3.4 For every 0 6 i 6 n− 2 define a map ρi : Un → Un as follows:

ρi(π) =

{
πσi+1, if πσi+1 ∈ Un;

π, otherwise.
(∀π ∈ Un)

Note that, for π ∈ Un, πσi+1 ∈ Un iff either i ∈ {0, n− 2} or φ(π)i+1 6= φ(π)i+2.

Observation 3.5 For every π ∈ Un and 1 6 j 6 n− 1,

φ(ρ0(π))j =


φ(π)1 − 1 (mod n), if j = 1 and φ(π)2 = 0;

φ(π)1 + 1 (mod n), if j = 1 and φ(π)2 = 1;

φ(π)2 + 1 (mod 2), if j = 2;

φ(π)j, if j 6= 1, 2,

φ(ρi(π))j = φ(π)σi+1(j) (1 6 i 6 n− 1, ∀j)

and

φ(ρn−2(π))j =

{
φ(π)j, if j 6= n− 1;

φ(π)n−1 + 1 (mod 2), if j = n− 1.

Proposition 3.6 The maps ρi, when extended multiplicatively, determine a well defined
transitive C̃n−2-action on the set Un of arc permutations.

Proof. To prove that the operation is a C̃n−2-action, it suffices to show that it is consistent
with the Coxeter relations defining C̃n−2 when the operator ρi is interpreted as an action
of the generator si. All relations may be easily verified using Observation 3.5; we leave
the details to the reader.

To prove that the action is transitive, notice first that ρ0(π)(1) = π(2) =
π(1)± 1 (mod n). It thus suffices to prove that, for every 1 6 k 6 n, the maximal

parabolic subgroup 〈s1, . . . , sn−2〉 of C̃n−2 acts transitively on the set U
(k)
n := {π ∈ Un :

π(1) = k}. Indeed, this parabolic subgroup is isomorphic to the classical Weyl group

Bn−2. By Observation 3.5, the restricted Bn−2-action on U
(k)
n may be identified with the

natural Bn−2-action on all subsets of {1, . . . , n− 2}, and is thus transitive.
�
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4 A Graphic Hyperplane Arrangement

4.1 Real Hyperplane Arrangements

Let A be an arrangement of finitely many linear hyperplanes in Rd that is central and
essential, meaning that ∩H∈AH = {0}. Let L = tdi=0Li be the corresponding graded
poset of intersection subspaces, ordered by reverse inclusion. L is a geometric lattice.

Let C be the set of chambers ofA, namely the connected components of the complement
Rd \∪H∈AH. Define a graph structure G1(A) on the set of vertices C, with two chambers
c, c′ ∈ C connected by an edge if they are separated by exactly one hyperplane in A.
It is well-known that the diameter of this graph is equal to the number of hyperplanes,
|L1| = |A|.

The reflection arrangement An−1 of type An−1, corresponding to the symmetric group
Sn, has as ambient space the (n− 1)-dimensional subspace

W = {x̄ = (x1, . . . , xn) ∈ Rn |x1 + . . .+ xn = 0}

of Rn. Its hyperplanes are Hij := {x̄ ∈ W |xi = xj} for 1 6 i < j 6 n. The chambers
may be identified with permutations in Sn, via

cπ := {x̄ ∈ W |xπ(1) < xπ(2) < · · · < xπ(n)} (∀π ∈ Sn).

The symmetric group Sn acts on the chambers via σi(cπ) := cπσi , the unique chamber
which is separated from cπ only by the hyperplane Hπ(i),π(i+1). Then, for every π ∈ Sn, cπ
and −cπ = cπw0 are antipodes in the graph G1(An−1), where w0 := [n, n− 1, . . . , 1] is the
longest element in Sn.

A (simple undirected) graph G = (V,E) of order n consists of a set V = {v1, . . . , vn} of
vertices and a set E of edges, which are unordered pairs of distinct vertices. The associated
graphic arrangement A(G) is the hyperplane arrangement in W ∼= Rn−1 defined by

A(G) := {Hij | {vi, vj} ∈ E} ⊆ An−1.

For example, if Kn be the complete graph of order n then the associated graphic arrange-
ment A(Kn) is the whole reflection arrangement An−1. For more information see [8].

