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Abstract

In this paper, we study polynomials with only real zeros based on the method
of compatible zeros. We obtain a necessary and sufficient condition for the com-
patible property of two polynomials whose leading coefficients have opposite sign.
As applications, we partially answer a question proposed by M. Chudnovsky and P.
Seymour in the recent publication [M. Chudnovsky, P. Seymour, The roots of the
independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007)
350–357]. We also establish the connection between the interlacing property and
the compatible property of two polynomials and give a simple proof of some known
results.

Keywords: Polynomials with only real zeros; Compatible sequences; Common
interleaver

1 Introduction

Polynomials with only real zeros arise often in combinatorics and other branches of
mathematics. We refer the reader to [1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16] for many
results on this subject. There are various methods for proving that polynomials have only
real zeros. One basic method is to prove by induction that polynomials have interlaced
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real zeros. So far there have been quite a few papers obtained by this method [1, 2, 3,
5, 8, 9, 10, 11, 13, 16]. Recently using the method of compatible zeros, Chudnovsky and
Seymour [4] gave that all zeros of the independence polynomial of a clawfree graph are
real, which shows that this method is also a powerful tool to attack problems of the reality
of zeros of polynomials. This is the motivation for us to study polynomials with only real
zeros using the method of compatible zeros in this paper.

Following Wagner [15], a real polynomial is said to be standard if either it is identically
zero or its leading coefficient is positive. Denote by RZ the set of real polynomials with
only real zeros. Given a polynomial f(x) in RZ of degree n, we arrange all zeros (counting
multiplicities) of f(x) in a nonincreasing sequence R(f) = (r1, r2, . . . , rn)>. Let {fi(x)}ki=1

be a sequence of polynomials with real coefficients. We say that it is compatible if for all
c1, . . . , ck > 0, the polynomial

∑k
i=1 cifi(x) ∈ RZ. We say that it is pairwise compatible if

for all i, j ∈ {1, . . . , k}, polynomials fi(x) and fj(x) are compatible.
Given two nonincreasing sequences (r1, r2, . . . , rn)> and (s1, s2, . . . , sm)> of real num-

bers, we say that these two sequences are compatible if | m − n |6 1 and max{ri, si} 6
min{ri−1, si−1} for all 1 6 i 6 min{m,n}. For a polynomial f(x), denote by nf (x) the
number of real zeros of f(x) that lie in the interval [x,∞) (counted with their multiplici-
ties). Chudnovsky and Seymour [4] gave the following result which shows the equivalence
of the compatible property of two polynomials and their sequences of zeros when leading
coefficients of these two polynomials have the same sign.

Proposition 1.1 ([4]). Let f and g be real polynomials with positive leading coefficient.
Then f and g are compatible if and only if |nf (x)− ng(x)| 6 1 for all x ∈ R.

Suppose that two polynomials f ∈ RZ and g ∈ RZ. Let R(f) = (r1, r2, . . . , rn)> and
R(g) = (s1, s2, . . . , sm)>. Following [15], we say that g alternates left of f (g alternates f
for short) (g 4alt f) if deg f = deg g = n and

sn 6 rn 6 sn−1 6 · · · 6 s2 6 r2 6 s1 6 r1. (1.1)

We say that g interlaces f (g 4int f) if deg f = deg g + 1 = n and

rn 6 sn−1 6 · · · 6 s2 6 r2 6 s1 6 r1. (1.2)

Let g 4 f denote “either g alternates f or g interlaces f”. We say that g interleaves
f if g 4 f . If g 4int f , then we also say that their sequences of zeros R(g) 4int R(f).
Similarly, we can define R(g) 4alt R(f) and R(g) 4 R(f). For notational convenience,
let a 4 bx+ c for any real constants a, b, c and f 4 0, 0 4 f for any f ∈ RZ.

