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Abstract

In this article we derive several consequences of a matricial characterization of
P-recursive sequences. This characterization leads to canonical representations of
these sequences. We show their uniqueness for a given sequence, up to similarity.
We study their properties: operations, closed forms, d’Alembertian sequences, field
extensions, positivity, extension of the sequence to Z, difference Galois group.

1 Introduction

Polynomial recursivity (Stanley [S1]), equivalently holonomy (Zeilberger [Z]), is a basic
notion in the theory of integer sequences. It is known that P-recursive sequences coincide
with D-finite series. These sequences are interesting in particular since many sequences
appearing in mathematics are P-recursive, and that they contain rational and algebraic
series; moreover, they may be effectively computed and manipulated, see the book by
Petkovšek, Wilf and Zeilberger [PWZ].

Following ideas in algebraic automata theory, we define representations of P-recursive
sequences. Such a matrix representation may be seen as an analogue of the representation
r(1)r(2) · · · r(n) of a hypergeometric sequence, by replacing the rational function r(t) by a
matrix of such functions. The basic characterization is Th.2.1. This result motivates the
notion of representation: the form we give is close to the Fliess representation (λ, µ, γ) of
noncommutative rational series [F], following the work of Schützenberger (see [BR] and
the references therein).

These representations behave nicely with respect to the usual operations with P-
recursive sequences, notably the multiplivation. Minimal representations are studied: for
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a fixed P-recursive germ (that is, a sequence viewed at infinity), they are all similar, in
the sense of pseudo-linear algebra. It is shown how general representations of a fixed germ
are related to minimal ones. From this it follows that closed forms and d’Alembertian
germs (introduced by Abramov and Petkovšek [AP]) are nicely characterized by minimal
representations: they have respectively diagonal and triangular form.

We study several questions of arithmetic nature: extension of the ground field, positiv-
ity, extension of sequences to Z (in a way different from Stanley in [S1]), Galois group in
the sense of difference fields. We conclude by some comments on effectiveness and integer
arithmetic.

The author thanks Marko Petkovšek for useful e-mails in 1998. Also François Berg-
eron, Sébastien Labbé and Claudine Mitschi for useful discussions and mails. Also the
anonymous referee, who gave a long list of stylistic, grammatical and mathematical sug-
gestions, which helped to improve the article.

2 Matrix representation

Let K be a field of characteristic 0. Recall that a sequence f(n), n ∈ N, is said to
be polynomially recursive (or P-recursive) if there exist d ∈ N∗, n0 ∈ N and d rational
functions r1(t), . . . , rd(t) ∈ K(t) such that the ri(n) are defined for n > n0 and that one
has the recursion

∀n > n0, f(n+ d) = r1(n)f(n+ d− 1) + · · ·+ rd(n)f(n). (1)

We call length of the recursion the integer d (whatever is the value of n0).
The basic theorem, on which the whole paper rests, is the following. This result is

implicitly contained in Proposition 4.1 of the book of van der Put and Singer [PS]. The
”if” part is Theorem 1 of [LRZ]. We formulate it in a more direct manner. Although this
result can be derived from these two articles, we give here a direct and simple proof 1.

Before stating the result, recall that a hypergeometric sequence is a sequence f such
that for some r(t) ∈ K(t), one has f(n + 1) = f(n)r(n + 1) if n is large enough. Then
for some n0, f(n) = f(n0)r(n0 + 1)r(n0 + 2) · · · r(n) for any n > n0. Thus, in view of
the theorem below, P-recursive sequences appear as a matrix version of hypergeometric
sequences.

Theorem 2.1. A sequence f(n) is P-recursive if and only if there exist d ∈ N∗, a matrix
M(t) ∈ K(t)d×d, a row matrix λ ∈ K1×d and a column matrix γ(t) ∈ K(t)d×1 such that
M(n) is defined for each integer n > n0 + 1, that γ(n) is defined for n > n0 and that

∀n > n0, f(n) = λM(n0 + 1)M(n0 + 2) · · ·M(n)γ(n). (2)

We give two examples. The number Dn of derangements (permutations without fixed
points) in the symmetric group Sn satisfies D0 = 1, D1 = 0 and Dn+2 = (n + 1)Dn+1 +

1This was originally obtained independently by the author in 1997.
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(n+ 1)Dn. Hence, we see by the proof below that

Dn = (1, 0)

(
0 1
1 1

)(
0 2
1 2

)
· · ·
(

0 n
1 n

)(
1
0

)
.

The number In of involutions in Sn satisfies I0 = I1 = 1 and In+2 = In+1 + (n + 1)In.
Thus

In = (1, 1)

(
0 1
1 1

)(
0 2
1 1

)
· · ·
(

0 n
1 1

)(
1
0

)
.

In these two examples, we have n0 = 0, with the notations of the theorem.

Proof. Suppose that f(n) satisfies Eq.(1). Define M(t) ∈ K(t)d×d to be the companion
matrix 

0 · · · · · · 0 rd(t− 1)

1
. . .

...
...

0
. . . . . .

...
...

...
. . . . . . 0 r2(t− 1)

0 · · · 0 1 r1(t− 1)


Note that M(n) is defined for n > n0+1. Let also R(n) be the row matrix (f(n), . . . , f(n+
d− 1)) ∈ Kd×1. Then

R(n+ 1) = (f(n+ 1), . . . , f(n+ d))

= (f(n), . . . , f(n+ d− 1))


0 · · · · · · 0 rd(n)

1
. . .

...
...

0
. . . . . .

...
...

...
. . . . . . 0 r2(n)

0 · · · 0 1 r1(n)

 = R(n)M(n+ 1)

for any n > n0. We deduce that for any such n,

R(n) = R(n0)M(n0 + 1)M(n0 + 2) · · ·M(n).

It suffices now to take λ = R(n0) and γ(t) = (1, 0, . . . , 0)T .
Conversely, suppose that Eq.(2) holds. Consider the column vectors γ(t),M(t+1)γ(t+

1),M(t + 1)M(t + 2)γ(t + 2), . . ., in the d-dimensional vector space K(t)d×1 over K(t).
There exists l 6 d and r1(t), . . . , rl(t) ∈ K(t) such that

M(t+ 1) · · ·M(t+ l)γ(t+ l) = r1(t)M(t+ 1) · · ·M(t+ l − 1)γ(t+ l − 1)

+ · · ·+ rl−1(t)M(t+ 1)γ(t+ 1) + rl(t)γ(t).

Let n1 > n0 such that the ri(n) are defined for n > n1. By letting t = n and multiplying
at the left by λM(n0 + 1)M(n0 + 2) · · ·M(n) and using Eq.(2), we obtain that for any
n > n1

f(n+ l) = λM(n0 + 1)M(n0 + 2) · · ·M(n+ l)γ(n+ l)
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= λM(n0 + 1)M(n0 + 2) · · ·M(n)M(n+ 1) · · ·M(n+ l)γ(n+ l)

= r1(n)λM(n0 + 1)M(n0 + 2) · · ·M(n)M(n+ 1) · · ·M(n+ l − 1)γ(n+ l − 1)

+ · · ·+ rl−1(n)λM(n0 + 1)M(n0 + 2) · · ·M(n)M(n+ 1)γ(n+ 1)

+rl(n)λ(n)M(n0 + 1)M(n0 + 2) · · ·M(n)γ(n)

= r1(n)f(n+ l − 1) + · · ·+ rl−1(n)f(n+ 1) + rl(n)f(n).

This proves that f is P-recursive.

The right-hand side of Eq.(2) may be interpreted as a sum of labels of paths. We
give this automata-like interpretation in the case n0 = 0 for simplicity. Consider indeed
the directed graph with vertices 1, . . . , d and edge i → j labelled M(n)ij if the latter is
nonzero. To each path π = i0i1 · · · in of length n in this graph, we assign the label

l(π) = M(1)i0i1M(2)i1i2 · · ·M(n)in−1in .

Then
f(n) =

∑
ij

λi

(∑
l(π)

)
γj(n), (3)

where the second sum is over all paths π from i to j of length n.
We illustrate this by in Figure 1: the incoming (resp. outgoing) arrows indicate the

row vector λ (resp. column vector γ(n)); they are labelled with the corresponding element
of the vector, with the following conventions: no label indicates that the label is 1; no
arrow indicates that the label is 0. Thus, the number of involutions in Sn is equal to the
sum of the labels of the paths of length n which end at 1; for example, for n = 3, we have
the paths 1→ 2→ 2→ 1 with label 1× 1× 1, 2→ 2→ 2→ 1 with label 1× 1× 1 and
2→ 1→ 2→ 1 with label 1× 2× 1, so that the number of involutions is 4, as it must be.