4.2 The Graph of Chambers G1(U
′
n)

Definition 4.1 Let G be a graph of order n. Two permutations π, τ ∈ Sn are G-
equivalent if the points (π(1), . . . , π(n)), (τ(1), . . . , τ(n)) ∈ W lie in the same chamber
of the associated graphic arrangement A(G).

Index by 1, . . . , n the vertices of the complete graph Kn, and consider the graph K ′n
obtained by deleting the edges {1, 2}, {2, 3}, . . ., {n − 1, n} and {n, 1} from Kn. Let
A′n−1 := A(K ′n) be the associated graphic arrangement. Two permutations π, τ ∈ Sn
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are K ′n-equivalent if and only if there exist permutations π = π0, π1, . . . , πt = τ such
that, for every 0 6 r 6 t − 1, there exists 1 6 i 6 n − 1 such that πr+1 = πrσi and
πrσiπ

−1
r ∈ {σj : 1 6 j 6 n − 1} ∪ {(1, n)}. In other words, the K ′n-equivalence is the

transitive closure of the the following relation: there exist 1 6 j < n such that the letters
j and j + 1, or 1 and n, are adjacent in π, and τ is obtained from π by switching their
positions.

Remark 4.2 Since K ′n is invariant under the natural action of the dihedral group I2(n),
this group may be embedded in the automorphism group of the graph G1(A′n−1). Indeed,
let γ be the cycle (1, 2, . . . , n) ∈ Sn and w0 := [n, n− 1, . . . , 1] the longest element in Sn.
If A is a K ′n-equivalence class then for 0 6 j < n and ε ∈ {0, 1}, wε0γjA is a also K ′n-
equivalence class. Moreover, edges in G1(A′n−1) are indexed by pairs of K ′n-equivalence
classes, where for every such a pair, (A,B) is an edge in G1(A′n−1) if and only if wε0γ

j(A,B)
is an edge in G1(A′n−1).

Definition 4.3 (i) Define K̃ ′n-equivalence on the subset of arc permutations Un ⊂ Sn
as the transitive closure of the relation: there exist 1 6 j < n such that the letters
j and j + 1, or 1 and n, are adjacent in π, and τ is obtained from π by switching
their positions.

(ii) Let U ′n be the set of K̃ ′n-equivalence classes in Un.

(iii) Let G1(U
′
n) be the graph whose vertex set is U ′n; two K̃ ′n-equivalence classes in U ′n

are adjacent in G1(U
′
n) if they have representatives, whose corresponding chambers

in G1(An−1) lie in adjacent chambers in G1(A′n−1).

Observation 4.4 For n > 3 all K̃ ′n-equivalence classes in Un consist of four permutations
{π, πσ1, πσn−1, πσ1σn−1}.

Proof. For every π ∈ Un and 1 < i < n− 2, if π(i+ 1) = π(i)± 1 then πσi 6∈ Un. On the
other hand, for every π ∈ Un and i ∈ {1, n− 1}, πσi ∈ Un. �

Note that, by definition, two K̃ ′n-equivalent arc permutations are K ′n-equivalent in Sn;
hence, they lie in same chamber in G1(A′n−1). One concludes that G1(U

′
n) contains no

loops.

Example 4.5

(a) For n = 4 there are four K ′4-equivalence classes in S4:

1234 = {[1234], [1324], [2134], [1243], [2143], [2413]} and its images under cyclic ro-
tations γj1234, 0 6 j < 4.

The edges in the graph G1(A′3) are all cyclic rotations of (1234,2341), thus the
graph is a 4-cycle. Since, each K ′4-equivalence class contains one K̃ ′4-class in U ′4, the
graphs G1(A′3) and G1(U

′
4) are identical.
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(b) For n = 5 there are three types of K ′4-equivalence classes in S5:

12345 = {[12345], [13245], [21345], [12435], [21435], [12354], [13254], [21354]} and its
ten images under dihedral group action wε0γ

j12345, 0 6 j < 5, ε ∈ {0, 1};
13452 = {[13452], [14352], [13542]} and its ten images under dihedral group action;

13524 = {[13524]} and its ten images under dihedral group action.

The edges in the graph G1(A′4) are
{(12345,32154), (12345,13524), (12345,24135), (12345,14325),
(13524,13452), (13524,35124), (13452,14325)} and their images under the di-
hedral group action.

