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Abstract

Bliem and Kousidis recently considered a family of random variables whose dis-
tributions are given by the generalized Galois numbers (after normalization). We
give probabilistic interpretations of these random variables, using inversions in ran-
dom words, random lattice paths and random Ferrers diagrams, and use these to
give new proofs of limit theorems as well as some further limit results.

1 Introduction

The homogeneous multivariate Rogers–Szegö polynomial in m > 2 variables is defined by

H̃n(t1, . . . , tm) :=
∑

k1+···+km=n

(
n

k1, . . . , km

)
q

tk1
1 · · · tkm

m , (1)

where
(

n
k1,...,km

)
q

is the q-multinomial coefficient (or Gaussian multinomial coefficient)(
n

k1, . . . , km

)
q

:=
[n]!q

[k1]!q · · · [km]!q
for n = k1 + · · ·+ km, (2)

where [k]!q := [1]q[2]q · · · [k]q with [`]q := (1−q`)/(1−q). Equivalently, one might consider
the inhomogeneous multivariate Rogers–Szegö polynomial

Hn(t1, . . . , tm−1) := H̃n(t1, . . . , tm−1, 1). (3)
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For these polynomials, see Rogers [13], Andrews [1] and Vinroot [17].
We concentrate here on the special value

G(m)
n (q) = Hn(1, . . . , 1) = H̃n(1, . . . , 1) =

∑
k1+···+km=n

(
n

k1, . . . , km

)
q

, (4)

studied in Vinroot [17] and Bliem and Kousidis [2]. This is a polynomial in q. In the special
case m = 2, studied in e.g. Goldman and Rota [4], Nijenhuis, Solow and Wilf [11], Kac and

Cheung [10, Chapter 7] and Hitzemann and Hochstättler [6], these numbers G
(2)
n (q) are

known as Galois numbers, and the numbers G
(m)
n are therefore called generalized Galois

numbers by [17] and [2]. Note that

G(m)
n (1) =

∑
k1+···+km=n

(
n

k1, . . . , km

)
= mn, (5)

by the multinomial theorem.
Bliem and Kousidis [2] noted that the polynomial G

(m)
n (q) has non-negative coefficients,

and thus

g(m)
n (q) :=

G
(m)
n (q)

G
(m)
n (1)

= m−nG(m)
n (q) (6)

can be interpreted as the probability generating function of a random variable Gn,m. We
let Gn,m denote the probability distribution with the probability generating function (6),
and have thus Gn,m ∼ Gn,m. (We use, following [2], Gn,m for an arbitrary random variable
with this distribution. In the next sections we will construct specific random variables of
this type.)

The purpose of the present paper is to provide some probabilistic interpretations of
this random variable, see Sections 2–4, and to use these interpretations to give new, and

perhaps simpler, proofs of the following results in [2]. We use
d−→ for convergence in

distribution and (later)
d
= for equality in distribution. N(µ, σ2) is the normal distribution

with mean µ and variance σ2.

Theorem 1 ([2]). The random variable Gn,m has mean and variance

E Gn,m =
n(n− 1)

4
· m− 1

m
, (7)

Var Gn,m =
n(n− 1)(2n + 5)

72
· m2 − 1

m2
. (8)

Theorem 2 ([2]). If m →∞ with n > 1 fixed, then

Gn,m
d−→ Gn, (9)

where Gn is the number of inversions in a random permutation of {1, . . . , n}.
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Theorem 3 ([2]). If n →∞ with m > 2 fixed, then

Gn,m − E Gn,m

Var(Gn,m)1/2

d−→ N(0, 1); (10)

equivalently,
Gn,m − E Gn,m

n3/2

d−→ N
(

0,
m2 − 1

36m2

)
. (11)

Furthermore, we can also let both m and n tend to infinity; we show that there are
no surprises in this case.

Theorem 4. If m, n →∞, then

Gn,m − E Gn,m

Var(Gn,m)1/2

d−→ N(0, 1); (12)

equivalently,
Gn,m − E Gn,m

n3/2

d−→ N
(

0,
1

36

)
. (13)

Moreover, we show a local limit theorem strengthening Theorems 3 and 4.