1 2

n

1

1

Figure 1: Involutions

3 Germs

Following [S1], [S2] Section 6.4, we define an equivalence on the set of sequences over K
by f ∼ g if for some n0, one has: ∀n > n0, f(n) = g(n). The equivalence class of f is
denoted by [f ] and called a germ. The set G of germs over K is a vector space over K(t).
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The result of the action of r(t) ∈ K(t) on φ ∈ G is γ ∈ G as follows: if the sequence f is a
representative of the germ φ, then the sequence g(n) defined by g(n) = r(n)f(n), n large
enough, is a representative of γ; this is well-defined (loc. cit).

Let φ = [f ]. The shift mapping E is defined on germs by E(φ) = γ, where γ = [g],
with g the sequence g(n) = f(n+1). It is a K-linear automorphism of the K-vector space
G. It is not K(t)-linear, but satisfies the equation

E(rφ) = θ(r)E(φ), (4)

where θ is the K-automorphism of K(t) which sends t onto t+ 1.
A sequence is P-recursive if and only if all the sequences in its equivalence class are

P-recursive, [S1], Th.1.4. In this case, we say that the class is a P-recursive germ.

4 Representations

Let φ be a P-recursive germ. We call representation of φ a quadruple (λ,M(t), γ(t), n0),
satisfying the conditions stated in Th.2.1, and such that the sequence f defined by Eq.(2)
is a representative of φ; its dimension is d. We also say that (λ,M(t), γ(t), n0) represents
φ and f .

For k ∈ N, the k-translate of representation (λ,M(t), γ(t), n0) is the representation
(λ′,M(t), γ(t), n′0), with λ′ = λM(n0 + 1)M(n0 + 2) · · ·M(n0 + k) and n′0 = n0 + k. It
represents the same germ: indeed, for any n > n′0,

λ′M(n′0 + 1)M(n′0 + 2) · · ·M(n)γ(n) =

λM(n0 + 1)M(n0 + 2) · · ·M(n0 + k)M(n0 + k + 1)M(n0 + k + 2) · · ·M(n)γ(n)

= λM(n0 + 1)M(n0 + 2) · · ·M(n)γ(n).

A translate of a representation is a k-translate for some natural number k. Note that
translating a representation (λ,M(t), γ(t), n0) changes neither M(t) nor γ(t).

The next result is then evident.

Lemma 4.1. A P-recursive germ has representations (λ,M(t), γ(t), n0), with arbitrarily
large n0.

For later use, we state the following lemmas.

Lemma 4.2. If (λ,M(t), γ(t), n0) represents φ, then for any natural integer i, Ei(φ) is
represented by (λ,M(t),M(t+ 1) · · ·M(t+ i)γ(t+ i), n0).

Proof. Indeed, we have for any n > n0, f(n+ i) = λM(n0+1)M(n0+2) · · ·M(n+ i)γ(n+
i) = λM(n0 + 1)M(n0 + 2) · · ·M(n)(M(n+ 1) · · ·M(n+ i)γ(n+ i)).

Lemma 4.3. Let φ, φi, i = 1, . . . , d be germs and M(t) ∈ K(t)d×d, γ(t) ∈ K(t)d×1

such that E(φj) =
∑

16i6dM(t + 1)ijφi for j = 1, . . . , d, and a column vector γ(t) over

R such that φ =
∑

16i6d γ(t)iφi. Then there exist λ ∈ K1×d and n0 ∈ N such that
(λ,M(t), γ(t), n0) is a representation of φ.
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Proof. Let f, fi be representatives of φ, φi and let n0 be such that

fj(n+ 1) =
∑
16i6d

M(n+ 1)ijfi(n)

and f(n) =
∑

16i6d γ(n)ifi(n) for any n > n0. Let F (n) = (f1(n), . . . , fd(n)) and λ =
(f1(n0), . . . , fd(n0)). Then F (n+ 1) = F (n)M(n+ 1) and therefore F (n) = F (n0)M(n0 +
1)M(n0 + 2) . . .M(n). Since f(n) = F (n)γ(n), the lemma follows.

5 Product and other operations

We consider here several operations which preserve P-recursiveness. The results are of
course not new. However, matrix representations are particularly well-adapted for the
proofs.

Recall that the product of two germs [f(n)] and [g(n)] is the germ [f(n)g(n)]. This is
well-defined.

In order to understand the generality of the next result (since there is an implicit
assumption on the constant n0), recall Lemma 4.1.

Theorem 5.1. Consider the representations (λi,Mi(t), γi(t), n0) of two germs φi, i = 1, 2
.

(i) φ1 + φ2 has the representation

((λ1, λ2),

(
M1(t) 0

0 M2(t)

)
,

(
γ1(t)
γ2(t)

)
).

(ii) φ1φ2 has the representation (λ1 ⊗ λ2,M1(t)⊗M2(t), γ1(t)⊗ γ2(t), n0).
Consider now a single germ φ = [f ] with representation (λ,M(t), γ(t), n0). Let r(t) ∈

K(t). Let i, p be natural integers.
(iii) r(t)φ has the representation (λ,M(t), r(t)γ(t), n0), provided that r(t) is defined

for n > n0.
(iv) The germ [f(i + pn)n∈N] has the representation (λ′,M ′(t), γ′(t), n′0), where the

natural integers k, n′0 have been chosen in such a way that n0 + k = i + pn′0, with λ′ =
λM(n0 + 1) · · ·M(n0 + k), M ′(t) = M(i+ p(t− 1) + 1)M(i+ p(t− 1) + 2) · · ·M(i+ pt)
and γ′(t) = γ(i+ pt).

Proof. (i) and (iii) are straighforward. (ii) is a consequence of the multiplicativity of
tensoring matrices: (A1 ⊗ A2)(B1 ⊗ B2) = (A1B1)⊗ (A2B2). We verify (iv): let n > n′0;
then

λ′M ′(n′0 + 1) · · ·M ′(n)γ′(n) =

λM(n0 + 1) · · ·M(n0 + k)M(i+ p(n′0 + 1− 1) + 1) · · ·M(i+ p(n′0 + 1)) · · ·

· · ·M(i+ p(n− 1) + 1) · · ·M(i+ pn)γ(i+ pn) = f(i+ pn).
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Corollary 5.2. Let p be a natural integer and f be a sequence. Then f is P-recursive if
and only if for any i = 0, . . . , p− 1, the sequence f(i+ pn)n∈N is P-recursive.

Proof. The ”only if” part follows from Th.5.1 (iv). Let us prove the converse. Fix p and
i, 0 6 i 6 p− 1. Since P-recursiveness is preserved by addition, it is enough to show that
if a sequence g(n) is P-recursive, then the following sequence f(n) is also P-recursive:
f(i+ pn) = g(n), and f(n) = 0 if n is not congruent to i modulo p.

Suppose that g satisfies

∀n > n0, g(n+ d) = r1(n)g(n+ d− 1) + · · ·+ rd(n)g(n). (5)

Then f satisfies the equation f(n + dp) = r1((n − i)/p)f(n + (d − 1)p) + · · · + rd((n −
i)/p)f(n) for n large enough. Indeed, if n is not congruent to i modulo p, then so are
n+ dp, n+ (d− 1)p, . . . , n, hence the corresponding values of f vanish and the equation
is satisfied. Now, in the other case, replace in this equation n by i + pn, obtaining:
f(i + pn + dp) = r1(n)f(i + pn + (d − 1)p) + · · · + rd(n)f(i + pn), that is g(n + d) =
r1(n)g(n+ d− 1) + · · ·+ rd(n)g(n), which is Eq.(5).

We shall also need the next result.

Lemma 5.3. Let φi have the representation (λ,M(t), γi(t), n0), for i = 1, . . . , l. If∑
i ri(t)γi(t) = 0, then

∑
i ri(t)φi = 0.

Proof. Without harm, we may assume that the ri(t) are polynomials. In this case, ri(n)
is defined for n > n0 and it follows from Th.5.1 (iii) that ri(t)φi has the representa-
tion (λ,M(t), ri(t)γi(t), n0). It is easily deduced that

∑
i ri(t)φi has the representation

(λ,M(t),
∑

i ri(t)γi(t), n0). Hence
∑

i ri(t)φi = 0.

6 Pseudo-linear algebra

In this section, we follow [J], see also [BP], with the addition of some apparently well-
known results on diagonalizability and triangularizability, with their proofs, for which we
could not find references. We restrict the presentation of his work to the aspects that
we need here 2. Note that pseudo-linear algebra has already been used previously in the
study of P-recursive sequences; see [BP].

Let V,W be vector spaces over F = K(t). An additive homomorphism E from V into
W is called pseudo-linear if for any r in K(t) and v in V , one has E(rv) = θ(r)E(v),
where θ is as in Section 3. Thus the mapping E in Section 3 is pseudo-linear, by Eq.(4).