There are ten K̃ ′4-equivalence classes in U4, each contained in one of the images
under the dihedral group action of 12345. Thus the graph G1(U

′
5) is a 10-cycle.

5 Stanley’s Conjecture

It was conjectured by Richard Stanley [12] that all diagonals are flipped in a geodesic
between two antipodes in the flip graph Γn of colored triangle-free triangulations. A
bijection between the set of triangle-free triangulations in CTFT (n) and the subset U ′n
of chambers in the graphic hyperplane arrangement A(K ′n), which preserves the under-
lying graph structure, is applied to prove Stanley’s conjecture for distinguished pairs of
antipodes.

Theorem 5.1 The flip graph Γn (without edge labeling) is isomorphic to the graph of
chambers G1(U

′
n).

Furthermore,

Theorem 5.2 There exists an edge-orientation of the flip graph Γn such that, for any
oriented edge of adjacent triangulations (T, S), S is obtained from T by flipping the di-
agonal [i, j] if and only if the corresponding chambers are separated by the hyperplane
xi = xj.

It follows that Stanley’s conjecture holds for distinguished pairs of antipodes.

Corollary 5.3 For every colored triangle-free triangulation T ∈ CTFT (n), every diag-
onal is flipped exactly once along the shortest path from T to same triangulation with
reversed coloring TR.
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6 Proof of Theorem 5.1

6.1 A C̃n−4-Action on U ′n

For every π ∈ Un denote the K ′n-class of π in Un by π̄. By Observation 4.4, for every π ∈
Un, π̄ ∈ U ′n may be represented by a series of n−2 subsets: {π(1), π(2)}, {π(3)}, . . . , {π(n−
2)}, {π(n− 1), π(n)}, where all subsets except of the first and the last are singletons.

For every simple reflection σi ∈ Sn−2, 1 < i < n − 3, let π̄σi be the series of subsets
obtained from π̄ by replacing the letters in the i-th and i + 1-st subsets. Let π̄σ1 be
obtained from π̄ by replacing letters in the first two subsets as follows: if {π(1), π(2)} =
{π(3) − 2, π(3) − 1} then the first two subsets in π̄σ1 are {π(3), π(3) − 1}, {π(3) − 2};
{π(1), π(2)} = {π(3) + 1, π(3) + 2} then the first two subsets in π̄σ1 are {π(3), π(3) +
1}, {π(3) + 2}. Similarly, π̄σn−3 is obtained from π̄ by replacing the letter in the n− 3-rd
subset with π(n − 2) − 2 if {π(n − 1), π(n)} = {π(n − 2) − 2, π(n − 2) − 1} and with
π(n+ 2) otherwise.

For every 0 6 i 6 n let θi : U ′n 7→ U ′n be

θi(π̄) =

{
π̄σi+1, if π̄σi+1 ∈ U ′n,
π̄, if π̄σi+1 6∈ U ′n.

(∀π̄ ∈ U ′n)

Observation 6.1 The maps θi, (0 6 i 6 n − 4), when extended multiplicatively, deter-

mine a well defined transitive C̃n−4-action on U ′n.

Proof is similar to the proof of Observation 3.6 and is omitted.

Observation 6.2 Two chambers in π̄, τ̄ ∈ U ′n are adjacent in G1(U
′
n) if and only if there

exist 0 6 i 6 n− 4, such that θi(π̄) = τ̄ .

6.2 A Graph Isomorphism

Let f : CTFT (n) 7→ U ′n be defined as follows: if [a, a + 2] is the short chord labeled 0
then let {π(1), π(2)} = {a, a+ 1}. For 0 < i < n− 4, assume that the chord labeled i− 1
in T is [a− k, a+m] for some k,m > 1, k+m = i+ 1. The chord labeled i is then either
[a− k − 1, a+m] or [a− k, a+m+ 1]. Let i+ 1-st subset be {a− k − 1} in the former
case and {a + m} in the latter. Finally, let the last subset consist of the remaining two
letters.

Claim 6.3 The map f : CTFT (n) 7→ U ′n is a bijection.

Proof. The map f is invertible. �

Recall the definition of TR from Section 2.

Observation 6.4 For every T ∈ CTFT (n), f(TR) is obtained from f(T ) by reversing
the order of the subsets.
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Recall from Subsection 2.2 the affine Weyl group C̃n−4-action on CTFT (n).

