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Abstract

In this paper we use Weil’s estimate on character sums to prove that large admis-
sible prime powers q admit 2-(q, k, 1) designs having block-transitive automorphism
groups in AGL(1, q).
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1 Introduction

A 2-(v, k, 1) design D is a system (P ,B), where P is a set of v points and B is a collection
of some k-subsets of P , called blocks, such that any two different points from P lie on
exactly one block B ∈ B. A flag is a pair (α,B) where α is a point and B a block
containing α.

An automorphism of D is a permutation of the point set P which preserves the inci-
dence relation. The set of automorphisms of D is denoted by AutD. Let G 6 AutD. If G
acts transitively on the block set B of D, then G is said to be block-transitive. Similarly,
if G acts transitively on the flags of D, then G is said to be flag-transitive.

The classification of the 2-(v, k, 1) designs with flag-transitive automorphism groups
has been completed [1]. Recently, the designs with block- transitive automorphism groups
are of great interest (see [2, 3, 8, 9]). In [10], H. L. Li and W. J. Liu prove that if a
soluble group G acts on a design D block-transitively, and suppose the point size of D
satisfies v > (k3/4 + 1)φ(k(k−1)), then v is a power of a prime p and G is flag-transitive or
G 6 AΓL(1, v).
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In this paper, we investigate the existence of the pairs (D, G) such that D is a 2-
(v, k, 1) design, G is a one-dimensional affine group acting on D as an automorphism
group block-transitively. We show that there is a method to construct such a pair (D, G)
from some suitable prime power q. The main result is the following theorem.

Theorem 1. For every integer k > 3, there exists a positive integer N(k) such that if q is
a power of a prime p0 > k−2 satisfying that q > N(k) and q ≡ k(k−1)+1( mod 2k(k−1)),
then there exists a 2-(q, k, 1) design D, which has a regular block-transitive automorphism
group G < AGL(1, q).

In Theorem 1, the bound N(k) ≈ 2k(k−1)k4(k(k − 1)/2)2k−2. This bound is by no
means a good one, therefore Theorem 1 only shows that such a bound exists. When k is
small, we can find a much better bound. We will prove N(3) = 1 in section 4. For those
prime powers q 6 N(k) in the theorem, if q is not large, we can search the designs with
the aid of computers. For example, for k = 4 it is shown that N(4) ≈ 104 in [12], but
by using some simple programs to search the required blocks [6], we find that the designs
exist for each prime power q 6 5000.

We explain Theorem 1 briefly. There are many examples of 2-(v, k, 1) designs with
block-transitive (or flag-transitive) automorphism groups of 1-dimensional affine type,
such as translation affine planes, generalized Netto systems, and Kantor’s inflation trick,
etc. But a complete classification of these designs seems to be out of reach with present
methods. On the other hand, R. M. Wilson’s classic paper [14] states that if q is a prime
power greater than (k(k − 1)/2)k(k−1), then there exists a (q, k, λ)-difference family in
GF(q) if and only if λ(q−1) ≡ 0( mod k(k−1)), where λ is a positive integer. We believe
there is an important and intriguing connection between Wilson’s work and the construc-
tion of designs with block-transitive (or flag-transitive) automorphism groups of affine
type. Similar to Wilson’s result, Theorem 1 shows that large admissible prime powers q
admit Steiner 2-designs having block-transitive automorphism groups in AGL(1, q). We
use Weil’s estimate on character sums to get the bound N(k). When k > 5, our bound
is smaller than Wilson’s bound (k(k− 1)/2)k(k−1), which is obtained by other techniques.
But we have assumed an additional condition p0 > k − 2 in order to use Weil’s Theorem
in a simple way.

2 Some preliminary results

Throughout this paper, we assume k > 3 is an integer, p0 > k−2 is a prime, and q = pn0 is
a power of p0 such that q ≡ k(k−1)+1 ( mod 2k(k − 1)). Since k(k−1)+1 and 2k(k−1)
are relatively prime, by Dirichlet’s theorem on primes in arithmetic progressions, there
are infinitely many primes p0 (hence infinitely many q) satisfying the above requirements.
For an arbitrary set X, let |X| denote its cardinality.