Theorem 5. If n →∞, then, with µn,m := E Gn,m and σ2
n,m := Var Gn,m given by Theo-

rem 1,

σn,m P(Gn,m = k) =
1√
2π

e−(k−µn,m)2/2σ2
n,m + o(1), (14)

uniformly in all m > 2 and k ∈ Z.
Equivalently, we can in (14) replace µn,m and σ2

n,m by the approximations µ̄n,m :=
m−1
4m

n2 and σ̄2
n,m := m2−1

36m2 n3.

Proofs are given in Sections 5–6.

Remark 6. The name (generalized) Galois numbers comes from the following algebraic
interpretation, see [4], [17], [10, Chapter 7], [15, Proposition 1.3.18] which, however, not
will be important in the present paper.

If q is a prime power and V an n-dimensional vector space over the Galois field Fq

with q elements, then it is not difficult to see that
(

n
k1,...,km

)
q

is the number of flags

{0} ⊆ V1 ⊆ · · · ⊆ Vm = V , where Vi is a subspace of dimension k1 + · · · + ki. Hence,

G
(m)
n (q) is the total number of such flags of fixed length m in V = F n

q . In particular, the

Galois number G
(2)
n (q) is the number of subspaces of F n

q .
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2 Inversions

If w = w1 · · ·wn is a word with letters from an ordered alphabet A, then the number
of inversions in w is the number of pairs (i, j) with i < j and wi > wj; we denote this
number by Inv(w). Using the notation 1{E} for the indicator of an event E , we thus have

Inv(w) =
∑

16i<j6n

1{wi > wj}. (15)

With the alphabet A = {1, . . . ,m}, it is well-known (and not difficult to see) that the
q-multinomial coefficient

(
n

n1,...,nm

)
q
, where n1 + · · · + nm = n, is the generating function

of the number of inversions in words consisting of n1 1’s, . . . , nm m’s, in the sense that if
an1,...,nm(`) is the number of such words with exactly ` inversions, then(

n

n1, . . . , nm

)
q

=
∞∑

`=0

an1,...,nm(`)q`, (16)

see [1, Theorem 3.6].
Summing over all n1, . . . , nm with n1 + · · · + nm = n, we immediately obtain the

following from (4) and (16).

Theorem 7. G
(m)
n (q) is the generating function of the number of inversions in words of

length n in the alphabet {1, . . . ,m}, in the sense that if A
(m)
n (`) is the number of such

words with exactly ` inversions, then

G(m)
n (q) =

∞∑
`=0

A(m)
n (`)q`. (17)

By the definition of the random variable Gn,m, (17) is equivalent to

P(Gn,m = `) = A(m)
n (`)/n−m. (18)

This can be formulated as follows, yielding our first construction of a random variable
Gn,m.

Theorem 8. Let Wn,m be a uniformly random word of length n in the alphabet {1, . . . ,m}.
Then the number of inversions Inv(Wn,m) has the distribution Gn,m. In other words,

Gn,m
d
= Inv(Wn,m).

We can thus choose Gn,m := Inv(Wn,m). (Recall that we have defined Gn,m to be an
arbitrary random variable with the desired distribution.)

If we write the random word Wn,m as X1 · · ·Xn, we have X1, . . . , Xn i.i.d. (independent
and identically distributed) with the uniform distribution on {1, . . . ,m}, and using (15),
Theorem 8 may be reformulated as follows.
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Corollary 9. Let {Xi}∞i=1 be i.i.d. random variables, with every Xi uniformly distributed
on {1, . . . ,m}, and let

Vn,m :=
∑

16i<j6n

1{Xi > Xj}. (19)

Then Vn,m ∼ Gn,m. In other words, Gn,m
d
= Vn,m.

Let Nk := #{i 6 n : Xi = k} be the number of occurences of the letter k in the
random string Wn,m = X1 · · ·Xn. Then (N1, . . . , Nm) has a multinomial distribution with

E Nk = n/m, and it is well known that if we keep m fixed, n−1/2(Nk − ENk)m
k=1

d−→
(Zk)m

k=1 as n →∞, where Z1, . . . , Zm are jointly normal with means E Zk = 0, variances
Var Zk = (m − 1)/m2 and covariances Cov(Zk, Zl) = −1/m2 (k 6= l). By Theorem 3,

Vn,m
d
= Gn,m has an asymptotic normal distribution, and this extends to joint asymptotic

normality of Vn,m and N1, . . . , Nm.