Let {fi(x)}ni=0 be a sequence of polynomials with all zeros real. Following [4], a common
interleaver for {fi(x)}ni=0 is a sequence of real numbers that interleaves the sequence of
zeros of fi(x) for all 1 6 i 6 n. In order to prove the reality of zeros of the independence
polynomial of a clawfree graph, Chudnovsky and Seymour [4] gave the following result by
means of the Helly property of linear interval.

Proposition 1.2 ([4, Theorem 3.6]). Let {fi(x)}ni=1 be polynomials with positive leading
coefficients and fi(x) ∈ RZ for all 1 6 i 6 n. Then the following four statements are
equivalent.

the electronic journal of combinatorics 19(3) (2012), #P33 2



(i) f1, . . . , fn are pairwise compatible.

(ii) fi, fj have a common interleaver for all 1 6 i < j 6 n.

(iii) f1, . . . , fn have a common interleaver.

(iv) f1, . . . , fn are compatible.

Without the assumption that leading coefficients of polynomials are all positive, Chud-
novsky and Seymour [4] showed that Proposition 1.2 (i) and (iv) are no longer equivalent.
And they also proposed the following:

“. . . it is possible that statements Proposition 1.2 (iii) and (iv) are equivalent under
an appropriate modification of the definition of a common interleaver.”

This leads to the following two problems.

Problem 1.3. Suppose that leading coefficients of f, g have opposite sign and f, g ∈ RZ.
Under what conditions f and g are compatible?

Problem 1.4. Suppose that {fi(x)}ni=1 be real polynomials and fi(x) ∈ RZ for all 1 6
i 6 n. Under what conditions Proposition 1.2 (iii) can imply (iv)?

The object of this paper is to study polynomials with only real zeros by the method
of compatible zeros. In Section 2, we show a necessary and sufficient condition for the
compatible property of two polynomials whose leading coefficients have opposite sign.
As applications, we can give a solution to Problems 1.3 and 1.4 respectively. We also
obtain a direct proof of the equivalence of Proposition 1.2 (i) and (iv). In Section 3, we
establish the connection between the interlacing property and the compatible property of
two polynomials and give a simple proof of some known results.

2 Main results

Let sgn denote the sign function defined on R by

sgn (x) =


+1 if x > 0,

0 if x = 0,

−1 if x < 0.

Let f(x) be a real function. Denote sgn f(+∞) = +1 (resp. −1) if sgn f(x) = +1 (resp.
−1) for sufficiently large x. The meaning of sgn f(−∞) is similar.

Let f(x) ∈ RZ and R(f) = (r1, r2, . . . , rn)>. Denote by f̄ = f(x)
(x−r1)

. Then R(f̄) =

(r2, r3, . . . , rn)>. The following theorem gives a solution to Problem 1.3.

Theorem 2.1. Suppose that leading coefficients of f and g have opposite sign. Denote
by R(f) = (r1, r2, . . . , rn)> and R(g) = (s1, s2, . . . , sm)>. Then f and g are compatible if
and only if either
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(i) r1 > s1, then |nf̄ (x)− ng(x)| 6 1 for all x ∈ R, or

(ii) r1 < s1, then |nf (x)− nḡ(x)| 6 1 for all x ∈ R.

Proof. Without loss of generality, we may assume that f and g have no common zeros,
which implies that f and g have only simple zeros. We may also assume that the leading
coefficient of f and g is 1 and −1 respectively. We prove this statement only for the case
(i) since the case (ii) is similar. We arrange points in R(f) and R(g) in a nonincreasing
sequence (a1, a2, . . . , am+n)>. So these m+ n points determine m+ n+ 1 intervals in the
real line, and going from right to left, we label these intervals by I1, I2, . . . , Im+n+1, where
I1 = (a1,+∞), Im+n+1 = (−∞, am+n], and Ii = (ai, ai−1] for 2 6 i 6 m + n. Clearly, if
polynomials f and g have the same sign in an interval, then they will have opposite sign
in the adjacent one. Since leading coefficients of f and g have opposite sign, they will
have opposite sign in all odd indexed intervals and have the same sign in all even indexed
ones.