Let GF(q) be the finite field of q elements and let θ be a generating element of the
multiplicative group GF(q)×. Let M and L be the subgroups of GF(q)× defined by

M =
〈
θk(k−1)/2

〉
, L =

〈
θk(k−1)

〉
.
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Then clearly, [M : L] = 2.
Let G ⊆ AGL(1, q) be the group of all permutations of GF(q) of the form x→ αx+σ,

where α ∈ L, σ ∈ GF(q). Then clearly G = GF(q)+ : L.
Let B = {β1, β2, · · · , βk} be a subset of GF(q) consisting of k pairwise distinct ele-

ments. Define 4B = {βj−βi|1 6 i < j 6 k}. Clearly |4B| 6 k(k−1)/2. For an element
g ∈ G, define Bg = {βg1 , β

g
2 , · · · , β

g
k}. Let BG = {Bg|g ∈ G}.

Lemma 2. ([5]) Let B = {β1, β2, · · · , βk} be a k-subset of GF(q). If 4B is exactly
a system of representatives of the cosets of M in GF(q)×, then D = (GF(q), BG) is a
2-(q, k, 1) design, and G is regular on the blocks of D.

3 Weil’s theorem on character sums

In this section, we introduce the notion of multiplicative characters of finite fields, then we
quote the character sum version of Weil’s theorem. We mention that various applications
of Weil’s theorem in finite geometry and combinatorics have been surveyed in [13].

Let F be a finite field and let C be the set of complex numbers. A multiplicative
character of F is a homomorphism χ : F× → C×. The trivial character χ0 is defined by
χ0(α) = 1 for all α ∈ F×. Let χ1 and χ2 be two multiplicative characters of F . Then
define χ1χ2 to be the map

χ1χ2(α) = χ1(α)χ2(α), ∀α ∈ F×.

This definition makes the set of multiplicative characters of F into a group. This group
is a cyclic group of order |F | − 1. A character χ is said to be of order m if m is the least
positive integer such that χm = χ0. It is often useful to extend the domain of definition
of a multiplicative character to all of F . If χ is not the trivial character, we do this by
defining χ(0) = 0. For the trivial character χ0, we define χ0(0) = 1.

Lemma 3. Let G∗ be a group of multiplicative characters of a finite field F and let α be
a fixed element of F×. Then we have∑

χ∈G∗

χ(α) =

{
|G∗|, if χ(α) = 1 for all χ ∈ G∗;
0, if χ(α) 6= 1 for some χ ∈ G∗.

Proof. Clearly, if χ(α) = 1 for all χ ∈ G∗, then we have
∑

χ∈G∗ χ(α) = |G∗|. Suppose
there is a character, say ψ ∈ G∗, such that ψ(α) 6= 1, then we have

ψ(α)
∑
χ∈G∗

χ(α) =
∑
χ∈G∗

ψ(α)χ(α) =
∑
χ∈G∗

ψχ(α) =
∑
χ∈G∗

χ(α).

The last equality follows since ψχ runs over all characters of G∗ as χ does. The result
follows immediately.
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Weil’s Theorem. (See [11],Theorem 5.41) Let ψ be a multiplicative character of a finite
field F and suppose ψ is of order m > 1. Suppose that f ∈ F [x] is a monic polynomial of
positive degree, and that f is not an mth power of a polynomial. Let d denote the number
of distinct roots of f in its splitting field over F . Then for any element α ∈ F , we have∣∣∣∣∣∑

x∈F

ψ(αf(x))

∣∣∣∣∣ 6 (d− 1)
√
|F |.

4 Proof of Theorem 1

We need some simple properties of the cyclotomic polynomials. The nth cyclotomic
polynomial Φn(x) is defined by

Φn(x) =
∏

(j,n)=1

(x− e
2πi
n
j), where 1 6 j 6 n.

It is well known that Φn(x) ∈ Z[x].

Lemma 4. [11] xn − 1 =
∏

d|n Φd(x).

