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Abstract

We revisit representation theory in type A, used previously to establish that the
dissimilarity vectors of phylogenetic trees are points on the tropical Grassmannian
variety. We use a different version of this construction to show that the space of
phylogenetic trees Kn maps to the tropical varieties of every flag variety of GLn(C).
Using this map, we find a tropical function on the space of phylogenetic trees for
each semistandard tableaux, and we show that the functions satisfy the tropicalized
equations which cut out GLn(C) flag varieties.
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1 Introduction

The space Kn of phylogenetic trees with n leaves was introduced by Billera, Holmes and
Vogtman in [BHV] to give a geometric context to phylogenetic algorithms from mathe-
matical biology. As a space, Kn is a fan, connected in codimension 1, with one maximal
cone for each trivalent tree with n leaves.

A general point T ∈ Kn is a tree with n leaves with an assignment of a non-negative
real number `(e) to each edge e ∈ E(T ). This defines a discrete metric on the set of leaves
of T . The pairwise distances between the leaves form a vector d2(T ) of length

(
n
2

)
, which

completely determines T , see [Bu].

Theorem 1. If d2(T ) = d2(T ′) then T = T ′.
∗Supported by NSF fellowship DMS-0902710.
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Figure 1: A trivalent tree with 5 leaves.

This vector is known as the 2−dissimilarity vector of T . The space of discrete metrics

forms a full dimensional subspace of R(n
2), which notably grows faster in n than 2(n−3), the

dimension of Kn, so it is useful to have a theorem which classifies those which come from
2−dissimilarity vectors of trees. This is where tropical geometry enters the picture. Let
T = R∪{−∞} denote the tropical real line, with its tropical addition and multiplication
operations.

a⊕ b = max{a, b} (1)

a⊗ b = a+ b (2)

For a polynomial f =
∑
C~mx

~m, the tropicalization is the following partial linear form.

T (f) = max{. . . ,
∑

mixi, . . .} (3)

The tropical variety tr(f) associated to f is the set of all points ~t ∈ TN which make at
least two linear forms in the expression T (f) maximum. For a polynomial ideal I, the
tropical variety tr(I) is defined as an intersection.

tr(I) =
⋂
f∈I

tr(f) (4)

The following theorem of Speyer and Sturmfels [SpSt] uses tropical geometry to classify
those discrete metrics which come from 2-dissimilarity vectors of trees in Kn.

Theorem 2. A vector v ∈ R(n
2) is the 2−dissimilarity vector of a tree T ∈ Kn if and only

if it is a point on the tropical variety defined by the Plücker embedding of the Grassmannian
tr(I2,n). In particular, it is necessary and sufficient that for any distinct indicies i, j, k, `,
two of the following expressions must be equal and larger than the third.

vij + vk`, vik + vj`, vi` + vjk
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In particular, the 2−dissimilarity vectors define a map, which is 1− 1 and onto.

d2 : Kn → tr(I2,n) (5)

This led Pachter and Speyer [PS] to consider the m−dissimilarity vectors dm(T ) of
metric trees, which are defined in a similar manner.

Definition 3. Let σ ⊂ [n] be a set of m indices. For a tree T ∈ Kn define dσ(T ) to be
the sum of the lengths of all edges which appear in the convex hull of the indices σ. Define
dm(T ) to be the

(
n
m

)
vector with entries dσ(T ).

Figure 2: The convex hull of three leaves.

Speyer, Pachter and later Cools conjectured a relationship between dm(T ) and the
higher tropical Grassmannian varieties, and they also show that the m−dissimilarity
vector of an n−tree T determines T if n > 2m− 1. Their conjecture was proved Giraldo
[G] and the author [M1], with notably different techniques.

Theorem 4. The point dm(T ) lies on the tropical Grassmannian tr(Im,n), in particular
dm(T ) is a solution to the tropicalization tr(f) of each polynomial from the (m,n)−
Plücker ideal f ∈ Im,n.

Our solution linked the combinatorics of the m−dissimilarity vector to the structure
of the (m,n)−Plücker algebra as a representation of the special linear group SLm(C). We
refer the reader to the book of Fulton and Harris [FH] for the basics of the representation
theory of the special linear group. We let ω1 denote the first fundamental weight of
SLm(C), and for a weight λ we let V (λ) be the corresponding representation, we have the
following expression.