Given bases (vj) and (wi) of V,W , the matrix of E is as usually the matrix M(E) =
(mij) with E(vj) =

∑
imijwi. If the column vector γ ∈ F dimV×1 represents some vector

v ∈ V in the basis (vj), then E(v) is represented in the basis (wi) by the column vector

2In full generality, one considers a field F with an automorphism θ and a θ-derivation; K is then
the subfield of constants, that is the subset of elements fixed by θ and which are in the kernel of the
derivation; here we take F = K(t) with θ(t) = t+ 1 and the zero derivation.
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M(E)γθ. If u is a linear mapping, left composable with E, then u ◦ E is a pseudo-linear
mapping andM(u◦E) = M(u)M(E); if u is right composable with E, then E◦u is pseudo-
linear and M(E ◦ u) = M(E)M(u)θ. In particular, if v is a K(t)-linear isomorphism, and
if v−1 ◦ E ◦ v is defined, then

M(v−1 ◦ E ◦ v) = M(v)−1M(E)M(v)θ. (6)

Viewed otherwise, if E is a pseudo-linear endomorphism of V and has the matrices
Me and Mv in the bases (ei) and (vi) respectively, then these matrices are related by
Mv = P−1MeP

θ, where P is the matrix whose j-th column represents the coefficients of
(vj) expressed in the basis (ei) (see [J] p. 486). We say that two matrices M,M ′ are
pseudo-similar if for some square invertible matrix P one has M ′ = P−1MP θ.

Let E be a pseudo-linear endomorphism of V . A subspace W of V is called stable
under E if E(W ) ⊂ W . In that case E induces a pseudo-linear endomorphism of W and
of V/W .

As in the classical case, if E(v) = rv for some v ∈ V \ {0} and r ∈ F , we call v
an eigenvector of E, and r the corresponding eigenvalue. Note that in this case, for any
a ∈ F ∗, av is also an eigenvector; however, its eigenvalue is not r in general, but r a

θ

a
;

indeed, E(av) = aθE(v) = aθrv = r a
θ

a
(av). One therefore cannot define eigenspaces as in

the classical case. Observe that however the set of eigenvectors with a given eigenvalue,
together with the zero vector, is a K-subspace.

We say that the pseudo-linear endomorphism E of V is diagonalizable if there is a
basis of V consisting of eigenvectors. Note that if V has a spanning set of eigenvectors
of E, then it is diagonalizable. Equivalently, E is diagonalizable if and only if in some
basis, its matrix is a diagonal matrix. Correspondingly, we say that a square matrix
M over F is pseudo-diagonalizable if it is the matrix of some diagonalizable pseudo-
linear endomorphism; in other words, there exists a square invertible matrix P such that
P−1MP θ is a diagonal matrix.

If W is a subspace of V , stable under E, a diagonalizable pseudo-linear endomorphism
of V , then the endomorphisms induced by E on W and V/W are diagonalizable. This
is easy to see for V/W , since the basis of eigenvectors of E gives a spanning set of
eigenvectors in V/W . For W , we do as follows: consider the ring of skew polynomials
R = F [x], where the product is subject to the rule xa = aθx for any a ∈ F . Then V is
a left R-module, extending its structure of vector space over F , by the rule xv = E(v).
Now, stable subspaces in the previous sense coincide with R-submodules. If E is assumed
to be diagonalizable, then V is a semisimple R-module, since for any eigenvector v, the
line Fv is stable, hence a simple submodule. Hence V is a sum of simple submodules,
hence semisimple. It is well-known that each simple submodule must be one of these.
Now each submodule of a semisimple module is also semisimple, which implies that W is
a sum of simple submodules, and so the restriction of E to W is diagonalizable.

We say that the endomorphism E of V is triangularizable if there exists a maximal
chain of subspaces of V , each of them being moreover stable; in other words, there exists
a basis in which the matrix of E is an upper (or equivalently lower) triangular matrix.
Correspondingly, we say that a square matrix M over F is pseudo-triangularizable if it is
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the matrix of some triangularizable pseudo-linear endomorphism; in other words, there
exists a square invertible matrix P such that P−1MP θ is a triangular matrix.

If W is a subspace of V , stable under E, triangularizable pseudo-linear endomorphism
of V , then the endomorphisms induced by E on W and V/W are triangularizable. Indeed,
the chain of subspaces above induces a similar chain in W and V/W .

7 Minimal representations

A representation of the germ φ is called minimal if it has the minimal dimension among
all representations of φ. We call this dimension the rank of φ. The lemma below follows
from the proof of Th.2.1.

Lemma 7.1. Let f be a sequence over K. The rank of [f ] is equal to the smallest length
of a recursion for f .

The following lemma is a consequence of the previous one and of [S1], Th. 1.6 and its
proof.

Lemma 7.2. The rank of [f ] is equal to the dimension over K(t) of the vector subspace
spanned by the germs Ei[f ], i ∈ N. More precisely, a basis of this subspace is formed by
these elements for i = 0, . . . , d− 1, where d is the rank.

Similarly, we have, using the proof of Th.2.1,

Lemma 7.3. Let φ be a P-recursive germ. The following conditions are equivalent, for
elements r1(t), . . . , rd(t) of K(t):

(i) the shortest recursion satisfied by a representative f of φ is Eq.(1);
(ii) φ has a representation (λ,M(t), γ(t), n0) with M(t + 1) · · ·M(t + d)γ(t + d) =

r1(t)M(t+ 1) · · ·M(t+ d− 1)γ(t+ d− 1) + · · ·+ rd−1(t)M(t+ 1)γ(t+ 1) + rd(t)γ(t) and
d is the smallest possible.

We can give an intrinsic characterization of minimal representations.

Proposition 7.4. Representation (λ,M(t), γ(t), n0) of dimension d is minimal if and
only if the following two conditions hold:

(i) the d column vectors γ(t), M(t+1)γ(t+1),. . . ,M(t+1) · · ·M(t+d−1)γ(t+d−1)
form a basis of the K(t)-vector space K(t)d×1;

(ii) let ei be the canonical basis of K(t)d×1. Then the d germs represented by the
representations (λ,M(t), ei, n0) are linearly independent over K(t).

Note that condition (i) means equivalently that the vectors M(t+1)M(t+2) . . .M(t+
i), i ∈ N span the K(t)-vector space K(t)d×1; this follows from the calculations in the
second part of the proof of Theorem 2.1. Moreover, condition (ii) means equivalently that
for no nonzero vector v(t) ∈ K[t]d×1, the germ represented by (λ,M(t), v(t), n0) is the
zero germ.
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Proof. Suppose that the given representation is minimal. Then d is the rank of the germ
φ represented by it. Condition (i) follows from the proof of Th. 2.1: indeed, if these
vectors do not form a basis, they are not linearly independent; then that proof shows that
the germ satisfies a linear recursion of length smaller than d, contradicting Lemma 7.1.

Suppose that condition (ii) does not hold. Then these d germs φi are linearly dependent
and the subspace they span is therefore of dimension less than d over K(t). The germs
Ej(φ) are represented by (λ,M(t),M(t + 1) · · ·M(t + j)γ(t + j), n0) (Lemma 4.2). We
have, for some elements ri(t) of K(t): M(t + 1) · · ·M(t + j)γ(t + j) =

∑d
i=1 ri(t)ei; by

Lemma 5.3, we deduce that Ej(φ) =
∑d

i=1 ri(t)φi; thus Ej(φ) belongs to a subspace of
dimension < d, contradicting Lemma 7.2.

Conversely, suppose that these two conditions hold. By condition (i), the ei are linear
combinations over K(t) of the vectors in (i). Now, by Lemma 5.3, the d germs of (ii) are
linear combinations of the d germs represented by the representations (λ,M(t),M(t +
1) · · ·M(t + i − 1)γ(t + i − 1), n0), i = 0, . . . , d − 1. Thus, by (ii), the d latter germs
are linearly independent over K(t). But these germs are Ei(φ), which shows by Lemma
7.2 that d is 6 the rank of φ. Hence this rank is d and the representation is therefore
minimal.

We give now two examples which show that the conditions (i) and (ii) in the proposition
are independent. Consider the representation

((1, 0),

(
1 0
1 2

)
,

(
1
0

)
, 0).

Since

(
1 0
1 2

)(
1
0

)
=

(
1
1

)
, condition (i) is satisfied. Now the representation

((1, 0),

(
1 0
1 2

)
,

(
0
1

)
, 0)

represents the zero sequence, so that condition (ii) is not satisfied.
For the converse counter-example, we choose the transpose representation

((1, 0),

(
1 1
0 2

)
,

(
1
0

)
, 0).