Theorem 10. For fixed m, as n →∞,(
V − E Vn,m

n3/2
,
N1 − EN1

n1/2
, . . . ,

Nm − ENm

n1/2

)
d−→ (Z∗, Z1, . . . , Zm),

where Z∗, Z1, . . . , Zm are jointly normal with means 0, Var Z∗ = (m2 − 1)/36m2 as in
(11), Z1, . . . , Zm have the variances and covariances given above and Z∗ is independent
of Z1, . . . , Zm.

The proof is given in Section 5.

3 A U-statistic

Let {Xi}∞i=1 and {Yi}∞i=1 be independent random variables, with every Xi uniformly dis-
tributed on {1, . . . ,m} and every Yi uniformly distributed on [0,1]. (Any common con-
tinuous distribution of Yi would yield the same result.)

Fix n > 1. The values Y1, . . . , Yn are a.s. distinct, and can thus be ordered as
Yσ(1) < · · · < Yσ(n) for some (unique) permutation of {1, . . . , n}. Let Wn,m be the word
Xσ(1) · · ·Xσ(n). Since {Xi}n

i=1 and {Yi}n
i=1 are independent, Wn,m has the same distribu-

tion as X1 · · ·Xn, and is thus a uniformly random word in {1, . . . ,m}n. Consequently,
Theorem 8 yields Inv(Wn,m) ∼ Gn,m. Moreover, since i < j ⇐⇒ Yσ(i) < Yσ(j),

Inv(Wn,m) =
∑

16i<j6n

1{Xσ(i) > Xσ(j)} =
n∑

i,j=1

1{Xσ(i) > Xσ(j) and i < j}

=
n∑

i,j=1

1{Xσ(i) > Xσ(j) and Yσ(i) < Yσ(j)}

=
n∑

k,l=1

1{Xk > Xl}1{Yk < Yl}.

We have shown the following, yielding our second construction of Gn,m.
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Theorem 11. Let Xi and Yi be as above, and define the random variable

Un,m :=
n∑

i,j=1

1{Xi > Xj}1{Yi < Yj}. (20)

Then Un,m ∼ Gn,m. In other words, Gn,m
d
= Un,m.

Let Zi := (Xi, Yi); this yields a sequence of i.i.d. random vectors taking values in
S := {1, . . . ,m} × [0, 1]. Define the functions h, h∗ : S2 → R by

h
(
(x1, y1), (x2, y2)

)
:= 1{xi > xj}1{yi < yj}, (21)

h∗
(
(x1, y1), (x2, y2)

)
:= h

(
(x1, y1), (x2, y2)

)
+ h
(
(x2, y2), (x1, y1)

)
. (22)

Thus h∗ is symmetric and (20) can be written

Un,m =
n∑

i,j=1

h
(
Zi, Zj

)
=

∑
16i<j6n

h∗
(
Zi, Zj

)
, (23)

which shows that Un,m is (for fixed m) a U -statistic [7].

4 Lattice paths and Ferrers diagrams

In this section we consider the special case m = 2. In this case, there is an alternative
combinatorial description of the Gaussian binomial coefficients using using lattice paths
instead of inversions, see Pólya [12]. Indeed, consider lattice paths in the first quadrant,
starting at the origin and containing n unit steps East or North. There are 2n such paths,
and they may be encoded by the 2n words of length n with the alphabet {E, N}. The area
under each horizontal step equals the number of previous vertical steps, so by summing,
we see that the area under the path equals the number of inversions in the corresponding
word, where we use the ordering E < N.

Consequently, Theorem 8 yields the following.

Theorem 12. Let θ(n) be the area under a uniformly random lattice path (of the type

above) of length n. Then θ(n) ∼ Gn,2. In other words, Gn,2
d
= θ(n).

The random variable θ(n) was studied by Takács [16], who found its mean and variance
and proved a central limit theorem and a local limit theorem (our Theorems 1, 3 and 5
for m = 2).

By symmetry, we may instead consider the area θ′(n) between the path and the y-axis.
This area can be regarded as a Ferrers diagram; if the path ends at (s1, s2), then the height
(number of non-empty rows) h and width w of the Ferrers diagram satisfy h 6 s2 and
w 6 s1, and there is a bijection between all paths ending at (s1, s2) and all such Ferrers
diagrams. (Note the bijection between such Ferrers diagrams with a given area N and
the partitions of N into at most s2 parts, each at most s1; see [1, Theorem 3.5].)
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Alternatively, by adding an extra row and column, we obtain a Ferrers diagram with
height s2 + 1 and width s1 + 1; its right boundary consists of a path from (−1, 0) to
(s1, s2 + 1), beginning with a horizontal step and ending with a vertical. Moreover, there
is a bijection between all paths ending at (s1, s2) and all such Ferrers diagrams. We
further see that the area of this Ferrers diagram equals θ′ + s1 + s2 + 1, where θ′ is the
area between the (original) path and the y-axis.