To complete the proof of Theorem 5.1 it suffices to show that

Proposition 6.5 For every Coxeter generator si of C̃n−4 (0 6 i 6 n − 4) and T ∈
CTFT (n)

f(siT ) = sif(T ),

where sif(T ) := θi(f(T )).

Proof. For i = 0, let [a, a+ 2] be the short chord labeled 0 in T . Then the chord labeled
1 is either [a, a + 3] or [a− 1, a + 2]. In the first case the short chord labeled 0 in s0T is
[a+ 1, a+ 3] and all other chords are unchanged, in particular, the chord labeled 1 in s0T
is [a, a+3]. By definition of the map f , the first two subsets in f(T ) are {a, a+1}, {a+2}
and the first two subsets in f(s0T ) are {a+1, a+2}, {a} and the rest are not changed. On
the other hand, by definition of θ0, the first two subsets in s0f(T ) are {a+ 1, a+ 2}, {a}
and the rest are unchanged. A similar analysis shows that f(s0T ) = s0f(T ) when the
chord labeled 1 is [a− 1, a+ 2].

For 0 < i < n− 4 let the chord labeled i− 1 in T be [a− k, a+m] for some k,m > 1,
k+m = i+1. The chords labeled i and i+1 are then either [a−k−1, a+m], [a−k−2, a+m]
respectively, or [a−k, a+m+1], [a−k, a+m+2] or [a−k−1, a+m], [a−k−1, a+m+1]
or [a−k, a+m+1], [a−k−1, a+m+1]. In the first two cases siT = T , so f(siT ) = f(T ).
On the other hand, in these cases f(T )σi 6∈ U ′n, so sif(T ) = f(T ).

If the chords labeled i and i+1 in T are [a−k−1, a+m], [a−k−1, a+m+1] respectively,
then the chords labeled i and i + 1 in siT are [a − k, a + m + 1], [a − k − 1, a + m + 1].
So, the i-th and i+ 1-st subsets in f(T ) are {a− k − 1}, {a+m}, and they are switched
in sif(T ), so same as the corresponding subsets in f(siT ). The proof of the forth case is
similar.

Finally, by Observation 6.4, f(s0T ) = s0f(T ) implies that f(sn−4T ) = sn−4f(T ).
�

7 Proof of Theorem 5.2

7.1 Orienting the Colored Flip Graph

The goal of this subsection is to equip the colored flip graph Γn with an edge orientation
that will be used to encode the location of the flipped diagonals. It will be proved later
that this orientation satisfies the conditions of Theorem 5.2. Our starting point is the
edge labeling, mentioned in Section 2, which encodes the order of the chords.

Recall from [1] the bijection

ϕ : CTFT (n)→ Zn × Zn−42
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defined as follows: Let T ∈ CTFT (n). If the (short) chord labeled 0 in T is [a− 1, a+ 1]
for a ∈ Zn, let ϕ(T )0 := a. For 1 6 i 6 n − 4, assume that the chord labeled i − 1 in
T is [a − k, a + m] for some k,m > 1, k + m = i + 1. The chord labeled i is then either
[a − k − 1, a + m] or [a − k, a + m + 1]. Let ϕ(T )i be 0 in the former case and 1 in the
latter.

By definition of the map ϕ,

Claim 7.1 For every vector v = (v0, . . . , vn−4) ∈ Zn×Zn−42 and every 0 6 i 6 n− 4, the
diagonal labeled i in the triangulation T = ϕ−1(v) is [k,m] where

k := v0 − 1− i+
i∑

j=1

vi ∈ Zn

and

m := v0 + 1 +
i∑

j=1

vi ∈ Zn.

Here 0, 1 ∈ Z2 are interpreted as 0, 1 ∈ Zn.

It follows that

Corollary 7.2 [1, Lemma 5.7] For every T ∈ CTFT (n), if ϕ(T ) = (v0, . . . , vn) then

ϕ(TR)0 = 2 +
n−4∑
i=0

vi ∈ Zn and ϕ(TR)i = 1− vn−3−i ∈ Z2 (1 6 i 6 n− 4).