Since

(
1 1
0 2

)(
1
0

)
=

(
1
0

)
, condition (i) is not satisfied; moreover, this representa-

tion represents the constant sequence (1). Now the representation

((1, 0),

(
1 1
0 2

)
,

(
0
1

)
, 0)

represents the sequence (2n − 1), since

(
1 1
0 2

)n
=

(
1 2n − 1
0 2n

)
. Since the germs

represented by the sequences (1) and (2n − 1) are linearly independent over K(t) (by
Petkovsek’s algorithm), (ii) is satisfied.
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8 Similarity

The aim of this section is to show how the different minimal representations of φ are
related to each other.

Two representations (λ,M(t), γ(t), n0) and (λ′,M ′(t), γ′(t), n′0) are strongly similar if
they have the same dimension d, if n0 = n′0 and if there exists a matrix P (t) ∈ GLd(K(t))
such that λ′ = λP (n0), M

′(t) = P (t − 1)−1M(t)P (t), γ′(t) = P (t)−1γ(t) and that
P (n), P (n)−1 are defined for any n > n0. Then they represent the same germ: indeed, for
any n > n0, one has

λ′M ′(n0 + 1)M ′(n0 + 2) · · ·M ′(n)γ′(n)

= λP (n0)P (n0)
−1M(n0 + 1)P (n0 + 1)P (n0 + 1)−1M(n0 + 2)P (n0 + 2) · · ·

· · ·P (n− 1)−1M(n)P (n)P (n)−1γ(n) = λM(n0 + 1)M(n0 + 2) · · ·M(n)γ(n).

Two representations are called similar if they have translates which are strongly sim-
ilar. They represent therefore the same germ. The following result is the converse, under
the hypothesis of minimality.

Theorem 8.1. Any two minimal representations of the same P-recursive germ are simi-
lar.

In particular, we obtain

Corollary 8.2. If (λ,M(t), γ(t), n0) and (λ′,M ′(t), γ′(t), n′0) are two minimal represen-
tations of the same germ, then the matrices M(t) and M ′(t) are pseudo-similar.

We begin by some lemmas.

Lemma 8.3. Let (λ,M(t), γ(t), n0) be a minimal representation of dimension d, and let
(λ′,M(t), γ(t), n′0), where n′0 = n0 + k, be its k-translate. Then for all sufficiently large k
the column vectors γ(n′0), M(n′0 + 1)γ(n′0 + 1),. . . , M(n′0 + 1)M(n′0 + 2) . . .M(n′0 + d −
1)γ(n′0 + d− 1) are K-linearly independent.

Proof. We know by Proposition 7.4 that the d column vectors γ(t), M(t + 1)γ(t +
1),. . . ,M(t+ 1) · · ·M(t+d− 1)γ(t+d− 1) form a basis of the K(t)-vector space K(t)d×1.
Hence the d × d determinant over K(t) formed by these columns is nonzero. Thus, if k
is large enough, this determinant is nonzero when we put t = n0 + k. Let n′0 = n0 + k.
Then the k-translate of (λ,M(t), γ(t), n0) is (λ′,M(t), γ(t), n′0) with n′0 = n0 + k. Thus
the lemma follows.

Lemma 8.4. Let (λ,M(t), γ(t), n0) and (λ′,M ′(t), γ′(t), n′0) be two minimal representa-
tions of dimension d of the same germ. If there exists a matrix P (t) ∈ GLd(K(t)) such
that M ′(t) = P (t − 1)−1M(t)P (t) and γ′(t) = P (t)−1γ(t), then these representations are
similar.
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Proof. By taking translates of these representations, we may assume that n0 = n′0, that
the sequences that they represent coincide for n > n0, that P (n), P (n)−1 are defined for
n > n0, and that the column vectors γ(n0), M(n0 + 1)γ(n0 + 1),. . . , M(n0 + 1)M(n0 +
2) . . .M(n0 + d− 1)γ(n0 + d− 1) are K-linearly independent (Lemma 8.3).

Consider the representation (λ1,M
′(t), γ′(t), n0) with λ1 = λP (n0). It is strongly

similar to (λ,M(t), γ(t), n0). Moreover, since strongly similar representations represent
the same sequence for n > n0, we have λ1M

′(n0 + 1)M ′(n0 + 2) · · ·M ′(n0 + i)γ′(n0 + i) =
λP (n0)P (n0)

−1M(n0+1)P (n0+1) · · ·P (n0+ i−1)−1M(n0+ i)P (n0+ i)P (n0+ i)−1γ(n0+
i) = λM(n0 + 1) · · ·M(n0 + i)γ(n0 + i) = λ′M ′(n0 + 1)M ′(n0 + 2) · · ·M ′(n0 + i)γ′(n0 + i)
for any i ∈ N. Thus, by the linear independence above, we have λ1 = λ′. This proves the
lemma.

We now prove the theorem above.

Proof. Let (λ,M(t), γ(t), n0) be a minimal representation of a germ φ. Then

(λ,M(t),M(t+ 1) · · ·M(t+ i)γ(t+ i), n0)

is a representation of the germ Ei(φ) for any i ∈ N (Lemma 4.2). By Lemma 7.2 and
Proposition 7.4, we obtain therefore a K(t)-linear isomorphism u from the vector subspace
of G spanned by the Ei(φ) into the vector space K(t)d×1, which sends Ei(φ) onto M(t+
1) · · ·M(t + i)γ(t + i), for i = 0, . . . , d − 1. Let G be the mapping sending any γ′(t) ∈
K(t)d×1 onto M(t + 1)γ′(t + 1). The mapping G is pseudo-linear and its matrix in the
canonical basis is M(t+ 1). One has u ◦ E = G ◦ u, by Lemma 7.3.

Taking another minimal representation (λ′,M ′(t), γ′(t), n′0) and doing the same thing,
we have u′ ◦E = G′ ◦u′. Therefore we obtain by composition a K(t)-linear automorphism
v = u ◦ u′−1 of K(t)d×1 such that G′ = v−1 ◦ G ◦ v and v−1(γ) = γ′. Therefore, the
matrix of v being P (t), we have by Eq.(6), M ′(t + 1) = P (t)−1M(t + 1)P (t + 1), hence
M ′(t) = P (t − 1)−1M(t)P (t), and P (t)−1γ(t) = γ′(t). This implies the the theorem, by
Lemma 8.4.

Similarity of minimal representations has the following two consequences.

Corollary 8.5. If (λ,M(t), γ(t), n0) is a minimal representation of a P-recursive germ,
then M(t) is an invertible matrix.

Proof. This follows from the proof of Theorem 8.1, noting that E is bijective; in the proof,
G is therefore bijective, and its matrix is invertible; one concludes using Corollary 8.2.

Let (λ,M(t), γ(t), n0) be a representation of φ. By taking a suitable k-translate of this
representation, we may by Corollary 8.5 assume that the matrices M(n) are invertible
over K for n > n0. Let V denote the set of germs represented by (v,M(t), γ(t), n0),
v ∈ K1×d; V is clearly a K-subspace of G.

Corollary 8.6. Suppose that (λ,M(t), γ(t), n0) is a minimal representation of φ with
M(n) invertible for n > n0. Then the subspace V defined above depends only on φ.
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Proof. If two representations (λ,M(t), γ(t), n0) and (λ′,M ′(t), γ′(t), n′0) are strongly sim-
ilar, then the associated subspaces are equal, because n0 = n′0 and

M ′(n0 + 1)M ′(n0 + 2) · · ·M ′(n)γ′(n)

= P (n0)
−1M(n0 + 1)P (n0 + 1)P (n0 + 1)−1M(n0 + 2)P (n0 + 2) · · ·

· · ·P (n− 1)−1M(n)P (n)P (n)−1γ(n) = P (n0)
−1M(n0 + 1)M(n0 + 2) · · ·M(n)γ(n)

and because P (n0) is an invertible matrix over K.
Moreover, if (λ′,M ′(t), γ′(t), n′0) is a k-translate of (λ,M(t), γ(t), n0), then we have

M ′ = M,γ′ = γ and n′0 = n0 + k. Thus for n > n0 + k

M(n0 + 1)M(n0 + 2) · · ·M(n)γ(n) =

M(n0 + 1)M(n0 + 2) · · ·M(n0 + k)M(n0 + k + 1)M(n0 + k + 2) · · ·M(n)γ(n)

= M(n0 + 1)M(n0 + 2) · · ·M(n0 + k)M(n′0 + 1)M(n′0 + 2) · · ·M(n)γ′(n).

Since the matrix M(n0 + 1)M(n0 + 2) · · ·M(n0 + k) is invertible over K, the associated
subspaces are equal.

Thus the corollary follows from Th. 8.1.

9 Minimal and nonminimal representations

We show how general representations of φ are related to minimal representations: they
have a block decomposition, with 3 diagonal blocks, such that the middle block is a
minimal decomposition.