Lemma 5. Let m and n be different positive integers, and let p be a prime with p - mn.
Then as polynomials in GF(p)[x], Φm(x) and Φn(x) are relatively prime.

Proof. Consider the polynomial xmn − 1. This polynomial has no multiple roots in any
extension field of GF(p) since (p,mn) = 1. By Lemma 4, Φn(x)Φm(x) divides xmn − 1,
thus they have no nontrivial common factors.

By Lemma 2, if we can choose a set B = {0, 1, β, β2, β3, · · · , βk−2}, where β ∈ GF(q),
such that4B is a system of representatives of the cosets of M in GF(q)×, then a 2-(v, k, 1)
design on which G = GF(q)+ : L is regular block-transitive can be constructed. Thus
the idea is to show that for any fixed integer k > 3, if q is large enough, such an element
β ∈ GF(q) always exists.

We list the elements of 4B in the following table. We use the symbol Cj (j ∈
{1, 2, · · · , k − 1}) to denote the jth column of the table.

Table: The elements of 4B

C1 C2 C3 · · · C(k-2) C(k-1)

1 β − 1 β2 − 1 · · · βk−3 − 1 βk−2 − 1
β β(β − 1) β(β2 − 1) · · · β(βk−3 − 1)
β2 β2(β − 1) β2(β2 − 1) · · ·
...

...
...

βk−4 βk−4(β − 1) βk−4(β2 − 1)
βk−3 βk−3(β − 1)
βk−2
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Lemma 6. Let B = {0, 1, β, β2, · · · , βk−2}. Suppose that β ∈ GF(q) satisfies the follow-
ing conditions 

β ∈Mθ,
β − 1 ∈Mθk−1,
β2 − 1 ∈Mθ2k−3,

...
βj − 1 ∈Mθjk−(1+2+3+···+j),
(j = 1, 2, · · · , k − 2).

(1)

Then 4B is a system of representatives of the cosets of M in GF(q)×.

Proof. The cosets of M in GF(q)× are Mθj, where j = 0, 1, · · · , k(k−1)
2
− 1.

If β ∈Mθ, then the elements in the first column C1 run through M , Mθ, · · · , Mθk−2.
While from β − 1 ∈ Mθk−1 we know the elements in the second column C2 run through
Mθk−1, Mθk, · · · , Mθ2k−4. It is not hard to verify that for j = 1,2,· · · ,k−2, the elements
in Cj run through Mθ(j−1)k−(1+2+···j−1), · · · , Mθjk−(1+2+···+j)−1. And finally, we have

βk−2 − 1 ∈Mθ(k−2)k−(1+2+···+k−2) = Mθ
k(k−1)

2
−1.

We note that in (1) the arrangement of the the coset which βj− 1 belongs to does not
contradict the arrangements of the cosets for βi−1 (i < j). In fact, we only need to specify
the cosets which β, Φ1(β), Φ2(β), · · · , Φk−2(β) belong to one by one in turn. We have
assumed p0 > k − 2. By Lemma 5, Φj(x) is relatively prime to xΦ1(x)Φ2(x) · · ·Φj−1(x),
thus the arrangements for Φi(β) (i < j) do not affect the arrangement for Φj(β).

Now βj − 1 ∈ Mθjk−(1+2+···+j) is equivalent to θ−jk+(1+2+···+j)(βj − 1) ∈ M . For any
element α ∈ GF(q)×, we have αk(k−1)/2 ∈M . Thus the conditions in (1) can be stated in
another way. 

β ∈Mθ,
βk(k−1)/2−k+1(β − 1) ∈M,
βk(k−1)/2−2k+3(β2 − 1) ∈M,

...
βk(k−1)/2−jk+(1+2+···+j)(βj − 1) ∈M,
(j = 1, 2, · · · , k − 2).