Observation 7.3 [1, Observation 3.1] For every T ∈ CTFT (n) and a Coxeter generator

si of C̃n−4

(ϕ(s0T ))j =


ϕ(T )j, if j 6= 0, 1,

ϕ(T )0 + 1 (mod n), if j = 0 and ϕ(T )1 = 0,

ϕ(T )0 − 1 (mod n), if j = 0 and ϕ(T )1 = 1,

ϕ(T )1 + 1 (mod 2), if j = 1 and ϕ(T )1 = 0;

(ϕ(sn−4T ))j =

{
ϕ(T )j, if j 6= n,

ϕ(T )n + 1 (mod 2), if j = n;

and
(ϕ(siT ))j = ϕ(T )σi(j) (0 < i < n− 4);

where σi := (i, i+ 1) the adjacent transposition.

We use this observation to orient the edges in Γn.
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Definition 7.4 Orient the edges in Γn as follows: If the diagonal labeled n− 4 is flipped
orient the corresponding edge from the triangulation encoded by last entry 0 to the one
with last entry 1. If the flip is of the diagonal labeled 0 < i < n− 4 orient the edge from
T with ϕ(T )i = 0, ϕ(T )i+1 = 1 to the one with these two entries switched; if it flips the
diagonal labeled 0 orient it by the first entry from T with ϕ(T )0 = j to the one with first
entry under ϕ being j + 1.

See Figure 7.1 for the orientation of Γ6, where each colored triangulation T is labeled
by the vector ϕ(T ).

000

511

510

501

500

410
411

001

401

311

400

310

010

100

011
101

110
111

200

201

210

211

301

300

Figure 2: Γ6 with orientation

Lemma 7.5 For every T ∈ CTFT (n), the orientation of the edges along any geodesic
from T to TR is coherent with the orientation of Γn described in Definition 7.4; namely,
all edges in a geodesic have the same orientation as in the oriented Γn or all have the
opposite orientation.

Proof. Consider the dominance order on vectors in Zn × Zn−42 ; namely,

(v0, . . . , vn−4) 6 (u0, . . . , un−4)

if and only if
k∑
i=0

vi 6
k∑
i=0

ui (0 6 k 6 n− 4),
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where 0, . . . , n− 1 ∈ Zn are interpreted as 0, . . . , n− 1 ∈ Z, and similarly for Z2.
The resulting poset is ranked by

`(v0, . . . , vn−4) :=
n−4∑
i=0

(n− 3− i)vi.

Using Corollary 7.2, the reader can verify that for every T ∈ CTFT (n)

`(ϕ(TR))− `(ϕ(T )) ≡ n(n− 3)/2 (mod n(n− 3)),

which is the distance between T and TR (Theorem 2.5).
Finally, notice that for every edge e = (S1, S2) in Γn, the edge e is oriented from S1

to S2 if and only if
`(ϕ(S2))− `(ϕ(S1)) ≡ 1 (mod n(n− 3))

One concludes that either all steps in a geodesic increase the rank function by one
modulo n(n− 3) or all steps decrease it by one. Hence the lemma holds.

�

We note that this proof essentially appears (implicitly) in [1], where an algebraic

interpretation of the rank function as a length function on C̃n−4 is given; see, in particular,
[1, Sections 3.3 and 5.2].

Now color each edge (S1, S2) of Γn, oriented from S1 to S2, by the chord [i, j] which is
erased from S1. Ignore the edge-orientation and let Γ̂n be the resulting edge-labeled flip
graph.

7.2 Edge-Colored Graph Isomorphism

Consider an edge-labeled version of the graph G1(U
′
n), denoted by Ĝ1(U

′
n), where the edge

between two adjacent chambers is labeled by the separating hyperplane.

Theorem 7.6 The edge-labeled graphs Ĝ1(U
′
n) and Γ̂n are isomorphic.

Note that this theorem implies Theorem 5.2.

Proof.
By Observation 6.2, two chambers π̄, τ̄ ∈ U ′n are adjacent in G1(U

′
n) if and only if there

exist corresponding arc permutations π, τ ∈ Un and 1 < i < n − 1, such that πσi = τ .
The separating hyperplane is then xk = xm if and only if (k,m)π = τ , or equivalently
πσiπ

−1 = (k,m), for the transposition (k,m) ∈ Sn.

Recall the bijection f : CTFT (n) 7→ U ′n, defined in Subsection 6.2. Since f induces
a graph isomorphism, for every 1 < i < n − 1, if π, πσi are two arc permutations then
f−1(π̄), f−1(πσi)) forms an edge in Γn. In order to prove Theorem 5.2, it suffices to show
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that f−1(π̄σi)) is obtained from f−1(π̄) by flipping the diagonal [k,m], when the edge is
oriented from f−1(π̄) to f−1(π̄σi).