Theorem 9.1. Let (λ,M(t), γ(t), n0) be a representation of dimension d of a P-recursive
germ φ. Then it is similar to a representation of the form (λ̄, M̄(t), γ̄(t), n̄0) with the
compatible block decompositions λ̄ = (0, λ′,×),

M̄ =

 M1 × ×
0 M ′ ×
0 0 M2


and

γ̄ =

 ×γ′
0

 ,

where (λ′,M ′(t), γ′(t), n̄0) is a minimal representation of φ.

Proof. 1. Consider the K(t)-vector space J = K(t)d×1 and its pseudo-linear automor-
phism G, having matrix M(t + 1) in the canonical basis. It sends each vector v(t) onto
M(t+ 1)v(t+ 1).
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2. Consider the subset H of J of vectors v(t) such that for any large enough n > n0,
v(n) is defined and satisfies

λM(n0 + 1)M(n0 + 2) . . .M(n)v(n) = 0. (7)

The subset H is a K(t)-subspace of J , as is seen by multiplying the latter equation by
r(n), for any r(t) ∈ K(t). It is stable under G: indeed, if v(t) ∈ H, let w(t) = G(v(t)) =
M(t+1)v(t+1). Then we have Eq.(7), hence also for any n > n0, w(n) is defined for n large
enough and λM(n0 + 1)M(n0 + 2) . . .M(n)w(n) = λM(n0 + 1)M(n0 + 2) . . .M(n)M(n+
1)v(n+ 1) = 0. Thus w(t) ∈ H.

3. Now consider the K(t)-subspace I of J spanned by the vectors M(t + 1)M(t +
2) . . .M(t+ i)γ(t+ i) for i ∈ N. It is also stable under G. Note that γ(t) ∈ I.

4. Note that if we translate the representation (λ,M(t), γ(t), n0), then the subspaces
H, I are unchanged. Indeed, M(t) and γ(t) are unchanged, by Section 4, and this implies
that I remains unchanged. For I, it follows from Eq.(7).

5. The subspace H ∩ I is also stable under G. Let v1(t), . . . , vd(t) be a basis of J such
that v1, . . . , vdim(H∩I) is a basis of H ∩ I and v1, . . . , vdim(I) is a basis of I. Consider the
K(t)-linear automorphism u of J that sends ej onto vj(t) ((ej) is the canonical basis).
Let P (t) denote its matrix in the canonical basis; in other words, the j-th column of P (t)
is the vector vj(t). Choose n̄0 > n0 large enough so that P (n), P (n)−1 and the vi(n)
are defined for n > n̄0, and that the vectors vi(n̄0), i = 1, . . . , dim(H ∩ I), are linearly
independent over K; moreover, we may assume that Eq.(7) holds for n > n̄0.

6. Now, we translate the representation (λ,M(t), γ(t), n0) by k = n̄0 − n0: so we are
reduced to the case n0 = n̄0.

7. The matrix of the pseudo-linear mapping v = u−1◦G◦u in the canonical basis is by
Eq.(6) equal to P (t)−1M(t+1)P (t+1). Let M̄(t) = P (t−1)−1M(t)P (t) and λ̄ = λP (n̄0).
The first dim(H ∩ I) coordinates of λ̄ vanish, since by Eq.(7), one has λvi(n̄0) = 0 for
i = 1, . . . , dim(H ∩ I) (recall that n0 = n̄0). Since H ∩ I and I are stable under G, the
matrix of v, hence also the matrix M̄(t), has the block form indicated in the statement.
The last d − dim(I) coordinates of the vector u−1(γ(t)) vanish since γ(t) is in I; it is
represented by the column vector γ̄(t) = P (t)−1γ(t). Thus λ̄ and γ̄ have the block form
of the statement.

8. It follows that (λ′,M ′(t), γ′(t), n̄0) is a representation of φ, of dimension e =
dim(I) − dim(H ∩ I) = dim(I/(H ∩ I)). We may identify K(t)e×1 and I/(H ∩ I).
We deduce from the construction and from Proposition 7.4 that it is minimal.

9. Indeed, if condition (ii) were not satisfied, there would exist a nonvanishing v(t) ∈
K(t)e×1 such that (λ′,M ′(t), v(t), n̄0) is the zero germ; thus we could find a nonvanishing
element in H which is a linear combination of the vectors vi(t), i = dim(H ∩ I) +
1, . . . , dim(I), contradicting the construction of the vi(t).

10. Moreover, condition (i) is satisfied, since the space I is spanned by the elements
M(t+ 1)M(t+ 2) . . .M(t+ i)γ(t+ i) for i ∈ N; hence the space I/(H ∩ I) is spanned by
the vectors M ′(t + 1)M ′(t + 2) . . .M ′(t + i)γ′(t + 1) for i ∈ N; so that these vectors, for
i = 0, . . . , e−1 form a basis of K(t)e×1 and (i) holds (see the remark after Prop. 7.4).
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10 Closed forms

We call a germ hypergeometric if it is of the form [f ] where f is a hypergeometric sequence.
Clearly, hypergeometric germs are the P-recursive germs of rank 1; this follows since a
K(t)-multiple of a hypergeometric germ is hypergeometric.

Following [P1] p. 259, or [PWZ] Definition 8.1.1, we say that a germ φ is a closed form
if it is a sum of hypergeometric germs.

Theorem 10.1. The following conditions are equivalent for a P-recursive germ:
(i) it is a closed form;
(ii) it has a representation (λ,M(t), γ(t), n0) such that M(t) is a diagonal matrix;
(iii) it has a minimal representation (λ,M(t), γ(t), n0) such that M(t) is a diagonal

matrix.

Proof. (i) implies (ii): suppose that germ φ is a sum of hypergeometric germs. Then
clearly, φ has a representation (λ,M(t), γ(t), n0), not necessarily minimal, where M(t) is
a diagonal matrix.

(ii) implies (iii): By Section 6, we know that diagonalizable pseudo-linear endomor-
phisms induce, on stable subspaces and quotients, pseudo-linear diagonalizable endomor-
phisms. Thus, by Th.9.1, φ has a minimal representation (λ′,M ′(t), γ′(t), n′0) such that
M ′(t) is pseudo-diagonalizable.

Then we can find an invertible square matrix Q(t) over K(t) such that

Q(t)−1M ′(t)Q(t+ 1)

is diagonal. Writing P (t) = Q(t + 1), we see that P (t) is square and invertible and that
M(t) = P (t− 1)−1M ′(t)P (t) is diagonal. Let γ(t) = P (t)−1γ′. Then by Lemma 8.4, our
representation is similar to the representation (λ,M(t), γ(t), n0).

(iii) implies (i): Clearly, φ is a linear combination over K(t) of hypergeometric germs.
Since a K(t)-multiple of a hypergeometric germ is hypergeometric, we see that actually
φ is a sum of hypergeometric germs.

The proof also shows the following two corollaries.

Corollary 10.2. If a germ is a closed form, then it is a sum of exactly d hypergeometric
germs, where d is its rank, and not less.

According to [P1] Proposition 5.4, this sum is even unique.

Corollary 10.3. A germ is a closed form if and only if for each minimal representation
(λ,M(t), γ(t), n0), M(t) is pseudo-diagonalizable.
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11 D’Alembertian germs

D’Alembertian germs have been introduced in [AP]. We follow Definition 1 of [AB]: a
germ φ is d’Alembertian if there exist rational functions r1(t), . . . , rd(t) such that

(E − r1(t)) ◦ · · · ◦ (E − rd(t))(φ) = 0. (8)

Theorem 11.1. The following conditions are equivalent for a P-recursive germ:
(i) it is a d’Alembertian germ;
(ii) it has a representation (λ,M(t), γ(t), n0) with M(t) triangular.
(iii) it has a minimal representation (λ,M(t), γ(t), n0) with M(t) triangular.

Proof. (i) implies (ii): let φ be a d’Alembertian germ. Then it satisfies Eq. (8). We prove
(ii) by induction on d. If d = 1, then φ is hypergeometric and it has a representation of
dimension 1. Suppose that d > 1 and let φ′ = (E − rd(t))(φ). Then φ′ is d’Alembertian
with d − 1. We conclude by induction that φ′ has a representation (λ′,M ′(t), γ′(t), n′0)
of dimension d′, where M ′(t) is an upper triangular matrix. For n > n′0, consider the
row vector F (n) = λ′M ′(n′0 + 1)M ′(n′0 + 2) · · ·M ′(n). Then F (n + 1) = F (n)M ′(n + 1)
and, by definition of representations, the sequence f ′ defined by f ′(n) = F (n)γ′(n),
n > n0, is a representative of the germ φ′. Let f be a representative of the germ φ.
Since φ′ = (E − rd(t))(φ), we have for n large enough, f(n + 1) = f ′(n) + rd(n)f(n) =
F (n)γ′(n) + rd(n)f(n). Let n0 > n′0 such that this equality holds for n > n0. Then we
have the matrix equality

(F (n+ 1), f(n+ 1)) = (F (n), f(n))

(
M ′(n+ 1) γ′(n)

0 rd(n)

)
.