(⇒) Let Fθ = θf + (1− θ)g for all 0 6 θ 6 1. So Fθ ∈ RZ by the condition that f and
g are compatible. We will show that all odd indexed intervals with limited length have
one endpoint a zero of f and the other a zero of g. Otherwise, we may assume that there
is an odd indexed interval I2i+1 with limited length whose endpoints are two zeros of f ,
since the case for zeros of g is similar. Now we have sgnFθ(a2i+1 + ε1)Fθ(a2i− ε2) = 1 for
sufficiently small ε1, ε2 > 0. Then Fθ has even number of zeros in (a2i+1 + ε1, a2i − ε2).
Note that zeros of a polynomial is the continuous function of coefficients of the polynomial
(see [6] for instance). Then both f and g have the same number of zeros as Fθ in the
interval (a2i+1 + ε1, a2i− ε2). Since f and g have no real zeros in this interval, so does Fθ.
According to previously mentioned, we also have that Fθ has exactly one zero in each odd
indexed interval with limited length whose endpoints are a zero of f and g respectively.
Hence, when n = m, we obtain

n = deg(Fθ) < ]{odd indexed intervals} − 1 =

⌊
n+m+ 2

2

⌋
− 1 = n.

When n > m, we obtain

n = deg(Fθ) 6 ]{odd indexed intervals} − 1 =

⌊
n+m+ 2

2

⌋
− 1 < n.

Either case yields a contradiction. So all odd indexed intervals with limited length
have one endpoint a zero of f and the other a zero of g. Hence we have |nf̄ (x)−ng(x)| 6 1
for all x ∈ R.

(⇐) Set pi ∈ I2i for all 1 6 i 6
⌊
n+m+1

2

⌋
. Denote by

p(x) =

bn+m+1
2 c∏
i=1

(x− pi).

It follows that g 4 p 4 f . By the condition, we get n = m, n = m + 1 or n =
m + 2. So

⌊
n+m+1

2

⌋
= n or n − 1. Let F = αf + βg for all α, β > 0. We may assume
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that F is standard (otherwise replaced F by −F ). Note that sgnF (pi) = (−1)i and
sgnF (+∞) = 1. By Weierstrass Intermediate Value Theorem, F (x) has one zero in each
of the following n intervals (pn, pn−1), (pn−1, pn−2), . . . , (p2, p1), (p1,+∞), where pn = −∞
provided

⌊
n+m+1

2

⌋
= n − 1. Thus F (x) ∈ RZ for all α, β > 0. So we have f and g are

compatible.

Corollary 2.2. Suppose that leading coefficients of f and g have opposite sign. If f and
g are compatible, then | deg(f)− deg(g)| 6 2.

The following theorem is a generalization of the sufficiency of Theorem 2.1. Although
it can be proved by the same technique used in the proof of Theorem 2.1, we include its
proof for completeness.

Theorem 2.3. Let {fi(x)}ni=1 be a sequence of real polynomials satisfying the following
conditions.

(a) fi(x) ∈ RZ and R(fi) = (r
(i)
1 , r

(i)
2 , . . . , r

(i)
mi)> for all 1 6 i 6 n.

(b) f1, . . . , fs have positive leading coefficients and fs+1, . . . , fn have negative leading
coefficients.

(c) r
(i)
1 > r

(j)
1 for all 1 6 i 6 s and s+ 1 6 j 6 n.

(d) |nf̄i(x)− nfj(x)| 6 1 for all 1 6 i 6 s, s+ 1 6 j 6 n and x ∈ R.

Then f1, f2, . . . , fn are compatible.