Indeed, an edge is oriented from f−1(π̄) to f−1(πσ1) if and only if the latter triangula-
tion is obtained from the first by flipping the short chord labeled 0 [a−1, a+1]; namely, by
replacing the diagonal [a−1, a+1] by [a, a+2], where the diagonal labeled 1 is [a−1, a+2].
By definition of the map f the first two subsets in π̄ are {a − 1, a}, {a + 1} and in πσ1:
{a, a + 1}, {a− 1}. Letting π = [a, a− 1, a + 1, . . . ] one gets πσ1π

−1 = (a− 1, a + 1), so
the separating hyperplane is xa−1 = xa+1.

For 1 < i < n− 3, an edge is oriented from f−1(π̄) to f−1(πσi) if and only if the chord
labeled i − 1 is [a − k, a + m] and the latter triangulation is obtained from the first by
flipping a diagonal [a−k−1, a+m]; namely, by replacing the diagonal [a−k−1, a+m] by
[a− k, a+m+ 1]. Then the i-th and i+ 1-st subsets in π̄, which are {a− k− 1}, {a+m},
are switched in πσi+1. So π(i) = a − k − 1 and π(i + 1) = a + m + 1, and πσi+1π

−1 =
(a− k − 1, a+m).

Finally, an edge is oriented from f−1(π̄) to f−1(πσn−3) if and only if the chord labeled
n− 5 is [b− 2, b+ 1] and the latter triangulation is obtained from the first by flipping the
short chord labeled n− 4 [b− 1, b+ 1]; namely, by replacing the diagonal [b− 1, b+ 1] by
[b, b+2]. Then the last two subsets in π̄ are {b−1}, {b, b+1} and in πσn−3: {b}, {b−1, b}.
So π = [. . . , b− 1, b+ 1, b] one gets πσn−3π

−1 = [b− 1, b+ 1].
�

8 Proof of Corollary 5.3

Recall that T and TR are antipodes (Theorem 2.5).

Proposition 8.1 For every colored triangle-free triangulation T ∈ CTFT (n), the corre-
sponding chambers in A(K ′n) satisfy

cf(TR) = −cf(T ).

Proof. Let w0 := [n, n− 1, n− 2, . . . .1] be the longest permutation in Sn. It follows from
Observation 6.4 that for every π ∈ Un

(f−1(π̄))R = f−1(πw0).

Notice that the points π and πw0 in Rn belong to negative chambers c and −c. The proof
is completed.

�

Proof of Corollary 5.3. By Proposition 8.1, the set of hyperplanes which separate
the chamber cf(T ) from the chamber cf(TR) is the set of all hyperplanes in A(K ′n). By
Theorem 7.6 together with Lemma 7.5, one deduces that all diagonals have to be flipped
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at least once in a geodesic from T to TR. Finally, by Theorems 2.4 and 2.5, the distance
between T and TR in Γn is equal to the number of diagonals in a convex n-gon. Hence,
each diagonal is flipped exactly once.

�

9 Geodesics and Shifted Tableaux

Let T0 be the canonical colored star triangle-free triangulation; that is the triangulation,
which consists of the chords [0, 2], [0, 3], . . . , [0, n− 2] labeled 0, . . . , n− 4 respectively.

9.1 Order on the Diagonals

By Corollary 5.3, every geodesic from the canonical colored star traingle-free triangulation
T0 to TR0 determines a linear order on the diagonals. The following theorem characterizes
these linear orders.

Theorem 9.1 An order on the set of diagonals {[i, j] : 1 6 i < j − 1 6 n − 1} of a
convex n-gon appears in geodesics in Γn from T0 to its reverse TR0 if and only if it is a
linear extension of the coordinate-wise order with respect to the natural order

0 < 1 < 2 < · · · < n− 1,

or its reverse
0 ≡ n < n− 1 < n− 2 < · · · < 1.

Proof. Clearly, every geodesic from T0 to TR0 starts with either flipping [0, 2] or [0, n−2].
By symmetry, exactly half start by flipping [0, 2].