Let M(n + 1) denote the latter matrix, λ = (F (n0), f(n0)) and γ = (0, . . . , 0, 1)T . Then
(λ,M(t), γ(t), n0) is a representation of φ. Moreover, M(n) is clearly upper triangular.

(ii) implies (iii): similar to the proof of the similar implication in Theorem 10.1.
(iii) implies (i): we show by induction on d that if φ has a triangular representation

of dimension d, then Eq.(8) holds. Let

((λ, a),

(
M(t) δ(t)

0 b(t)

)
,

(
γ(t)
c(t)

)
, n0)

be a representation of f(n) in the class of φ, of dimension d + 1, with a block decompo-
sition such that a, b(t), c(t) are one-by-one matrices. By translating the representation if
necessary, we may assume that c(n) is nonzero for n > n0; indeed, if c(t) = 0, then we
may directly apply induction. For n > n0, let A(n) = M(n0 + 1)M(n0 + 2) · · ·M(n) and
B(n) = b(n0 + 1)b(n0 + 2) · · · b(n).

We see that f(n) is equal to

λA(n)γ(n) + λ
n∑

i=n0+1

M(n0 + 1) · · ·M(i− 1)δ(i)b(i+ 1) · · · b(n)c(n) + aB(n)c(n).
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Applying the operator E − c(t+1)
c(t)

b(t + 1) to φ, we obtain a germ φ′ which is represented

by the sequence g(n) = f(n+ 1)− c(n+1)
c(n)

b(n+ 1)f(n). We have

g(n) = λA(n+ 1)γ(n+ 1)− λA(n)γ(n)
c(n+ 1)

c(n)
b(n+ 1)

+λ
n+1∑

i=n0+1

M(n0 + 1) · · ·M(i− 1)δ(i)b(i+ 1) · · · b(n+ 1)c(n+ 1)

−λ
n∑

i=n0+1

M(n0 + 1) · · ·M(i− 1)δ(i)b(i+ 1) · · · b(n)c(n)
c(n+ 1)

c(n)
b(n+ 1)

+aB(n+ 1)c(n+ 1)− aB(n)c(n)
c(n+ 1)

c(n)
b(n+ 1).

After simplifications, we have g(n) = λA(n)γ′(n), where

γ′(n) = M(n+ 1)γ(n+ 1)− γ(n)
c(n+ 1)

c(n)
b(n+ 1) + δ(n+ 1)c(n+ 1).

Thus the germ φ′ = [g] has the representation (λ,M(t), γ′(t), n0), which shows by induc-
tion that we have (E − r1(t)) ◦ · · · ◦ (E − rd(t))(φ′) = 0 for some ri(t)/inK(t). Thus we

obtain (E−r1(t))◦· · ·◦(E−rd(t))◦(E− c(t+1)
c(t)

b(t+1))(φ) = 0 and φ is d’Alembertian.

For r, r′ ∈ K(t), define an equivalence relation: r ∼ r′ if r = r′sθ/s for some nonzero
s ∈ K(t).

Corollary 11.2. If a germ φ is d’Alembertian, then its rank is equal to the smallest d
such that an equation of the form (8) holds. Moreover, if one has also (E − r′1(t)) ◦ · · · ◦
(E − r′d(t))(φ) = 0, then for some permutation σ ∈ Sd, one has rσ(i) ∼ r′i for i = 1, . . . , d.

Proof. This follows from the proof of the previous theorem, knowing that the diagonal
elements of two pseudo-similar triangular matrices are related as in the statement. This
latter fact follows from the Jordan-Hölder theorem.

We obtain also the following two corollaries.

Corollary 11.3. A germ is d’Alembertian if and only if for each minimal representation
(λ,M(t), γ(t), n0), M(t) is pseudo-triangularizable.

Corollary 11.4. The set of d’Alembertian germs is a K(t)-subalgebra of G.

This follows since the tensor product of triangular matrices is triangular. This result
was already known (see [PWZ] page 157).

The germ [In], where In is the number of involutions in Sn, is not d’Alembertian.
Indeed, the associated recursion f(n + 2) = f(n + 1) + (n + 1)f(n) has no nonzero
hypergeometric solution, as follows from Petkovšek’s algorithm Hyper, see [P1] Example
4.4, or [PWZ] Example 8.4.3. Now, if a minimal representation of a germ φ is triangular,
then by modifying λ, one obtains a representation of a nonzero hypergeometric germ,
which satisfies the shortest linear recursion of φ; it follows then from Cor. 8.6 that [In]
has no minimal triangular representation.
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12 Field extension

The next result was known to Petkovšek (personal communication) and its proof is com-
pletely similar to the proof of [P1] Theorem 5.2, who gives the similar result for hyperge-
ometric germs.

Proposition 12.1. Let K ⊂ L be a field extension. If a germ φ = [f ] is P-recursive over
L and if f(n) is in K for n large enough, then φ is P-recursive over K. Moreover, its
rank over K and L are equal.

Proof. We use the following well-known result: if an infinite system of linear equations in
finitely many variables over K has a nonzero solution in L, then it has a nonzero solution
in K.

By hypothesis, we know that there exist polynomials p0(t), . . . , pd(t) over L, with p0(t)
nonzero, such that for n > n0, p0(n)f(n + d) + p1(n)f(n + d − 1) + · · · + pd(n)f(n) = 0
and that f(n) ∈ K. We may assume that f(n) ∈ K for n > n0. Consider this as an
infinite system of linear equations in the coefficients of the pi; this system has coefficients
in K (since f(n) and ni are in K), and a nonzero solution in L (since pi(t) ∈ L[t] and
p0(t) 6= 0). Hence it has a solution in K. Thus, φ is P-recursive over K. If we choose d
minimal, then d is the rank over L; thus the rank over K is not larger; hence the ranks
are equal, since a representation over K is also a representation over L.

Observe that, unlike the rank, the property for a germ to be a closed form, or
d’Alembertian, depends on the ground field. This is already seen by the simple example
of the Fibonacci sequence: over any field containing the golden number, it is a closed
form, by the Binet formula; however, over the rationals, it is not a closed form, and not
even d’Alembertian. Indeed, by Petkovšek’s algorithm Hyper (see [P1] Example 5.1), the
Fibonacci recurrence has no hypergeometric solution over Q.

The rank of a sequence satisfying a linear recursion with constant coefficients is clas-
sically defined as the length of the shortest such recursion; equivalently of the rank of
its Hankel matrix, see [F], [BR], chapter 6. Such a sequence is clearly P-recursive. It is
however not true that both ranks coincide. Indeed, for such a sequence f , f(n) may be
expressed by an exponential polynomial; the number of exponentials appearing in its is
equal to the number of nonzero roots of the companion polynomial of the shortest re-
cursion with constant coefficients (loc cit.). This number is equal to the rank of f(n) as
P-recursive sequence, as it follows from Corollary 5.1 in [P1] or Theorem 8.7.1 in [PWZ]
(see also Cor. 10.2). For example, (n2n) has rank 1 as P-recursive sequence, but rank 2
in the other sense.

13 Positivity

Let R denote a subsemiring of K(t) . We say that f or φ is P-recursive on R if it has a
representation (λ,M(t), γ(t), n0) whose matrices are over R.
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Proposition 13.1. If φ is P-recursive germ on Z[t], then it is the difference of two germs
which are P-recursive on N[t].

This result is similar to a result of Schützenberger on noncommutative rational series
over Z and N (see [BR] Exercise 7.2.3). For P-recursive sequences, a similar result, due
to Kotek and Makowsky [KM], is known; I do not know how the result above relates to
theirs.

Proof. It will be useful to adopt the following notation: if r(t) is a polynomial over Z,
choose two polynomials r+(t) and r−(t) over N such that r = r+ − r−.

Instead of representations, we use the graph model given at the end of Section 2.
We assume that n0 = 0 for simplicity. Starting with a representation over Z[t] and the
corresponding graph, we double the number of vertices: a vertex i gives two vertices i+
and i−. For each arrow i→ j in the original graph, we know that its label is r(t) ∈ Z[t];
this arrow gives four arrows in the new graph: is → ju, with s, u ∈ {+,−}, labelled r+(t)
if s, u are equal, and labelled r−(t) otherwise. This new graph corresponds to a matrix
N(t).

Now define two row vectors λ+ and λ− indexed by the is: (λs)iu = (λi)+ if s = u, and
= (λi)− otherwise. Likewise, we define two row vectors γ+(t) and γ−(t) indexed by the
is: (γs(t))iu = (γi)(t)+ if s = u, and = (γi)(t)− otherwise.