Proof. Let F (x) =
∑n

t=1 αtft for all α1, α2, . . . , αn > 0. Then it suffices to prove that
F ∈ RZ. We may assume that F is standard (otherwise replaced F by −F ). For all
1 6 i 6 s and s + 1 6 j 6 n, we set pk ∈ R by conditions (c) and (d), such that

r
(i)
k+1 6 pk 6 r

(i)
k and r

(j)
k 6 pk 6 r

(j)
k−1, where r

(j)
0 = +∞. Let

p(x) =

bm1+mn+1
2 c∏

k=1

(x− pk).

Then we have R(fj) 4 R(p) 4 R(fi) for all 1 6 i 6 s and s + 1 6 j 6 n. By the
condition (d), we get m1 = mn, m1 = mn + 1 or m1 = mn + 2. So

⌊
m1+mn+1

2

⌋
= m1

or m1 − 1. Note that sgnF (pi) = (−1)i and sgnF (+∞) = 1. By Weierstrass Inter-
mediate Value Theorem, we can obtain that F (x) has one zero in each of the following
n intervals (pm1 , pm1−1), (pm1−1, pm1−2), . . . , (p2, p1), (p1,+∞), where pm1 = −∞ provided⌊
m1+mn+1

2

⌋
= m1 − 1. Thus F (x) ∈ RZ for all α1, α2, . . . , αn > 0. Then f1, f2, . . . , fn are

compatible.

From the proof of Theorem 2.3, we say that a modification common interleaver for
polynomials f1, f2, . . . , fn is a sequence R(p) of real numbers satisfying R(fj) 4 R(p) 4
R(fi), where fi has positive leading coefficients and fj has negative leading coefficients
for all 1 6 i 6 s and s+ 1 6 j 6 n.

the electronic journal of combinatorics 19(3) (2012), #P33 5



Remark 2.4. Under the definition of a modification common interleaver, Theorem 2.3
gives a solution to Problem 1.4.

Using Proposition 1.1, we are able to prove the following result.

Proposition 2.5. Let f1, f2, g be pairwise compatible polynomials with positive leading
coefficients. Then f = α1f1 + α2f2 and g are compatible for all α1, α2 > 0.

Proof. Without loss of generality, we may assume that f and g have no common ze-
ros. For i = 1, 2, denote by R(fi) = (r

(i)
1 , r

(i)
2 , . . . , r

(i)
ni )>, R(f) = (r1, r2, . . . , rn)> and

R(g) = (s1, s2, . . . , sm)>. We arrange points in R(f) and R(g) in a nonincreasing sequence
(a1, a2, . . . , am+n)>. Following Proposition 1.1, it suffices to prove | nf (x)−ng(x) |6 1 for
all x ∈ R. For convenience, set am+n+1 = −∞. Note that

| nf (x)− ng(x) |=| nf (ai)− ng(ai) |

for all x ∈ (ai+1, ai] where 1 6 i 6 n + m, and | nf (x)− ng(x) |= 0 for all x ∈ (a1,+∞).
So we only need to show that | nf (ai)− ng(ai) |6 1 for all 1 6 i 6 n+m. We do this in
two steps.

First, we claim that a1, a2 are a zero of f and g respectively.
Otherwise assume for a contradiction that a1, a2 ∈ R(f) or a1, a2 ∈ R(g). If a1, a2 ∈

R(f), then we assume that the right endpoint of the interval, where a2 lies in, is a zero of
f1. If a1, a2 ∈ R(g). Let i be the minimum index such that ai ∈ R(f). Then, without loss
of generality, we may also assume that the left endpoint of the interval, where ai lies in,
is a zero of f1. So we have | nf1(a2)− ng(a2) |= 2, which is contrary to Proposition 1.1.

Second, we claim that the number of consecutive numbers ai, which is zeros of f or g,
is not exceed 2 for i > 2.