(2)

We use (2) instead of (1), and introduce the following polynomials,

fj(x) = xk(k−1)/2−jk+(1+2+···+j)(xj − 1), ∀j = 1, 2, · · · , k − 2. (3)

We consider these polynomials fj(x) in GF(q)[x]. Note that for a positive integer j 6 k−2,
jk − (1 + 2 + · · · + j) = (k − 1) + (k − 2) + · · · + (k − j) is greater that j and less than
k(k − 1)/2, thus each polynomial fj(x) is of a positive degree less than k(k − 1)/2.

Lemma 7. Let m > 2 be an integer. Let g(x) = xj0f j11 (x) · · · f jk−2

k−2 (x), where the indexes
jis are nonnegative integers, not all zero, and each ji < m. Then as a polynomial in
GF(q)[x], g(x) is not an mth power of a polynomial.
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Proof. Let F be the splitting field of the polynomial x(k−2)!− 1 over GF(q). Clearly, g(x)
also splits in F . Since the characteristic of GF(q) is p0 > k − 2, we know that x(k−2)! − 1
has no multiple roots in F .

If g(x) = xj0 with 0 < j0 < m, the conclusion is clear. In other cases, write
g(x) = xj0f j11 (x) · · · f jnn (x), where n is the largest integer such that jn > 0. By Lemma 4
and Lemma 5, fn(x) has a factor Φn(x), which is relatively prime to f1(x)f2(x) · · · fn−1(x).
It follows that each zero root of Φn(x) is a root of g(x) in F of multiplicity jn < m.
Therefore, g(x) can not be an mth power of a polynomial in GF(q)[x].

Proof of Theorem 1. Let Ω = {β|β ∈ GF(q) satisfies (2)}. It suffices to show that if q
is large enough then |Ω| > 0.

Let a = e
2πi

k(k−1)/2 be a k(k − 1)/2-th root of unity. For any integer j, we define ψ(θj) =
aj. Since q − 1 ≡ k(k − 1)(mod 2k(k − 1)), we know ψ is a multiplicative character of
order k(k − 1)/2 on GF(q).

Let f1(x), f2(x), · · · , fk−2(x) be the polynomials given by (3). For each polynomial
fj(x), consider the sum 1+ψ(fj(x))+ψ2(fj(x))+· · ·+ψk(k−1)/2−1(fj(x)), where x ∈ GF(q).
By Lemma 3, we have

1 + ψ(fj(x)) + · · ·+ ψk(k−1)/2−1(fj(x)) =


k(k − 1)/2, if fj(x) ∈M,
1, if fj(x) = 0,
0, otherwise.

(4)

Let V (x) be a mapping from GF(q) to C defined by

V (x) = [1− ψ(x)] ·

k(k−1)
2
−1∏

j=2

[ψ(x)− aj], ∀x ∈ GF(q). (5)

Since ψ is of order k(k − 1)/2, we may write V (x) as follows,

V (x) = c0 + c1ψ(x) + c2ψ
2(x) + · · ·+ c k(k−1)

2
−1
ψ
k(k−1)

2
−1(x), (6)

where the coefficients c0, c1, · · · , c k(k−1)
2
−1

are some complex numbers deduced from (5).

It is easy to prove that the coefficients ci have a common bound, i.e., each ci satisfies
|ci| 6 2k(k−1)/2−1.

Notice that if x ∈Mθj, then ψ(x) = aj. Therefore, from (5) we have

V (x) =


V (θ), if x ∈Mθ,
V (0), if x = 0,
0, otherwise.

(7)

Write b0 = V (θ), c0 = V (0). Clearly, we have

b0 = [1− a]

k(k−1)
2
−1∏

j=2

[a− aj] 6= 0,
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c0 = (−1)k(k−1)/2

k(k−1)
2
−1∏

j=2

aj 6= 0.

The value of c0 is of importance. In fact we have c0 = −a−1, which is deduced from
the fact that a is a k(k − 1)/2-th root of unity, i.e., there is an identity zk(k−1)/2 − 1 =
(z − 1)(z − a)(z − a2) · · · (z − ak(k−1)/2−1).