We then obtain two representations (λs, N(t), γs(t), 0), s ∈ {+,−}, which represent
two P-recursive germs over N[t], whose difference is φ. Indeed, this follows from Eq.(3),
which may be rewritten as∑

ij

((λi)+ − (λi)−)(
∑
π

((s1)+(1)− (s1)−(1)) . . . ((sn)+(n)− (sn)−(n)))

×((γj)+(t)− (γj)−(t)),

where the second sum is over all paths π = i0i1 . . . in of length n from i = i0 to j = in,
where sj(t) = M(t)ij−1ij . The expansion of this formula implies the result.

14 Extension of a sequence to Z
In Th.3.4 of [S1], Stanley considers a recursion of the form Eq.(1) where the ri(n) are
defined for each n ∈ Z (the formulation is different but equivalent). He then considers
extensions of f(n) to all n ∈ Z (and he obtains for P-recursive sequences a generalization
of Popoviciu’s theorem on rational series, see Th.3.4 in [S1]) . Our aim here is to replace
Stanley’s condition by a matricial condition, which will allow to compute the values f(n)
for all integers n.

We say that a representation (λ,M(t), γ(t), n0) is strict if M(n) and γ(n) are defined
for all n in Z, and if moreover M(n) is invertible for any n ∈ Z satisfying n 6 n0

(equivalently for this latter condition, det(M(n)) is nonzero for each n 6 n0).
Let R be the subring of K(t) of fractions which are defined for any n ∈ Z. This ring is

principal, since it is a localization of the principal ring K[t]. Note that the condition for
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M(t) and γ(t) to be defined for any integer n is equivalent to the fact that their entries
are in R.

In order to have the next result, we need to extend slightly the notion of representation:
we allow here the integer n0 to be negative.

Proposition 14.1. The following conditions are equivalent, for a P-recursive germ φ.
(i) φ has a strict representation;
(ii) φ has a strict minimal representation;
(iii) the R-submodule of G spanned by the shifts Ei(φ), i ∈ N of φ is a finitely generated

R-module.

Proof. (i) implies (iii): let (λ,M(t), γ(t), n0) be a strict representation of φ. Let φi have
the representation (λ,M(t), ei, n0), where ei is the i-th canonical column vector. Let M
be the R-submodule of G spanned by the φi; M is a finitely generated R-module. Since
E(φi) is represented by (λ,M(t),M(t+ 1)ei, n0), we see by Lemma 5.3 that M is closed
under E, because by hypothesis the entries of M(t + 1) are in R. Moreover, the germ
φ is in M, because the entries of γ(t) are in R. It follows, since R is principal, that
the R-submodule of G spanned by the shifts Ei(φ), i ∈ N of φ is a finitely generated
R-module.

(iii) implies (ii): note that the field of fractions of R is K(t). Since the R-submodule
M0 of G spanned by the shifts Ei(φ), i ∈ N is a finitely generated R-module, and since
it is contained in the K(t)-vector space G, it is a free R-module, of rank equal to the
dimension d of the K(t)-vector space spanned by the shifts Ei(φ), i ∈ N; thus d is the
rank of φ, by Lemma 7.2. Let φ1, . . . , φd be a basis of the R-module M0. Then we can
find a matrix M(t) over R such that E(φj) =

∑
16i6dM(t + 1)ijφi and and a column

vector γ(t) over R such that φ =
∑

16i6d γ(t)iφi. Hence, by Lemma 4.3, we may find a
representation of φ with matrix M(t); M(t) is invertible by Corollary 8.5, and there exists
n0 ∈ Z such that det(M(n)) 6= 0 for any n 6 n0. It follows that (λ,M(t), γ(t), n0) is a
strict representation of φ since the entries of M(t) and γ(t) are in R. It is minimal since
its dimension is the rank of φ.

(ii) implies (i) is clear.

A natural way to extend a P-recursive sequence f(n), satisfying Eq.(1), to all of Z is
to assume that the ri(n) are defined for all n in Z (Stanley’s condition considered above)
and moreover to assume that rd(n) is nonzero for all n ∈ Z. Note that in this case f has a
(minimal) strict representation (λ,M(t), γ(t), 0); indeed, it suffices to follow the first part
of the proof of Theorem 2.1, noting that γ(t) is constant, that M(t) is the companion
matrix of the recursion and that ±rd(t) is its determinant.

Let f have the minimal strict representation (λ,M(t), γ(t), n0) of dimension d. Then
we extend f to all of Z by the formula

f(n0 − n) = λM(n0)
−1M(n0 − 1)−1 · · ·M(n0 − n+ 1)−1γ(n0 − n), (9)

for any n > 0. Note that this is well defined by the ”strict” hypothesis.
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Proposition 14.2. Let f be as above and suppose that for n large enough, f(n) satisfies
the recursion

p0(n)f(n+ e) + p1(n)f(n+ e− 1) + · · ·+ pe(n)f(n) = 0, (10)

where the pi(t) are in K[t]. Then this recursion is true for any n ∈ Z.

Proof. Suppose that (λ,M(t), γ(t), n0) is a minimal representation of f(n), which is there-
fore strict. Let v(t) = p0(t)M(t + 1) · · ·M(t + e)γ(t + e) + p1(t)M(t + 1) · · ·M(t + e −
1)γ(t+ e− 1) + · · ·+ pe(t)γ(t). Then by hypothesis (λ,M(t), v(t), n0) represents 0. Thus
by Proposition 7.4 (ii), v(t) vanishes.

We thus have

p0(t)M(t+ 1) · · ·M(t+ e)γ(t+ e) + p1(t)M(t+ 1) · · ·
×M(t+ e− 1)γ(t+ e− 1) + · · ·+ pe−1(t)M(t+ 1)γ(t+ 1) + pe(t)γ(t) = 0.

(11)

In Eq.(11), put t = n with n > n0. Thus

p0(n)M(n+ 1) · · ·M(n+ e)γ(n+ e) + p1(n)M(n+ 1) · · ·M(n+ e− 1)
×γ(n+ e− 1) + · · ·+ pe−1(n)M(n+ 1)γ(n+ 1) + pe(n)γ(n) = 0.

Multiply on the left by λM(n0 + 1) · · ·M(n). We obtain that p0(n)f(n+ e) + p1(n)f(n+
e− 1) + · · ·+ pe(n)f(n) = 0.

Now, in Eq.(11), put t = n0 − i with 1 6 i 6 e. We obtain

p0(n0 − i)M(n0 − i+ 1) · · ·M(n0 − i+ e)γ(n0 − i+ e)
+p1(n0 − i)M(n0 − i+ 1) · · ·M(n0 − i+ e− 1)γ(n0 − i+ e− 1)

+ · · ·+ pe−i(n0 − i)M(n0 − i+ 1) · · ·M(n0)γ(n0) + · · ·
+pe−1(n0 − i)M(n0 − i+ 1)γ(n0 − i+ 1) + pe(n0 − i)γ(n0 − i) = 0.

Multiply by λM(n0)
−1 · · ·M(n0 − i+ 1)−1 on the left, obtaining

p0(n0 − i)λM(n0 + 1) · · ·M(n0 − i+ e)γ(n0 − i+ e)
+p1(n0 − i)λM(n0 + 1) · · ·M(n0 − i+ e− 1)γ(n0 − i+ e− 1)

+ · · ·+ pe−i(n0 − i)λγ(n0) + · · ·
+pe−1(n0 − i)λM(n0)

−1 · · ·M(n0 − i+ 2)−1γ(n0 − i+ 1)
+pe(n0 − i)λM(n0)

−1 · · ·M(n0 − i+ 1)−1γ(n0 − i) = 0.

Thus, taking in account Eq.(9) we obtain p0(n0 − i)f(n0 − i + e) + p1(n0 − i)f(n0 − i +
e− 1) + · · ·+ pe−i(n0− i)f(n0) + · · ·+ pe−1(n0− i)f(n0− i+ 1) + pe(n0− i)f(n0− i) = 0.

Now put t = n0 − n in Eq.(11) with n > e. We obtain

p0(n0 − n)M(n0 − n+ 1) · · ·M(n0 − n+ e)γ(n0 − n+ e)

+p1(n0 − n)M(n0 − n+ 1) · · ·M(n0 − n+ e− 1)γ(n0 − n+ e− 1)

+ · · ·+ pe−1(n0 − n)M(n0 − n+ 1)γ(n0 − n+ 1) + pe(n0 − n)γ(n0 − n) = 0.
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Multiply at the left by λM(n0)
−1 · · ·M(n0 − n+ 1)−1. We obtain

p0(n0 − n)λM(n0)
−1 · · ·M(n0 − n+ e+ 1)−1γ(n0 − n+ e)

+p1(n0 − n)λM(n0)
−1 · · ·M(n0 − n+ e)−1γ(n0 − n+ e− 1) + · · ·

+pe−1(n0 − n)M(n0)
−1 · · ·M(n0 − n+ 2)−1γ(n0 − n+ 1)

+pe(n0 − n)M(n0)
−1 · · ·M(n0 − n+ 1)−1γ(n0 − n) = 0.