Otherwise, let i be the minimum index such that ai, ai+1, ai+2 ∈ R(f) or ai, ai+1, ai+2 ∈
R(g). If ai, ai+1, ai+2 ∈ R(f), then we have nf (ai−1)−ng(ai−1) = k, where k ∈ {−1, 0, 1}.
Assume that the right endpoint of the interval, where ai+2 lies in, is a zero of f1. If
ai, ai+1, ai+2 ∈ R(g), then we have ng(ai−1) − nf (ai−1) = k, where k ∈ {−1, 0, 1}. Let t
be the minimum index such that t > i+ 2 and at ∈ R(f). Without loss of generality, we
may also assume that the left endpoint of the interval, where at lies in, is a zero of f1. So
we have | nf1(ai+2) − ng(ai+2) |> k + 3, where k ∈ {−1, 0, 1}, which is also contrary to
Proposition 1.1.

Thus we have | nf (ai)− ng(ai) |6 1 for all 1 6 i 6 m+ n. Hence sequences R(f) and
R(g) are compatible. This completes our proof.

Proposition 2.5 now allows us to give a direct proof of the following theorem from [4],
using a very straightforward induction.

Theorem 2.6 ([4]). Let f1(x), f2(x), . . . , fn(x) be pairwise compatible polynomials with
positive leading coefficients. Then f1(x), f2(x), . . . , fn(x) are compatible.
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3 Applications

In this section we establish the connection between the interlacing property and the
compatible property of real zeros of two polynomials. And we give a simple proof of
several known facts.

Proposition 3.1. Suppose that f, g have leading coefficients of the same sign and g 4 f .
Then sequences R(f) ∪ {a} and R(g) ∪ {b} are compatible for all a 6 b.

Proof. Let R(f) = (r1, . . . , rn)> and R(g) = (s1, . . . , sm)>. We arrange points in R(f)
and R(g) in a nonincreasing sequence (a1, a2, . . . , am+n)>. Denote by R(F ) = R(f)∪ {a}
and R(G) = R(g) ∪ {b}. Then it suffices to prove that |nF (x) − nG(x)| 6 1, where
x ∈ {a1, . . . , am+n, a, b} by the proof of Proposition 2.5.

Note that nf (x) − ng(x) = 0 or 1 since g 4 f . For convenience, set a0 = +∞ and
am+n+1 = −∞. Assume that a ∈ (ai+1, ai] and b ∈ (aj+1, aj] for 1 6 j < i 6 m + n.
Then we have nF (ak) − nG(ak) = 0 or 1 for 1 6 k < j; nF (ak) − nG(ak) = −1 or 0 for
j 6 k < i; nF (ak) − nG(ak) = 0 or 1 for i 6 k 6 m + n and nF (a) − nG(a) = 0 or 1;
nF (b)− nG(b) = −1 or 0. This completes the proof of the proposition.

Remark 3.2. Suppose that f, g have leading coefficients of the same sign and g 4 f .
Then sequences R(f) and R(g) ∪ {a} are compatible for all a ∈ R.

3.1 Fisk’s results

Fisk [7] wrote a book to extend the study of zeros of polynomials. In this subsection,
we can obtain a short and simple proof of several results of Fisk. Let f ∈ RZ and
R(f) = (r1, r2, . . . , rn)>. Then we define R(f)(i) = (r1, . . . , ri)> and R(f)/R(f)(i) =
(ri+1, . . . , rn)> for all 1 6 i 6 n.

Theorem 3.3 ([7]). Let f1, f2, g1, g2 be real polynomials whose leading coefficients have
the same sign. Suppose that f1, g1, f2, g2 ∈ RZ and g1 4 f1. Then the following results
hold.

(i) If g2 4 f2, then αf1g2 + βf2g1 ∈ RZ for all α, β > 0.

(ii) If f2 4 g2, then αf1g2 − βf2g1 ∈ RZ for all α, β > 0.

Proof. Let R(fi) = (r
(i)
1 , . . . , r

(i)
ni )> and R(gi) = (s

(i)
1 , . . . , s

(i)
mi)> for i = 1, 2. Without loss

of generality, we may assume that f1, f2, g1, g2 have no common zeros and r
(1)
1 > s

(2)
1 .