The semiperimeter of a Ferrers diagram equals its height plus width, and we thus have
obtained a bijection between all Ferrers diagram with semiperimeter n+ 2 and all (north-
east) lattice paths of length n. This bijection gives a correspondence between uniformly
random Ferrers diagrams with semiperimeter n + 2 and uniformly random lattice paths
of length n, yielding the following theorem.

Theorem 13. Let An be the area of a uniformly random Ferrers diagram with semiperime-

ter n + 2. Then An − n− 1 ∼ Gn,2. In other words, Gn,2
d
= An − n− 1.

Proof. If θ′(n) is the area between the corresponding random lattice path and the y-axis,
then the arguments above show that

An = θ′(n) + n + 1
d
= θ(n) + n + 1

and the result follows by Theorem 12.

Corollary 14. The random variable An has mean and variance

E An = E Gn,2 + n + 1 =
n2 + 7n + 8

8
, (24)

Var An = Var Gn,2 =
n(n− 1)(2n + 5)

96
. (25)

Proof. By Theorems 13 and 1.

Theorem 3 yields the central limit theorem

An − E An

Var(An)1/2

d−→ N(0, 1); (26)

by (24)–(25), this can also be written as

An − n2/8

n3/2

d−→ N
(

0,
1

48

)
, (27)

which was proved by other methods by Schwerdtfeger [14]. Furthermore, Schwerdtfeger
[14] showed that if Hn is the height of the Ferrers diagram, then there is joint convergence
of the normalised variables(

An − n2/8√
n3/48

,
Hn − n/2√

n/4

)
d−→ (ζ1, ζ2), (28)

where ζ1, ζ2 are independent standard normal variables. The asymptotic normality of Hn

is immediate, since Hn−1 is the y-coordinate of the endpoint of the corresponding lattice
path, and thus Hn − 1 has the binomial distribution Bi(n, 1/2). The joint convergence
follows by Theorem 10.
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5 Proofs of Theorems 1–4 and 10

We will base most of the proofs on the representation in (20)–(23). (It is also possible to
use (19), see Remark 17 and the proof of Theorem 10; (19) is simpler in some ways, but
we prefer the symmetry in (20)–(23).)

We use the notations, with Z, h, h∗ as in Section 3, see (21)–(22),

Iij := h(Zi, Zj) = 1{Xi > Xj}1{Yi < Yj}, (29)

I∗ij := h∗(Zi, Zj) = Iij + Iji. (30)

Thus (23) can be written

Gn,m
d
= Un,m =

∑
16i<j6n

I∗ij. (31)

Proof of Theorem 1. By symmetry and the independence of Iij and Ikl when {i, j} and
{k, l} are disjoint, (31) implies

E Gn,m =

(
n

2

)
E I∗12 = n(n− 1) E I12, (32)

Var Gn,m =

(
n

2

)
Var I∗12 + n(n− 1)(n− 2) Cov

(
I∗12, I

∗
13

)
. (33)

Clearly,

E Iij = P(Xi > Xj) P(Yi < Yj) =

(
m
2

)
m2

· 1

2
=

m− 1

4m
(34)

and

E I∗ij = 2 E Iij =
m− 1

2m
=

1

2
− 1

2m
; (35)

any of these yields (7) by (32).
Since I∗ij is 0/1-valued, it follows from (35) also that

Var I∗ij = E I∗ij(1− E I∗ij) =
1

4

(
1− 1

m2

)
. (36)

Furthermore, again using symmetry,

E
(
I∗12I

∗
13

)
= 2 E

(
I12I13

)
+ 2 E

(
I21I13

)
= 2 P

(
X1 > X2, X3

)
P
(
Y1 < Y2, Y3

)
+ 2 P

(
X2 > X1 > X3

)
P
(
Y2 < Y1 < Y3

)
= 2

∑m
i=1(i− 1)2

m3
· 1

3
+ 2

(
m
3

)
m3

· 1

6
=

m(m− 1)(2m− 1)

9m3
+

m(m− 1)(m− 2)

18m3

=
(m− 1)(5m− 4)

18m2

and hence

Cov
(
I∗12, I

∗
13

)
= E

(
I∗12I

∗
13

)
− E

(
I∗12
)2

=
(m− 1)(5m− 4)

18m2
− (m− 1)2

4m2

=
(m− 1)(m + 1)

36m2
.