Pm,n =
⊕
~r∈Z>0

[V (r1ω
∗
1)⊗ . . .⊗ V (rnω

∗
1)]SLm(C) (6)

In some sense this is not the natural presentation of the Plücker algebra as an algebra
with representation-theoretic meaning. A more natural way to obtain the Plücker algebra
is as the projective coordinate ring of Grm(Cn) with its structure as a GLn(C) variety.
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Pm,n =
⊕
N∈Z>0

V (Nωm) (7)

The purpose of this note is to establish tropical properties of dissimilarity vectors of
trees using this different representation theoretic point of view. Along the way we will
show that not only the Grassmannian varieties, but every variety with GLn(C)-symmetry
carries a map from Billera-Vogtman-Holmes tree space to its tropical varieties. We em-
ploy the same method used in [M2], the language of branching algebras and branching
valuations. Our methods are applicable to reductive groups of other types and we intend
to work out the space analagous to Kn for type D in a forthcoming publication.

1.1 Tropical structure of dissimilarity vectors

In [M2] our method was to construct the Billera-Holmes-Vogtman space of phylogenetic
trees Kn as a subfan of the space of valuations on the Plücker algebra Pm,n. We then
employed the following theorem from tropical geometry, for a commutative algebra A we
denote the space of valuations on A into the tropical line T by VT(A).

Theorem 5. For any set x1, . . . xn ∈ A, and any valuation v ∈ VT(A), the point
(v(x1), . . . , v(xn)) ∈ Tn lies in the tropical variety of the ideal of forms I which vanish on
x1, . . . , xn in A.

v(~x) ∈ tr(I) (8)

It was then shown that evaluating the valuation vT corresponding to a metric tree
T ∈ Kn on the Plücker generators zσ ∈ Pm,n yielded the m−dissimilarity vector of T ,

vT (zσ) = dσ(T ) (9)

The valuations vT were constructed for dm(T ) as a special case of a general method to
construct valuations on algebras which capture branching information for morphisms of
reductive groups. As a sum of invariants in n−fold tensor products of irreducible SLm(C)
representations, the Plücker algebra can be realized as a subalgebra of the full tensor
algebra of SLm(C).

Pm,n ⊂ R(δn−1) (10)

This algebra captures the branching data for δn−1 : SLm(C)→ SLm(C)n−1, the diagonal
embedding, and it has all n−fold tensor products of irreducible SLm(C) representations
as graded summands.

R(δn−1) =
⊕
~λ∈∆n

HomSLm(C)(V (λ0), V (λ1)⊗ . . .⊗ V (λn−1)) (11)

In general, there is a multigraded algebra R(φ) assigned to a morphism of reductive
groups φ : H → G which algebraically encodes the problem of restricting representations
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from G to H, we will discuss these algebras and their degenerations in section 2. In [M2]
and [M1] it was shown that each factorization φ = φ1 ◦ . . . ◦ φm of φ in the category of

reductive groups yields a cone B(~φ) ⊂ VT(R(φ)). When coupled with Theorem 5 above,
this gives a method for producing complexes of points on the tropical varieties associated
to R(φ) and its sub-algebras, which inherit the combinatorial structure of the category
of reductive groups. In particular, the diagonal morphism δn−1 : SLm(C) → SLm(C)n−1

comes with a factorization for every tree on n leaves, given by other diagonal morphisms,
see [M2].

SLm(C)

SLm(C)

SLm(C)

SLm(C)

SLm(C)
δ2

δ2

•

•

•

•

•
•

77

//

++

��

11

Figure 3: A factorization of δ3.

This gives a cone C(T ) for each such tree, and the valuations vT are special points in
this cone, chosen for their desireable properties when evaluated on the Plücker generators.
In this way the factorization properties of diagonal maps realize dissimilarity vectors of
trees by valuations on the Plücker algebra. This is the essence of the proof of Theorem
4 from [M2]. Notably this produces many more valuations than just those coming from
Kn, presumably these hide interesting combinatorial information about the trees T , the
Plücker algebra Pm,n and other algebras inside the full tensor algebra.

1.2 Factorization by general linear subgroups of GLn(C)

The Plücker algebra can also be constructed as a subalgebra of the branching algebra
R(1G), associated to the identity morphism 1G : 1→ GLn(C).