We now define a mapping H(x) from GF(q) to C by

H(x) = V (x)
k−2∏
j=1

[1 + ψ(fj(x)) + · · ·+ ψ
k(k−1)

2
−1(fj(x))], ∀x ∈ GF(q). (8)

Roughly speaking, H(x) is a sieve, that is, we can use H(x) to preserve the required
elements β ∈ Ω and sift most elements in the rest part GF(q) \ Ω.

Now consider the sum ∑
x∈GF(q)

H(x) . (9)

We partition GF(q) into three disjoint subsets,

GF(q) = Ω∪̇Ω1∪̇Ω2,

where Ω1 = {β| β is a root of f1(x)f2(x) · · · fk−2(x) = 0}, and Ω2 = GF(q) \ (Ω ∪ Ω1).
Note that fj(x) has at most j + 1 roots in GF(q), and those polynomials have at least
two common zero roots (i.e., 0 and 1), hence we have |Ω1| < 1 + 2 + · · ·+ (k − 2) < k2.

We have ∑
x∈GF(q)

H(x) =
∑
x∈Ω

H(x) +
∑
x∈Ω1

H(x) +
∑
x∈Ω2

H(x) . (10)

In view of (4) and (7), we know that if x ∈ Ω then H(x) = b0 ·
[
k(k−1)

2

]k−2

, while if x ∈ Ω2

then H(x) = 0. Therefore, we get

∑
x∈GF(q)

H(x) = b0 ·
[
k(k − 1)

2

]k−2

|Ω|+
∑
x∈Ω1

H(x). (11)

We substitute the expression of V (x) in (6) into the right-hand side of (8), then we
expand out H(x). For simplicity, we denote ψ(x) by ψ, f1(x) by f1, and ψ(f1(x)) by ψ(f1),
etc. If define 00 = 1, then for every α ∈ GF(q) and every integer 0 6 i < k(k − 1)/2, we
have ψi(α) = ψ(αi). From (6) and (8) we get

H(x) = c0 +
∑

(j,j1,j2,··· ,jk−2)

cjψ
jψj1(f1)ψj2(f2) · · ·ψjk−2(fk−2)

= c0 +
∑

(j,j1,··· ,jk−2)

cjψ(xjf j11 f
j2
2 · · · f

jk−2

k−2 ),
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where the indexes j, j1, j2, · · · , jk−2 are not all zero, and each index belongs to {0, 1, · · · ,
k(k−1)

2
− 1}.

Then the sum (9) becomes that∑
x∈GF(q)

H(x) =
∑

x∈GF(q)

c0 +
∑

(j,j1,··· ,jk−2)

∑
x∈GF(q)

cjψ(xjf j11 f
j2
2 · · · f

jk−2

k−2 ). (12)

Equating (11) and (12), we get that[
k(k − 1)

2

]k−2

b0|Ω| = c0q −
∑
x∈Ω1

H(x) +

+
∑

(j,j1,··· ,jk−2)

∑
x∈GF(q)

cjψ(xjf j11 f
j2
2 · · · f

jk−2

k−2 )

= c0q + S1 + S2, (13)

where S1 = −
∑

x∈Ω1
H(x), and S2 =

∑
(j,j1,··· ,jk−2)

∑
x∈GF(q)[· · · ].

Since |ψ(x)| 6 1, it follows from (8) that |H(x)| 6 2k(k−1)/2
[
k(k−1)

2

]k−2

. Hence we

have

|S1| =

∣∣∣∣∣∑
x∈Ω1

H(x)

∣∣∣∣∣ 6 |Ω1||H(x)| 6 k22k(k−1)/2

[
k(k − 1)

2

]k−2

.

By Lemma 7, we can use Weil’s Theorem to conclude that∣∣∣∣∣∣
∑

x∈GF(q)

cjψ(xjf j11 f
j2
2 · · · f

jk−2

k−2 )

∣∣∣∣∣∣ 6 |cj|k2√q 6 2k(k−1)/2k2√q,

then it follows that

|S2| =

∣∣∣∣∣∣
∑

(j,j1,j2,··· ,jk−2)

∑
x∈GF(q)

[· · · ]

∣∣∣∣∣∣ 6 2k(k−1)/2k2

[
k(k − 1)

2

]k−1√
q.