(37)
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The variance formula (8) follows from (33), (36) and (37).

Proof of Theorem 2. Consider the random word Wn,m = X1 · · ·Xn in Theorem 8. If
we condition on the letters X1, . . . , Xm being distinct, then the number of inversions
Inv(Wn,m) has the same distribution as the number Gn of inversions in a random permu-
tation. Hence, for any set A ⊂ N,

P
(
Inv(Wn,m) ∈ A | X1, . . . , Xn distinct

)
= P(Gn ∈ A)

and thus∣∣P(Inv(Wn,m) ∈ A
)
− P(Gn ∈ A)

∣∣ 6 P(X1, . . . , Xn not distinct)

6

(
n

2

)
P(X1 = X2) =

(
n
2

)
m

→ 0

as m →∞, and thus Gn,m
d
= Inv(Wn,m)

d−→ Gn.

Remark 15. We have actually proved that the total variation distance dTV(Gn,m, Gn) 6(
n
2

)
/m. Moreover, the bound can be improved to

dTV(Gn,m, Gn) 6 P(X1, . . . , Xn not distinct) = 1− (m)n/m
n,

where (m)n := m!/(m− n)!.

Proof of Theorems 3 and 4. The two versions in each theorem are equivalent by (8), so
it suffices to prove, for example, (11) and (13).

The central limit theorem Theorem 3 follows immediately from Hoeffding’s central
limit theorem for U -statistics [7] without any further calculations. Moreover, we shall see
that the decomposition method used by Hoeffding [7] yields also Theorem 4; we therefore
do the decomposition explicitly.

The idea is to decompose each term I∗ij as

I∗ij = µ + ξi + ξj + ηij, (38)

where µ := E I∗ij,

ξi := E
(
I∗ij − µ | Zi

)
= E

(
I∗ij | Xi, Yi

)
− µ (39)

and ηij is defined by (38). Then the random variables ξi (1 6 i 6 n) and ηij (1 6 i < j 6
n) have mean 0 and are orthogonal (in L2), so they are uncorrelated. In particular,

1 > Var I∗ij = Var ξi + Var ξj + Var ηij. (40)

Moreover, ξi = g(Zi) for some function g, and thus the variables ξi are i.i.d.
By summing (38), we obtain by (31) a corresponding decomposition of Un,m:

Un,m =

(
n

2

)
µ + (n− 1)

n∑
i=1

ξi +
∑

16i<j6n

ηij. (41)
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Hence,
Un,m − E Un,m

n3/2
=

n− 1

n
n−1/2

n∑
i=1

ξi + n−3/2R, (42)

where R :=
∑

16i<j6n ηij. Since the variables ηij are uncorrelated, and Var ηij 6 1 by
(40), we have

E R2 = Var R =
∑

16i<j6n

Var ηij 6

(
n

2

)
6 n2, (43)

and thus E(n−3/2R)2 → 0. Hence, the last term in (42) is a small remainder term that
can be ignored when n →∞. Furthermore, the decomposition (41) yields the variance
decomposition

Var Un,m = (n− 1)2

n∑
i=1

Var ξi +
∑

16i<j6n

Var ηij

= n(n− 1)2 Var ξ1 +

(
n

2

)
Var η12

∼ n3 Var ξ1

(44)

as n →∞, and thus by (8),

Var ξ1 =
1

36

(
1− 1

m2

)
. (45)

For fixed m (Theorem 3), the standard central limit theorem for sums of i.i.d. random
variables now shows that ∑n

i=1 ξi

n1/2

d−→ N
(

0,
m2 − 1

36m2

)
, (46)

and thus (11) follows from (42).
For m → ∞ (Theorem 4), we have Var ξ1 → 1/36 by (45); moreover, the random

variables ξi are uniformly bounded (by 1), and thus the central limit theorem with e.g.
Lyapounov’s condition [5, Theorem 7.2.2] applies and shows that∑n

i=1 ξi

n1/2

d−→ N
(

0,
1

36

)
, (47)

and thus (13) follows from (42).