R1G) =
⊕
λ∈∆

V (λ) (12)

Multiplication in this algebra is computed via Cartan multiplication, V (λ) ⊗ V (η) →
V (λ+ η). This is the coordinate ring of GLn(C)/U+, where U+ is the subgroup of upper
triangular unipotent matrices. This is also the Cox ring of the full flag variety, in particular
the projective coordinate ring Rλ of any flag variety GLn(C)/P , for any ample line bundle
L(λ) sits inside R(1G) as a subalgebra.

Rλ =
⊕
N>0

V (Nλ) ⊂ R(1G) (13)
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In this way we obtain the Plücker algebra as a subalgebra of R(1G) as Pm,n = Rωm .
This allows us to once again analyze some tropical geometry of the Grassmannian, and
indeed any flag variety in type A, using the branching construction on factorizations of
1→ GLn(C). In particular we can obtain a cone of valuations in VT(Rωm) for any nested
sequence of subgroups of GLn(C). Our main tool will be nested products of general linear
groups.

For a set of indices σ ⊂ [n] of size |σ| = k we define the subgroup iσ : GLk(C) →
GLn(C) to be the subcopy of GLk(C) on the indices σ. We represent this with the model
matrix diagram below. 

a b 0 c 0
d e 0 f 0
0 0 X 0 Y
g h 0 i 0
0 0 W 0 Z


Here an element of GL3(C) × GL2(C) on the indices {1, 2, 4} and {3, 5} respectively

defines an element of GL5(C). In this way, every n + 1 tree T defines a directed system
of general linear groups, where an edge e ∈ E(T ) defines the subgroup iL(e)(GLk(C)) ⊂
GLn(C) where L(e) is the set of leaves l such that the unique path between l and 0 in T
passes through e.

GL3(C)

GL1(C)

GL1(C)

GL1(C)

GL2(C)•

•

•

•

•
•

wwoo kk

\\ qq

Figure 4: A factorization of 1GL3(C).

Each vertex v ∈ V (T ) then corresponds to a map iL(e1)× . . .× iL(ej) : GLk1(C)× . . .×
GLkj(C) → GLm(C), where ki = |L(ei)|, and m = |L(e)|. In particular, the leaves of T
are assigned the corresponding copy of C∗ ⊂ GLn(C) at the proper index in the diagonal.

Following the branching construction, we get a valuation on the algebra R(1G) by
assigning a function ρ, linear on the weights of the appropriate GLk(C) to each edge
of this tree. We need ρ to act in such a way that every dominant weight receives a
positive real value, and for every pair of dominant weights λ, η, the weights appearing in
V (λ) ⊗ V (η) receive weight less than or equal to ρ(λ) + ρ(η) = ρ(λ + η). We choose the
functional ρ that counts the number of boxes in the top row of the Young Diagram of the
associated weight λ.
This particular functional has the nice property that ρ(ωi) = 1 for i = 1, . . . , n (recall that
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Figure 5: Weight of a Young tableaux.

ωn = det). In this way, a metric tree T with topological structure equal to the chosen
structure defines a valuation wT on R(1G) by the assignment of `(e)ρ to e ∈ E(T ).

1.3 Branching diagrams

In section 2 we will use this to prove the following proposition about the exterior forms,
which form a basis of V (ωi).

Theorem 6. Let T be an n+ 1 tree, and zσ = zi1 ∧ . . . ∧ zim ∈
∧m(Cn). Then wT (zσ) =

d0,σ(T ).

Note that the vector associated to the Plücker generators of Pm,n by this method is
not the complete m−dissimilarity vector of T , as each component always contains an
index 0. We are not re-proving Theorem 4, but we are showing that these specialized
components of dissimilarity vectors are also solutions to tropical equations coming from
Grassmannians. Using the branching algebra R(1G) also offers enough flexibility to allow
us to say something about general flag varieties, and even general algebras with a GLn(C)
action.

Recall that a representation V (λ) of GLn(C) has a basis given by semistandard fillings
T of the Young diagram associated to the weight λ. Let zT be the basis member of
V (λ) associated to the filling T. Each T can be viewed as a collection of sets of indices,
corresponding to the columns of T.