Thus we obtain p0(n0 − n)f(n0 − n+ e) + p1(n0 − n)f(n0 − n+ e− 1) + · · ·+ pe−1(n0 −
n)f(n0 − n+ 1) + pe(n0 − n)f(n0 − n).

Thus Eq.(10) holds for any n ∈ Z.

Corollary 14.3. The extension to Z given by Eq.(9) is independent of the chosen strict
minimal representation.

As mentioned before, Stanley considers in [S1] recursion like Eq.(10), with the as-
sumption that p0 has no integer roots. We show by an example that a sequence may have
a strict representation without satisfying any such recursion. Take indeed the represen-

tation (λ,M(t) =

(
1 1
t t+ 1

)
, γ(t) =

(
1
0

)
, 0) with any nonvanishing λ. Then one

has

M(t+ 1)M(t+ 2)γ(t) =
t2 + 5t+ 5

t+ 1
M(t+ 1)γ(t+ 1)− t+ 2

t+ 1
γ(t).

This implies that the associated sequence satisfies the recursion f(n+ 2) = n2+5n+5
n+1

f(n+

1) − n+2
n+1

f(n). It may be shown by using Petkovšek’s algorithm Hyper that no hyper-
geometric sequence satisfies this recursion. Hence, f is not hypergeometric, the above
recursion is its shortest one and does not satisfy Stanley’s condition since it is not defined
at n = −1.

15 Galois group

The field K(t) is a difference field, that is, a field with an automorphism, which here is
defined by θ(t) = t + 1. Likewise, the ring G is a difference ring, because E is a ring
automorphism. Since G contains K(t) (the embedding is r(t) 7→ [f ], with f(n) = r(n),
n large), and since E restricts to θ, G is a difference ring extension of K(t). The field of
constants (that is, the fixpoints of the automorphism), in both cases, is K. We assume
in this section that K is algebraically closed.

Let φ be a P-recursive germ. Let (λ,M(t), γ(t), n0) be a minimal representation of φ.
We may by Corollary 8.5 assume that M(n) ∈ GLd(K) for n > n0. Define for n > n0,
Z(n) = M(n0 + 1)M(n0 + 2) · · ·M(n). This defines a d × d matrix Z over G, which by
construction is in GLd(G); indeed, its determinant is the invertible hypergeometric germ
associated to the sequence d(n0 + 1)d(n0 + 2) · · · d(n), where d(t) is the determinant of
M(t). Moreover, E(Z) = ZM(t+ 1), by definition of the embedding of K(t) into G.
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We follow now [PS] and [HS]. Define the subring R of G generated by K(t), by the
d2 entries of Z and by the inverse of the determinant of Z. By [PS] Proposition 4.1 and
[HS] Proposition 3.1, R is the Picard-Vessiot ring associated to the difference equation

EY = YM(t+ 1). (12)

It follows from Corollary 8.6 that R does not depend on the chosen minimal representation.
This ring is closed under E (by Eq.(12) and since the inverse of a hypergeometric germ
is hypergeometric), and is therefore a difference subring of G.

The Galois group of Eq.(12) is by definition the group of ring automorphisms of R
that fix K(t) pointwise and that commute with E. We call this group the Galois group
of the P-recursive germ φ.

We use the following result of van der Put and Singer (see Proposition 1.21 in [PS] or
Theorem 2.1 and 2.2 in [HS]): let G be an algebraic subgroup of GLd, defined over K;
recall that G(K(t))denotes the set of matrices in GLd(K(t)) which satisfy the polynomial
equations over K defining the algebraic group G. Then: (a) if M(t + 1) is a point in
the extension G(K(t)), then the Galois group of Eq.(12) is a subgroup of G; (b) if G is
the Galois group of the equation, then there exists a matrix P (t) ∈ GLd(K(t)) such that
P (t)−1M(t+ 1)P (t+ 1) is in G.

Theorem 15.1. Let φ be a P-recursive germ and G(φ) its Galois group. Then φ is
d’Alembertian if and only if G(φ) is triangularizable.

Proof. If φ is d’Alembertian, then we know by Th.11.1 that φ has a minimal represen-
tation with M(t) upper triangular. It follows from (a) above that G is upper triangular.
Conversely, if G is upper triangular, then it follows from (b) above that M(t) is pseudo-
similar to a triangular matrix; it follows that φ has a minimal representation with a
triangular matrix and we deduce from Th.11.1 that φ is d’Alembertian.

A germ is hypergeometric if and only if its Galois group is contained in K∗ 3; likewise,
a germ is a closed form if and only if its Galois group is contained in a torus (that is,
product of several K∗). This follows from [PS], Chapter 2, were the reader may find all
the details of the action of the Galois group as a group of automorphisms of the ring R
(see also [HS]).

In [HS], Hendriks and Singer define a class L of P-recursive germs, called Liouvillian.
It is by definition the smallest subring of G such that

1. K(t) ⊂ L;

2. L is closed under E and E−1;

3. it contains all the hypergeometric germs;

3An example: the Picard-Vessiot extension of K(t) corresponding to the hypergeometric sequence
f(n) = n! is isomorphic with the polynomial ring K(t)[f, f−1], and the action of a ∈ K∗ is induced by
the mapping f 7→ af .
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4. if φ is in L and E(ψ)− ψ = φ, then ψ ∈ L;

5. the interlacing of elements in L is in L.

Here, the interlacing of m sequences f0, . . . , fm−1 is the sequence g defined by g(n) = fr(q)
if n = qm+r (Euclidean division of m by n). Thus the interlacing of germs is well-defined.
Note that ”interlacing” is called ”merge” in [BR].

The main result of [HS] is that a germ is Liouvillian if and only if its Galois group
is solvable. Now, the celebrated Lie-Kolchin theorem asserts that a connected algebraic
group is solvable if and only if it is triangularizable. However, the Galois group of differ-
ence equations are in general not connected; if G0 is the connected component of 1 in the
algebraic group G, then it is a normal subgroup of finite index with cyclic quotient, see
[PS] Proposition 1.20 or [HS] Theorem 2.1.

Corollary 15.2. A germ φ is Liouvillian if and only if it is a interlacing of d’Alembertian
germs.

Proof. It follows from [HS] that L contains the d’Alembertian germs; hence also their
interlacing. Conversely, the proof of Theorem 3.4 in [HS] shows that if the Galois group
of a germ is solvable, then it is a interlacing of germs belonging to the class defined by
items 1 to 4 above. This class is exactly the class of d’Alembertian germs by Section 8.6
in [PWZ]. Thus the corollary follows.

1 2

n/2

1

Figure 2: A Liouvillian germ which is not d’Alembertian

In Figure 2 is shown the representation (in graph form, with n0 = 0) of a Liouvillian
germ which is not d’Alembertian. Its Galois group is the set of matrices

{
(
a 0
0 b

)
, a, b ∈ K∗} ∪ {

(
0 a
b 0

)
, a, b ∈ K∗},

which is a non connected solvable algebraic group. The germ is the class of f , with
f(2n) = 1.3...(2n−1)

2n
and f(2n + 1) = 0. The recursion for f is f(n + 2) = n+1

2
f(n) and

f(0) = 1, f(1) = 0.

16 Effectiveness

A major result which is not proved here is the effectiveness of computing a minimal
representation of a given P-recursive germ. This is equivalent to computing the shortest
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P-recursion Eq.(1). Petkovšek has shown that, if K = Q, a shortest recursion is effectively
computable (personal communication [P2]); his algorithm uses the resolution of algebraic
equations over the field Q̄ of algebraic numbers and the fact that the shortest recursions
over both fields coincide, for a germ over Q, see Section 12.

The difficulty in computing a minimal representation lies apparently in condition (ii)
of Prop.7.4, since it is easy to find a representation satisfying condition (i), by following
for example the proof of Th.2.1.

A more general algorithmic question is the following: given several P-recursive se-
quences, decide if they are linearly dependent over K(t). An algorithm for this problem
will imply an algorithm for the computation of the minimal representation.

17 Arithmetic

A very natural question is the following: when has a given P-recursive germ coefficients in
Z? (that is, is it the class [f ] of a sequence over Z?). This question, even for the subclass
of hypergeometric germs, seems very difficult.

A particular case is the study of ratios of products of factorials, a question studied
by Landau [L], who showed that their integrality is equivalent to the positivity of a
certain step function; the latter problem is related to the NymanBeurling formulation
of the Riemann hypothesis, see [B, Bo] for details and references. Picon [Pi2] has given
new insight into Landau’s problem, and also sufficient conditions for the integrality of
hypergeometric sequences [Pi1, Pi3].
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