Remark 16. It is interesting to do the decomposition (38) explicitly. Using the centred
variables

X ′
i := Xi − E Xi = Xi −

m + 1

2
, (48)

Y ′
i := Yi − E Yi = Yi −

1

2
, (49)
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we have by (29)

E(Iij | Xi, Yi) =
Xi − 1

m
(1− Yi) =

X ′
i + (m− 1)/2

m

(1

2
− Y ′

i

)
, (50)

E(Iji | Xi, Yi) =
m−Xi

m
Yi =

(m− 1)/2−X ′
i

m

(
Y ′

i +
1

2

)
, (51)

and thus, using (30) and (35),

ξi := E(I∗ij | Xi, Yi)− E I∗ij = − 2

m
X ′

iY
′
i . (52)

Hence, the decomposition is

I∗ij =
m− 1

2m
− 2

m
X ′

iY
′
i −

2

m
X ′

jY
′
j + ηij (53)

and

Un,m =

(
n

2

)
m− 1

2m
− 2(n− 1)

m

n∑
i=1

X ′
iY

′
i + R. (54)

Note also that (45) follows from (52), and then (40) yields, using (36),

Var ηij = Var I∗ij − 2 Var ξi =
1

4

(
1− 1

m2

)
− 2

36

(
1− 1

m2

)
=

7

36

(
1− 1

m2

)
, (55)

which together with (45) and (44) yield another proof of (8).

Remark 17. It is also interesting to do the corresponding orthogonal decomposition of
Vn,m in (19). We have, similarly to (38),

1{Xi > Xj} = µ′ + ξ′i + ξ′′j + η′ij, (56)

where µ′ := P(Xi > Xj) = m−1
2m

, and, with X ′
i as in (48),

ξ′i := P
(
Xi > Xj | Xi

)
− µ′ =

X ′
i

m
, (57)

ξ′′j := P
(
Xi > Xj | Xj

)
− µ′ = −

X ′
j

m
, (58)

and η′ij is defined by (56). Summing we get,

Vn,m = E Vn,m +
n∑

i=1

(n− i)ξ′i +
n∑

j=1

(j − 1)ξ′′j +
∑

16i<j6n

η′ij

= E Vn,m +
1

m

n∑
i=1

(n + 1− 2i)X ′
i +

∑
16i<j6n

η′ij.

(59)
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Straightforward calculations show that

Var X ′
i =

1

12
(m2 − 1), (60)

Var(1{Xi > Xj}) =
1

4

(
1− 1

m2

)
, (61)

and, by (56),

Var η′ij = Var(1{Xi > Xj})− Var ξ′i − Var ξ′′j =
1

12

(
1− 1

m2

)
. (62)

Hence, (59) yields

Var Vn,m =
1

m2

n∑
i=1

(n + 1− 2i)2 Var X ′
i +

∑
16i<j6n

Var η′ij

=
n(n− 1)(n + 1)

36

(
1− 1

m2

)
+

n(n− 1)

24

(
1− 1

m2

)
,

(63)

which gives yet another proof of (8).
We can also prove Theorems 3 and 4 using (59) instead of (41); again the final sum

can be ignored since, using (62) and the fact that the η′ij are uncorrelated,

Var
(
n−3/2

∑
i<j

η′ij

)
= n−3

(
n

2

)
1

12

(
1− 1

m2

)
<

1

24n
→ 0 (64)

as n →∞, cf. (43). The summands in
∑n

i=1(n + 1− 2i)X ′
i are not identically distributed,

but that does not matter since Lyapounov’s condition holds. See [8, Corollary 11.20]
for a general limit theorem for asymmetric sums like (19), and note that the argument
in Section 3 is an instance of a general method to convert such sums into (symmetric)
U -statistics by introducing the auxiliary variables Yi, see [8, Remark 11.21].

In the case m = 2, one can check that η′ij = −X ′
iX

′
j and thus∑

16i<j6n

η′ij = −1

2

( n∑
i=1

X ′
i

)2

+
n

2
, (65)

which shows that the decomposition (59) then is essentially the same as the decomposition
used by Takács [16].