T = [σ1, . . . , σk] (14)

Indeed, the element zT is the image of the tensor zσ1 ⊗ . . .⊗ zσk under the unique map of
representiontations.

πλ : V (ω|σ1|)⊗ . . .⊗ V (ω|σk|)→ V (
∑

ω|σi|) = V (λ) (15)

This map is the multiplication map in R(1G), so from general properties of valuations we
get the following corollary. We define d0,T (T ) =

∑
σi∈T d0,σi(T ).
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Figure 6:

Corollary 7. For any semistandard tableaux T with associated element zT ∈ R(1G) we
have the following equation.

wT (zT ) = d0,T (T ) (16)

This gives a map from Kn+1 to the tropical varieties of any projective coordinate ring
of any line bundle over any flag variety of type A, or indeed any algebra with a standard
tableaux generating set. We also get the following generalization of Theorem 6

Corollary 8. Let f ∈ Iλ be an element of the ideal which vanishes on the semistandard
tableaux generators of the projective coordinate ring Rλ, associated to L(λ) of a flag variety
GLn(C)/P (λ). Then the tableaux dissimilarity components d0,Ti , as Ti runs over the basis
of V (λ), satisfy T (f).

In [M2] we showed a very general result on G−algebras, Theorem 3.5. A consequence
of this is that any complex of valuations arising from the branching valuation construction
on R(1G) also passes to a complex of valuations on an algebra A with a rational GLn(C)
action.

Theorem 9. Let A be a commutative algebra with a rational action by GLn(C), then
there is a map Kn+1 → VT(A).

Just as each Rλ defined its own set of tropical invariants of trees T ∈ Kn+1 in the form
of the tropicalizations of semi-standard tableaux, any generating set X ⊂ A of such an
algebra will define a set of tropical invariants of T which satisfy the tropicalized equations
in the ideal defined by the presentation of A by X.

2 Overview of branching valuations

Here we give an overview of the essential ideas used to proved Theorem 6. For more
on branching valuations we direct the reader to [M2] and [M1]. For a map of reductive
groups φ : H → G we define a commutative algebra over C.

R(φ) = [RH ⊗RG]H (17)

The algebra RG is C[G]U+ , and is isomorphic to R(1G). Here invariants are defined with
respect to the action of H on RH and H on RG through φ. As a multigraded vector space,
this algebra can be formulated as follows,
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R(φ) =
⊕

η,λ∈∆H×∆G

HomH(V (η), V (λ)) (18)

where the sum runs over all pairs of dominant H and G weights. Now we factor φ by a
pair of morphisms in the category of reductive groups.

H
ψ−−−→ K

π−−−→ G

From this factorization we may refine the multigrading presented above.

HomH(V (η), V (λ)) =
⊕
τ∈∆K

HomH(V (η), V (τ))⊗HomK(V (η), V (λ)) (19)

This is a formal consequence of the semisimplicity of the categories of finite dimensional
representations of reductive groups. Notice that the components on the right hand side
can be viewed as summands in R(ψ) ⊗ R(π). We simplify notation a little and rename
the above summands.

W (η, τ, λ) = HomH(V (η), V (τ))⊗HomK(V (η), V (λ)) (20)

The following theorem can be found in [M1] and [M2].

Theorem 10. The following holds under multiplication in the algebra R(φ).

W (η1, τ1, λ1)×W (η2, τ2, λ2) ⊂
⊕

τ6τ1+τ2

W (η1 + η2, τ, λ1 + λ2) (21)

Moreover, when projected onto the highest weight component on the right hand side, the
resulting multiplication operation agrees with multiplication of the corresponding compo-
nents in R(ψ)⊗R(π).

The same construction can be made for any chain of group morphisms.

H
φ1−−−→ K1

φ2−−−→ . . .
φm−−−→ Km

φm+1−−−→ G

This results in a multifiltration of R(φ) by tuples of dominant weights from K1, . . . Km.
We can turn this into a valuation in a number of ways, each given by a choice of functional
ρi on the dominant weights for each Ki which assigns the largest number to τ1 + τ2 in the
sum in the theorem above. There is a cone B(~φ) of these functionals, its properties are

discussed in [M1]. The cones for different factorizations ~φ fit together into a complex Kφ

of valuations on R(φ), this is also discussed in [M1]. The important point here is that
this complex inherits combinatorial properties naturally from the category of reductive
groups.