Therefore, we find that

|S1|+ |S2| < 2k(k−1)/2k2

[
k(k − 1)

2

]k−1

(
√
q + 1). (14)

From (13) and (14), we get that[
k(k − 1)

2

]k−2

|b0||Ω| > |c0|q − (|S1|+ |S2|)

> |c0|q − 2k(k−1)/2k2

[
k(k − 1)

2

]k−1

(
√
q + 1).
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Since |c0| = | − a−1| = 1, the above inequality shows that if q is large enough, say,
√
q > 1 + 2k(k−1)/2k2

[
k(k−1)

2

]k−1

, then |Ω| > 0, which implies that there is an element

β ∈ GF(q) satisfying (2).
This completes the proof of Theorem 1.

Remark 8. A design D constructed via Lemma 2 has a regular block-transitive automor-
phism group G = GF(q)+ : L, but its full automorphism group AutD might be much
bigger. For example, take k = 3, q = 7, M = 〈−1〉, and L = 〈1〉 in GF(7), then
B = {0, 1, 3} satisfies Lemma 2, but a 2-(7, 3, 1) design is the projective plane of order
2, and its full automorphism group is isomorphic to PSL2(7), while GF(7)+ : L ∼= Z7 is
only corresponding to the Singer cycles. Another example is the Netto system N(q) when
q ≡ 7 or 31(mod 36), which will be explained later. It seems to be a difficult question to
determine AutD for the designs given by Lemma 2.

5 Application to k = 3

In this section, we take k = 3, q ≡ 7(mod 12). We apply Lemma 2 and Theorem 1 to
construct some 2-(q, 3, 1) designs. We define G = GF(q)+ : 〈θ6〉 and M = 〈θ3〉, where θ
generates GF(q).

For k = 3, it is interesting to compare the Netto designs and the designs constructed
via Lemma 2. The Netto design N(q) may be explained as follows. For each prime
power q ≡ 7(mod 12), choose ε to be a primitive sixth root of unity in GF(q), then
let B = {0, 1, ε}. Let AΓ2L(1, q) be the group of permutations of GF(q) of the form
x → α2xτ + β, where α, β ∈ GF(q), α 6= 0 and τ is a field automorphism. To define the
Netto system N(q), let the points be the elements of GF(q), and let the blocks be the
images of B under the action of AΓ2L(1, q). Except for q = 7 the full automorphism of
N(q) is AΓ2L(1, q).

In [7], M. Grannell, T. Griggs and J. Murphy constructed some 2-(q, 3, 1) designs,
which may be seen as the special case of Lemma 2 for k = 3. The notation they used is
different from ours. We state the fundamental theory upon which their computations are
based in the following theorem.

Theorem 9. ([7]) Let p be a prime with p ≡ 7(mod 12). If there is an element β ∈
GF(p) such that {Mβ,M(1 − β)} = {Mθ, Mθ2}, then D = (GF(p), BG) is a 2-(p, 3, 1)
design, where B = {0, 1, β}.

M.Grannell et al. pointed out that up to p 6 75079, the required elements β in
Theorem 9 exist. In the next theorem we prove the existence of such an element β for
each prime power q ≡ 7(mod 12), and compare those designs with the Netto designs.

Theorem 10. Let q be a prime power with q ≡ 7(mod 12). Then

(1) If q ≡ 7 or 31( mod 36), then the class of 2-(q, 3, 1) designs constructed via Theorem
9 contains the Netto designs;
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(2) If q > 7, then there are at least three pairwise distinct elements β1, β2, β3 of GF(q),
which means that at least one βi is not a primitive sixth root of unity, such that
B = {0, 1, βi} (i = 1, 2, 3) satisfies Theorem 9.

Proof. (1) Consider the block B = {0, 1, ε} of N(q). By the definition of ε, we have
ε = θ±(q−1)/6, and ε2 − ε + 1 = 0 holds, hence 4B = {1, ε, ε2}. It follows that if ε 6∈ M ,
which is equivalent to 3 - q−1

6
, or q ≡ 7 or 31(mod 36), then 4B is a system of the

representatives of the cosets of M in GF(q)×. While if ε ∈M , i.e., q ≡ 19(mod 36), then
4B ⊆M .