First, we will prove that an order on the set of diagonals of a convex n-gon corre-
sponding to geodesics from T0 to TR0 , which start by flipping [0, 2], is a linear extension
of the coordinate-wise order with respect to the natural order 0 < 1 < 2 < · · · < n− 1.

Recall that by Corollary 5.3, every hyperplane is not crossed more than once. Thus,
in order to prove this, it suffices to show that in every gallery from the identity chamber
c[0,1,2,...,n−1] to its negative, that start by crossing the hyperplane H0,2, the hyperplane Hk,l

is crossed after the hyperplane Hi,j, whenever i + 1 < j, k + 1 < l, and (i, j) < (k, l)
in point-wise coordinate order. In other words, it suffices to prove that for every arc
permutation π ∈ Un, if π̄ ∈ U ′n corresponds to a chamber in such a gallery then π−1(i) <
π−1(j) =⇒ π−1(k) < π−1(l).

Clearly, this holds for the arc permutations which correspond to the identity cham-
ber c[0,1,...,n−1] and to its negative −c[0,1,...,n−1] = c[n−1,n−2,...,0]. With regard to all other
chambers in these galleries, notice first, that all geodesics from T0 to TR0 must end by
flipping either [n − 3, n − 1] or [1, 3]. Let S ∈ CTFT (n) be the triangulation, which
consists of the chords [1, 3], [0, 3], [0, 4], . . . , [0, n − 2] labeled 0, 1, . . . , n − 4 respectively.
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Then TR0 is obtained from SR by flipping [1, 3] and S is obtained from T0 by flipping [0, 2].
Since S and SR are antipodes, it follows that S does not appear in a geodesic from T0
to TR0 which start by flipping [0, 2]. Thus every geodesic from T0 to TR0 , which start by
flipping [0, 2] must end by flipping [n − 3, n − 1]. One concludes that for every π ∈ Un,
if π̄ ∈ U ′n is a chamber in such a gallery which is not first or last, then π−1(2) < π−1(0)
and π−1(n− 3) < π−1(n− 1). Thus the first letter in π, π(0), is not 0 or n− 1. There are
three cases to analyze:

If π(0) = 1 then, since π−1(n − 3) < π−1(n − 1) and π is an arc permutation, 0 =
π−1(1) < π−1(2) < · · · < π−1(n− 3) < π−1(n− 1)).

If π(0) = n − 2 then, since π−1(2) < π−1(0) and π is an arc permutation, 0 =
π−1(n− 2) < π−1(n− 3) < · · · < π−1(2) < π−1(0).

Finally, if 2 6 π(0) 6 n−3 then, since π−1(n−3) < π−1(n−1), π−1(2) < π−1(0) and π
is an arc permutation, letting π(0) := i the following holds: 0 = π−1(i) < π−1(i− 1) · · · <
π−1(2) < π−1(0) and 0 = π−1(i) < π−1(i+ 1) < · · · < π−1(n− 3) < π−1(n− 1).

It follows that for every π ∈ Un, such that π̄ is a chamber in a gallery from the
identity chamber to its negative that start by flipping [0, 2], there is no (i, j) < (k, l) in
point-wise coordinate order, with i+ 1 < j and k + 1 < l, such that π−1(i) < π−1(j) but
π−1(k) > π−1(l). One concludes that there is no (i, j) < (k, l) in point-wise coordinate
order, with i+ 1 < j and k + 1 < l, such that [i, j] is flipped after [k, l].

It remains to prove the opposite direction, namely, to show that every linear extension
of the coordinate-wise order appears as a geodesic. To prove this, first, notice that the
lexicographic order does appear. Then observe that if i < j < k < l and [i, l] and [j, k]
are consequent flipped diagonals in the geodesic then it is possible to switch their order
in the geodesic. This completes the proof for geodesics from T0 to TR0 , which start by
flipping [0, 2].

Finally, to prove that geodesics from T0 to TR0 , which start by flipping [0, n − 2], are
characterized by linear extensions with respect to the order 0 ≡ n < n−1 < n−2 < · · · <
1, observe that these geodesics may be obtained from geodesics that start by flipping [0, 2]
via the reflection which maps every 0 6 i 6 n− 1 to n− i.