In order to evaluate a valuation v~ρ on an element f ∈ R(φ) one must compute the
branching diagram of f . This means we must decompose f into its homogenous compo-
nents along the multifiltration as in Equation 20. This entails recording the dominant
weights of f considered as a vector in a representation of each group Ki. Once this is done,
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the value of the valuation is given by applying the functional ~ρ to the resulting tuple of
dominant weights. In section 3 below we do this for our tree valuations and members of
the basis of RGLn(C) defined by the semistandard tableaux.

3 Dissimilarity vectors and semistandard tableaux

In this section we compute branching diagrams for the basis B(λ) ⊂ V (λ) of semistandard
tableaux of an irreducible representation of GLn(C) for the branching by given by an n+1
tree T constructed in the introduction. We then explain how to produce a valuation wT
on R(1G) from a metric on T , and compute this valuation on members of the basis B(λ),
this will prove Theorem 6 and Corollary 7.

We begin by computing the branching diagrams of the exterior forms zσ, |σ| = m,
which constitute a basis of

∧m(Cn). This representation branches in a very simple way
over the subgroup GLk(C) × GLn−k(C) ⊂ GLn(C) corresponding to the decomposition
Cn = Ck ⊕ Cn−k. We have the following.

m∧
(Cn) =

⊕
i+j=m

i∧
(Ck)⊗

k∧
(Cn−k) (22)

Let IandJ be the subsets of the index set [n] defined by the above direct sum decom-
position, then in terms of the exterior form basis of each space involved we have,

zσ = zσ∩I ∧ zσ∩J ⊂
|σ∩I|∧

(Ck)⊗
|σ∩J |∧

(Cn−k). (23)

The result of this step is an exterior form zσ∩I on each new branch of the diagram, so the
rest of the branching diagram is computed in the same way. This observation proves the
following.

Proposition 11. For an n + 1 tree T , an edge e ∈ E(T ), and an exterior form zσ ∈∧m(Cn), the branching diagram of zσ has a tableaux of shape [1, . . . , 1, 0, . . . 0] at e, where
the number of 1′s is equal to |L(e) ∩ σ|, and it is thought of as a dominant weight for
GL|L(e)|(C).

For T a semistandard tableaux, we can represent zT ∈ V (λ), |T | = λ as a tensor
product of exterior forms. Let T = [σ1, . . . , σk], then there is a surjection πλ : V (ω|σ1|)⊗
. . .⊗ V (ω|σk|)→ V (λ), such that the following holds.

zT = πλ(zσ1 ⊗ . . .⊗ zσk) (24)

Corollary 12. For an n + 1 tree T , and element zT the branching diagram of zT is the
sum of the branching diagrams for the zσi , defined above.

Proof. This follows from the general version of Theorem 6 above.
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Figure 7: Trivalent tree.

This corollary establishes enough for us to evaluate our branching valuations on the
basis zT ∈ B(λ) ⊂ V (λ). Once again following section 2, we now produce the valuation wT
associated to a metric tree T . From the previous section, it suffices to assign a coweight
to each edge e ∈ E(T ).

Definition 13. Let ρ be the coweight which counts the number of boxes in the first row
of the tableaux representing a weight λ. The valuation wT is defined by assigning `(e)ρ
to the edge e, where `(e) is the length of the edge e ∈ E(T ).

It is then clear that wT (zσ) gives the sum of the lengths of the edges e which appear
in the combinatorial convex hull of the indices σ ∪ {0}, as these are the only edges with
non-0 branching weight, and the coweight ρ assigns each non-zero weight in this diagram
a 1. This proves Theorem 6.

Even though we are taking only some of the components of the dissimilarity vectors of
an n+1 tree T , we can still recover the structure of T from this information. In fact, it is
enough to just have the vT evaluations of the degree 1 and degree 2 Plücker coordinates.
As defined, this set already includes all of the 2-components d0,j, and it is simple to verify
the following.

di,j = 2d0,i,j − d0,i − d0,j (25)

Since the 2-disimilarity vector of a tree completely determines the metric structure, this
shows that wT (zi) and wT (zi ∧ zj) determine T . Theorem 6 above also implies that the
rooted dissimilarity numbers d0,σ satisfy many combinatorial tropical equations.
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