Proof of Theorem 10. We use the decomposition (59) of Vn,m, and Nk =
∑n

i=1 1{Xi = k}.
The result follows by the central limit theorem with Lyapounov’s condition applied to the
random vector(∑n

i=1(n + 1− 2i)X ′
i

n3/2
,

N1 − E N1

n1/2
, . . . ,

Nm − E Nm

n1/2

)
=

n∑
i=1

(
(n + 1− 2i)X ′

i

n3/2
,
1{Xi = 1} − 1/m

n1/2
, . . . ,

1{Xi = m} − 1/m

n1/2

)
,
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together with (59) and (64); the variances and covariances are easily computed, noting
that Cov

(∑n
i=1(n+1−2i)X ′

i,
∑n

i=1 1{Xi = k}
)

= 0 for each k since
∑n

i=1(n+1−2i) = 0.
(This vector-valued central limit theorem follows, as is well-known, from the real-valued
version [5, Theorem 7.2.2] by the Cramér–Wold device [5, Theorem 5.10.5].)

6 Proof of Theorem 5

To prove the local limit theorem Theorem 5, we need estimates of the probability gen-
erating function g

(m)
n (q) = m−nG

(m)
n (q) for q = eiθ on the unit circle. We derive these

estimates from the corresponding estimates of
(

n
n1,...,nm

)
q

in [3] rather than from scratch.

(We do not know whether the estimates below are the best possible.)
Consider a random word Wn,m as in Section 2, let again N1, . . . , Nm be the number of

occurrences of the different letters, and let N∗ := maxk6n Nk and N∗ := n−N∗. Similarly,
for given n1, . . . , nm with n1 + · · · + nm = n, let n∗ := maxk6n nk and n∗ := n − n∗; let
further

Fn1,...,nm(q) :=

(
n

n1, . . . , nm

)
q

/( n

n1, . . . , nm

)
be the probability generating function of the number of inversions in a random word
consisting of n1 1’s, . . . , nm m’s, cf. (16). Thus Fn1,...,nm(q) is the probability generating
function of Vn,m = Inv(Wn,m) conditioned on Nk = nk, k = 1, . . . ,m.

Lemma 18. There exists c > 0 such that for all m > 2, n > 2 and real θ ∈ [−π, π],

∣∣g(m)
n (eiθ)

∣∣ 6 {e−cn3θ2
, 0 6 |θ| 6 1/n,

e−cn, 1/n 6 |θ| 6 π.
(66)

Proof. We assume in the proof for simplicity that n is large enough; this case is enough
for our application in Theorem 5. It is easy (but not very interesting) to complete the
proof by verifying the estimates (66) for each fixed n > 2 and some c (that now might
depend on n); we omit the details but mention that the case when m is large follows
using Theorem 2. We let c1, c2, . . . denote some positive constants whose values are not
important.

By [3, Lemma 4.1] there exists τ ∈ (0, 1) such that if |θ| 6 τ/n, then for any n1, . . . , nm

with n1 + · · ·+ nm = n, ∣∣Fn1,...,nm(eiθ)
∣∣ 6 e−σ2θ2/4,

where σ2 depends on n1, . . . , nm and by [3, Lemma 3.1] σ2 > n2n∗/36. Furthermore, by
[3, Lemma 4.4] there exists c1 > 0 such that if τ/n 6 |θ| 6 π, then∣∣Fn1,...,nm(eiθ)

∣∣ 6 e−c1n∗ .

Hence, if n∗ 6 3n/4 so that n∗ > n/4 we have the estimates∣∣Fn1,...,nm(eiθ)
∣∣ 6 e−c2n3θ2

, |θ| 6 τ/n, (67)

the electronic journal of combinatorics 19(3) (2012), #P34 13



and ∣∣Fn1,...,nm(eiθ)
∣∣ 6 e−c3n, τ/n 6 |θ| 6 π. (68)

We return to our string Wn,m with random numbers N1, . . . , Nm of different letters.
We can, for any m > 2, partition {1, . . . ,m} into three sets with at most m/2 elements
each, and thus

P(N∗ > 3n/4) 6 3 P
(
Bi(n, 1/2) > 3n/4

)
6 3e−c4n (69)

by Chernoff’s inequality, see e.g. [9, Theorem 2.1].
When |θ| 6 τ/n, which implies n3θ2 = O(n), we obtain by (67) and (69),∣∣g(m)

n (eiθ)
∣∣ =

∣∣E eiθVn,m
∣∣

=
∣∣∣E(eiθVn,m | N∗ 6 3n/4

)
P(N∗ 6 3n/4)

+ E
(
eiθVn,m | N∗ > 3n/4

)
P(N∗ > 3n/4)

∣∣∣
6 e−c2n3θ2 P(N∗ 6 3n/4) + P(N∗ > 3n/4)

6 e−c2n3θ2

+ 3e−c4n

6 4e−c5n3θ2

.