(2) The proof is similar to the proof of Theorem 1. We only give some points.
Select an element β ∈ GF(q) satisfying that

β ∈Mθ ∪Mθ−1, and β(β − 1) ∈M. (15)

Then B = {0, 1, β} satisfies Theorem 9. Let Ω denote the set of such elements β. To
prove (2) is to prove that |Ω| > 2 for q > 7.

Now partition GF(q) into three disjoint parts and denote the partition by GF(q) =
Ω ∪ {0, 1} ∪ Ω1, where Ω1 = GF(q) \ (Ω ∪ {0, 1}).

Let ψ be a multiplicative character of order 3 on GF(q) and let f(x) = x(x− 1). Let
H(x) be a mapping from GF(q) to C defined by

H(x) = [2− ψ(x)− ψ−1(x)][1 + ψ(f(x)) + ψ−1(f(x))], ∀x ∈ GF(q).

Then we have

H(x) = 2− ψ(x)− ψ−1(x) + 2ψ(f(x)) + 2ψ−1(f(x))

−ψ(xf(x))− ψ(xf 2(x))− ψ(x2f(x))− ψ(x2f 2(x)). (16)

Now consider
∑

x∈GF(q) H(x). It can be verified directly that H(0) = 2, and if x ∈ Ω

then H(x) = 9. While if x = 1 or x ∈ Ω1, then H(x) = 0. Thus from the left-hand side
of (16) we get ∑

x∈GF(q)

H(x) = 9|Ω|+ 2.

We use Weil’s Theorem to estimate the sums such as
∑

x∈GF(q) ψ(xf(x)) and∑
x∈GF(q) Ψ(x2f(x)), etc. Then from the right-hand side of (16), we get∑

x∈GF(q)

H(x) = 2q + · · · > 2q − 8
√
q.

Therefore we get 9|Ω|+ 2 > 2q − 8
√
q. If q > 40, then |Ω| > 3, as required.

In the remaining case where q = 19 or 31, we can find the required elements β directly.
When q = 19, choose 2 to be a generating element of GF(19). We have ε ∈ {8,−7},
M = 〈23〉. Then one may verify that B = {0, 1, 16} satisfies the requirement.

For GF(31), choose 3 to be a generating element. We have ε ∈ {−5, 6}, M = 〈33〉.
Then B = {0, 1, 12} is such a subset.
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Remark 11. As pointed out in [7], if β satisfies (15), then the designs generated by the
blocks B = {0, 1, β} where β ∈ {β, 1 − β, 1/(1 − β), β/(β − 1), 1 − 1/β, 1/β} are all
isomorphic. We believe that the designs generated by (0, 1, β), where β is not a primitive
sixth root of unity, are not isomorphic to the Netto designs. However we are unable to
prove this.

The 2-(v, 3, 1) designs having a block transitive automorphism group have been clas-
sified by P. C. Clapham [4]. Here we quote Clapham’s result from [3].

Theorem 12 (Clapham’s Theorem). Let K act as a block transitive group on a 2-(v, 3, 1)
design D. Then one of the following holds

(1) K acts 2-transitively on points,

(2) K has odd order and is a subgroup of the AΓL(1, pd) containing the translation
subgroup, where p is a prime and d is a natural number and one of the following
holds:

(2a) D is an affine geometry of dimension d over GF(3), d is odd and K has rank
2 on points,

(2b) D is a Netto design,

(2c) K has rank 7 on the points and pd ≡ 7(mod 12).

There has been a complete classification of those designs in (1) of Theorem 12. Note
that G = GF(q)+ : 〈θ6〉 is a subgroup of AΓ2L(1, q), and the setwise stabilizer of {0, 1, ε}
in G is trivial, thus the Netto designs N(q) together with G are examples of (2c) of
Theorem 12. Other examples also exist by Theorem 10.
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