Denote by R(F ) = R(f1) ∪ R(g2) and R(G) = R(f2) ∪ R(g1). By Proposition 1.1, to
prove the case (i), it suffices to prove sequences R(F ) and R(G) are compatible under the
condition R(gi) 4 R(fi) for i = 1, 2. By Theorem 2.1, to prove the case (ii), it suffices to
prove sequences R(F̄ ) and R(G) are compatible under the condition R(f̄1) 4 R(g1) and
R(f2) 4 R(g2). So we prove it only for the case (i) since the case (ii) is similar.

Now we show that the case (i) holds by induction on n2 + m2. For n2 + m2 6 1, we
have deg f2 6 1, deg g2 = 0 since g2 4 f2. Then sequences R(f1) and R(G) are compatible
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from Remark 3.2. Next we may assume that sequences R(F ) and R(G) are compatible
for n2 +m2 6 n. For n2 +m2 = n+ 1, we distinguish two cases.

Case 1. When g2 4alt f2. If r
(2)
n2 ∈ (s

(1)
i , r

(1)
i ) or (r

(1)
i , s

(1)
i−1), then we get that sequences

R(f1)(i)∪R(g2)/{s(2)
m2} and R(g1)(i)∪R(f2)/{r(2)

n2 } are compatible by inductive hypothesis

since R(g1)(i) 4alt R(f1)(i) and R(g2)/{s(2)
m2} 4alt R(f2)/{r(2)

n2 }. If r
(2)
n2 , s

(2)
m2−1 ∈ (s

(1)
i , r

(1)
i ),

then we exchange points s
(2)
m2−1 and r

(1)
i , i.e., s

(2)
m2−1 is the i-th largest zero of f (1). Note that

R(g1)/R(g1)(i) 4 R(f1)/R(f1)(i). By Proposition 3.1, we have R(g1)/R(g1)(i) ∪ {r(2)
n2 }

and R(f1)/R(f1)(i) ∪ {s(2)
m2} are compatible. Then R(F ) and R(G) are compatible.

Case 2. When g2 4int f2. If r
(2)
n2 ∈ (s

(1)
i , r

(1)
i ) or (r

(1)
i , s

(1)
i−1), then we get that sequences

R(f1)(i)∪R(g2) and R(g1)(i)∪R(f2)/{r(2)
n2 } are compatible by inductive hypothesis since

R(g1)(i) 4alt R(f1)(i) and R(g2) 4alt R(f2)/{r(2)
n2 }. If r

(2)
n2 , s

(2)
m2−1 ∈ (s

(1)
i , r

(1)
i ), then we

also exchange points s
(2)
m2−1 and r

(1)
i . Note that R(g1)/R(g1)(i) 4 R(f1)/R(f1)(i). By

Remark 3.2, we have R(g1)/R(g1)(i) ∪ {r(2)
n2 } and R(f1)/R(f1)(i) are compatible. Then

R(F ), R(G) are compatible and the proof is complete.

Let f1, f2, . . . , fn be real polynomials with positive leading coefficients and fi ∈ RZ
for all 1 6 i 6 n. Following Fisk [7], we say that polynomials f1, f2, . . . , fn are mutually
interlacing if fi 4alt fj for all 1 6 i < j 6 n. Then we give a simple proof of the following
result.

Corollary 3.4 ([7]). If f1, . . . , fn and g1, . . . , gn are two sequences of mutually interlacing
polynomials whose leading coefficients have the same sign, then

n∑
i=1

fign+1−i = f1gn + f2gn−1 + · · ·+ fng1 ∈ RZ.

Equivalently,
∑n

i=1 fi(x)gi(−x) ∈ RZ.