(70)

This verifies (66) with some c > 0 for c6n
−3/2 6 |θ| 6 τ/n.

For |θ| < c6n
−3/2, we first note that P(N∗ 6 3n/4) > c7 > 0 for all m, n > 2; this holds

for all large n by (69) (and is easily seen for each fixed n). Hence, by the calculations in
(70),

1−
∣∣g(m)

n (eiθ)
∣∣ > 1− P(N∗ > 3n/4)− P(N∗ 6 3n/4)e−c2n3θ2

= P(N∗ 6 3n/4)
(
1− e−c2n3θ2)

> c7c8n
3θ2,

verifying (66) in this case too (for c 6 c7c8).
Finally, for τ/n 6 |θ| 6 π, we obtain by arguing as in (70), now using (68) and (69),∣∣g(m)

n (eiθ)
∣∣ 6 e−c3n P(N∗ 6 3n/4) + P(N∗ > 3n/4) 6 e−c3n + 3e−c4n 6 e−c9n,

provided n is large enough. This completes the proof (for large n) for the cases τ/n 6
|θ| 6 1/n and 1/n 6 |θ| 6 π.

Proof of Theorem 5. Consider any sequence m = m(n) > 2. We will show that (14) holds
uniformly in k for any such sequence m(n); this is equivalent to the asserted uniform
convergence for all m > 2.

Denote the characteristic function of Gn,m by ϕn(θ), and recall that it is given by

ϕn(θ) = g
(m)
n (eiθ), see (6). It follows from Theorems 3 and 4 that

Gn,m − µn,m

σn,m

d−→ N(0, 1) (71)
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as n →∞. (To see this we may by considering subsequences assume that m(n) converges
to either a finite limit or to ∞; then (71) is (10) or (12).) Thus, by the continuity theorem,
for any fixed θ ∈ R,

e−iθµn,m/σn,mϕn(θ/σn,m) → e−θ2/2. (72)

Let
rn(θ) := e−iθµn,m/σn,mϕn(θ/σn,m)1{|θ| 6 πσn,m} − e−θ2/2, (73)

and note that rn(θ) → 0 as n →∞ for each fixed θ by (72) since σn,m →∞ by (8).
By Fourier inversion we have

σn,m P(Gn,m = k) =
σn,m

2π

∫ π

−π

e−iktϕ(t) dt

=
1

2π

∫ πσn,m

−πσn,m

e−ikθ/σn,mϕ(θ/σn,m) dθ

=
1

2π

∫ ∞

−∞
ei(µn,m−k)θ/σn,m

(
rn(θ) + e−θ2/2

)
dθ

=
1

2π

∫ ∞

−∞
ei(µn,m−k)θ/σn,mrn(θ) dθ +

1√
2π

e−(µn,m−k)2/2σ2
n,m ,

and thus, for all k ∈ Z,∣∣∣∣σn,m P(Gn,m = k)− 1√
2π

e−(µn,m−k)2/2σ2
n,m

∣∣∣∣ 6 1

2π

∫ ∞

−∞

∣∣rn(θ)
∣∣ dθ.

The result (14) follows since ∫ ∞

−∞

∣∣rn(θ)
∣∣ dθ → 0

as n →∞ by dominated convergence, using Lemma 18; note that if |θ| 6 πσn,m, then
|θ| 6 n3/2 since π2σ2

n,m < n3 by (8), and hence (66) yields∣∣ϕn(θ/σn,m)
∣∣ =

∣∣g(m)
n (eiθ/σn,m)

∣∣ 6 e−cn3θ2/σ2
n,m + e−cn 6 e−cθ2

+ e−cθ2/3

;

hence, for all n > 2 and θ ∈ R, ∣∣rn(θ)
∣∣ 6 2e−cθ2

+ e−cθ2/3

.

The version with µ̄n,m and σ̄2
n,m follows in exactly the same way, starting with

Gn,m − µ̄n,m

σ̄n,m

d−→ N(0, 1), (74)

which is equivalent to (71) since σ̄2
n,m ∼ σ2

n,m and µ̄n,m = µn,m + o(σn,m) as n →∞ by
Theorem 1.
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