�

9.2 Skew Shifted Young Lattice

Definition 9.2 For a positive integer n let Λ(n) be the set of all partitions with largest
part 6 n and with all parts distinct, except possibly the first two parts when they are equal
to n. Namely,

Λ(n) := {λ = (λ1, . . . , λk) : k > 0, n > λ1 > λ2 > λ3 > · · · > λk > 0 and

[either λ1 > λ2 or λ1 = λ2 = n]}.

Let (Λ(n),⊆) the poset of partitions in Λ(n) ordered by inclusion of the corresponding
Young diagrams.
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Example 9.3

Λ(3) = { (3, 3, 2, 1), (3, 3, 2), (3, 3, 1), (3, 3),

(3, 2, 1), (3, 2), (3, 1), (3), (2, 1), (2), (1), () }.

Consider the standard tableaux of truncated shifted staircase shape (n− 1, n− 1, n−
2, n− 3, . . . , 2, 1). Denote this set by Y (n).

Example 9.4 The truncated shifted staircase shape (3, 3, 2, 1) is drawn in the following
way:

X X X ∗
X X X

X X
X

There are four standard tableaux of this shape

1 2 3 ∗
4 5 6

7 8
9

,

1 2 4 ∗
3 5 6

7 8
9

,

1 2 3 ∗
4 5 7

6 8
9

,

1 2 4 ∗
3 5 7

6 8
9

Observation 9.5 1. The maximal chains in (Λ(n),⊆) are parameterized by the set of
standard tableaux of truncated shifted staircase shape (n− 1, n− 1, n− 2, . . . , 1).

2. The linear extensions of the coordinate-wise order on the set

{(i, j) : 0 6 i+ 1 < j 6 n} \ {(0, n)}

are parameterized by the set of standard tableaux of truncated shifted staircase shape
(n− 1, n− 1, n− 2, . . . , 1).

With any standard tableau of truncated shifted staircase shape T associate two words
of size

(
n
2

)
− 1, r(T ) and c(T ), where r(T )i (c(T )i), (1 6 i 6

(
n
2

)
− 1), is the row

(respectively, column) where entry i is located.

Example 9.6 Let P,Q be the first two tableaux in Example 9.4. Then
r(P ) = (1, 1, 1, 2, 2, 2, 3, 3, 4), c(P ) = (1, 2, 3, 2, 3, 4, 3, 4, 4), r(Q) = (1, 1, 2, 1, 2, 2, 3, 3, 4)
and c(Q) = (1, 2, 2, 3, 3, 4, 3, 4, 4),
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9.3 Geodesics and Tableaux

Denote the set of geodesics from T0 ∈ CTFT (n) to TR0 starting by flipping [0, 2] by
D(T0)

+.

Proposition 9.7 1. There is a bijection from the set of geodesics D(T0)
+ to Y (n− 3)

(the set of standard tableaux on truncated shifted staircase partition (n−3, n−3, n−
4, . . . , 1))

φ : D(T0)
+ → Y (n− 3).

2. For every geodesic u ∈ D(T0)
+, the diagonal flipped at the i-th step is

[r(φ(u))i − 1, c(φ(u))i + 1].

Example 9.8 The bijection φ maps the tableau

1 2 4 ∗
3 5 6

7 8
9

to the series of diagonals: [0, 2], [0, 3], [1, 3], [0, 4], [1, 4], [1, 5], [2, 4], [2, 5], [3, 5].

Proof. Combining Theorem 9.1 with Observation 9.5(2). �

Let dn denote the number of geodesics from the canonical star triangulation T0 of an
n-gon to its reverse TR0 . By Proposition 9.7, dn/2 is equal to the number of standard
tableaux of truncated shifted staircase shape (n− 3, n− 3, , n− 4, . . . , 1). Partial results
regarding dn were stated in an early version of this preprint. Subsequently, an explicit
multiplicative formula was proved by Greta Panova [9] and Ronald C. King and the
authors [2].

Theorem 9.9 The number of geodesics from the canonical star triangulation T0 of a
convex n-gon to its reverse TR0 is

dn = g[n−6] ·
(

N

4n− 15

)
· 8(2n− 9)

n− 3
=

N ! · 8(2n− 9)

(4n− 15)! · (n− 3)
·
n−7∏
i=0

i!

(2i+ 1)!
,

where g[n−6] := g(n−6,n−7,...,1) is the number of standard Young tableaux of shifted staircase
shape (n− 6, n− 7, . . . , 1) and N := n(n− 3)/2.
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