Proof. Without loss of generality, we may assume that f, g are monic. Note that for
all 1 6 i < j 6 n, we have fi 4alt fj and gn−j 4alt gn−i by the condition. From
Theorem 3.3, polynomials fign−i, fjgn−j are compatible for all 1 6 i < j 6 n. Then
polynomials f1gn, f2gn−1, . . . , fng1 are pairwise compatible. By Theorem 2.6, we can ob-
tain f1gn, f2gn−1, . . . , fng1 are compatible. Hence f1gn + f2gn−1 + · · · + fng1 ∈ RZ. This
completes the proof.

Let R(f) = (r1, r2, . . . , rn)>. It is obviously that f(x)
(x−r1)

, f(x)
(x−r2)

, . . . , f(x)
(x−rn)

are mutually
interlacing. A special case of Corollary 3.4 is the following.

Corollary 3.5 ([7]). Suppose that R(f) = (r1, r2, . . . , rn)> and R(g) = (s1, s2, . . . , sn)>.
Then the polynomial

h(x) =
n∑
i=1

(
f

x− ri

)(
g

x− sn+1−i

)
∈ RZ.
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3.2 Wang-Yeh’s results

Wang and Yeh [16] established the following result which has been proved to be an
extremely useful tool. In fact, it provides a unified approach to unimodality and log-
concavity of many well-known sequences in combinatorics. See [16] for detail. A simple
proof of this theorem has been given using the method of interlacing zeros by Liu and
Wang [10]. Here we give another simple proof using the method of compatible zeros.

Theorem 3.6 ([16]). Let f and g be real polynomials whose leading coefficients have the
same sign. Suppose that f, g ∈ RZ and g 4 f . If ad 6 bc, then the polynomial

F (x) = (ax+ b)f(x) + (cx+ d)g(x) ∈ RZ.

Proof. Without loss of generality, we may assume that f, g are monic and have no zeros
in common, which implies that they have only simple zeros.

If ac = 0, then the statement follows from Theorem 3.3. So let ac 6= 0. We distinguish
two cases according to the sign of ac.

Case 1. If ac > 0, then −b/a 6 −d/c by ad 6 bc. So sequences R(f) ∪ {−b/a} and
R(g) ∪ {−d/c} are compatible by Proposition 3.1. Then polynomials (ax + b)f(x) and
(cx+ d)g(x) are compatible. Thus we have F (x) ∈ RZ.

Case 2. If ac < 0, then −b/a > −d/c by ad 6 bc. Note that leading coefficients
of (ax + b)f(x) and (cx + d)g(x) have opposite sign. By Theorem 2.1, we need to prove
that polynomials (ax+ b)f(x) and (cx+d)g(x) are compatible. Let R(f) = (r1, . . . , rn)>.
When −b/a > r1, we exchange these two points, i.e., −b/a is the largest zero of f . By
the condition g 4 f , we have f̄ 4 g. Now the result follows from Case 1.

Thus the proof of the theorem is complete.

Denote by PF those polynomials in RZ whose coefficients are nonnegative. So all zeros
of a polynomial in PF are nonpositive. It is obviously that if f, g ∈ PF and g 4 f , then
f 4 xg. Thus the following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.7 ([16]). Suppose that f, g ∈ PF and g 4int f . If ad > bc, then the
polynomial

G(x) = (ax+ b)f(x) + x(cx+ d)g(x) ∈ RZ.

4 Concluding remarks

As shown in Theorem 2.1, we get a necessary and sufficient condition for the compat-
ible property of two polynomials whose leading coefficients have opposite sign. But there
is no similar analogue for general k. We only get a sufficient condition in Theorem 2.3,
which may be necessary. It is a challenge to give a necessary and sufficient condition
for the compatible property of a sequence of k polynomials when leading coefficients have
different sign, where k > 3. On the other hand, it is worthwhile to look at those sequences
whose associated polynomial has only real zeros, such as some sequences related to graph
theory, using the method of compatible zeros, and to discuss deeper relations between the
compatible property and the interlacing property of real zeros of polynomials.
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