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Abstract

Richard Stanley suggested the problem of finding the characteristic polynomial
of a certain hyperplane arrangement defined by xi + xj = 0, 1, which is called the
Shi threshold arrangement. We present the answer of the problem, using the finite
field method.

1 Introduction

Much work has been devoted in recent years to studying hyperplane arrangements, es-
pecially finding their characteristic polynomials and number of regions. Several authors
have worked on computing the number of regions of specific hyperplane arrangements.
See for examples [Ath96b, PS00, Ard07].

Stanley’s paper [Sta07] on hyperplane arrangements contain classic and more recent
results in this field, together with numerous problems. We consider the following prob-
lems [Sta07, p. 473] of finding the characteristic polynomial of the following hyperplane
arrangement:

xi + xj = 0, 1, 1 6 i < j 6 n.

Stanley called the arrangement by “Shi threshold arrangements”
The present paper solves this problem by the finite field method (see [Ath96b, CR70,

Sta07]). In Section 2, we introduce the basic notations of hyperplane arrangements. In
Section 3, we find the characteristic polynomial of the Shi threshold arrangement. We
also calculate the exponential generating function for the characteristic polynomial of the
Shi threshold arrangement. In Section 4, we comment on some related works and further
studies.
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2 Preliminaries

We recall some of the basic concepts of hyperplane arrangements. For a more thorough
introduction, see [OT92, Sta99].

2.1 Intersection posets and characteristic polynomials

Given a field K and a positive integer n, a hyperplane arrangement of dimension n over K
is a finite set of affine hyperplanes in V = Kn. We will refer to hyperplane arrangements
simply as arrangements.

Now, let V = Rn. A region of an arrangement A is a connected component of the
complement X of the hyperplanes:

X = Rn −
⋃

H∈A

H.

Let R(A) denote the set of regions of A, and let r(A) be the number of regions.
Given an arrangement A in V , let L(A) be the set of all nonempty intersections of

hyperplanes in A, including V . Define x 6 y in L(A) if x ⊇ y as a subsets of V . We call
L(A) the intersection poset of A. It is easy to show that L(A) is a graded poset with the
rank function rk : L(A) → N defined by

rk(x) = dim(V )− dim(x) = n− dim(x),

where dim(x) is the dimension of x as an affine subspace of V .
Given a finite poset P with 0̂, the Möbious function µ : P → Z is defined by

µ(0̂) = 1 and µ(x) = −
∑
y<x

µ(y).

Originally, the Möbious function µ goes from the set of all intervals of P to Z. But we
will only consider the intervals of the form [0̂, x], which are identified with x ∈ P .

Definition 1. The characteristic polynomial χA(t) of the arrangement A is defined by

χA(t) :=
∑

x∈L(A)

µ(x) tdim(x)

The characteristic polynomial plays an important role in the theory of arrangements.
One of the important result is as follows.

Theorem 2 (Zaslavsky [Zas75]). For any arrangement A in Rn, we have

r(A) = (−1)n χA(−1), (1)
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2.2 Finite field method

In general, given an arrangement A, it is hard to compute the characteristic polynomial of
A. However, if A in Qn, (i.e., all coefficients of hyperplanes in A are rational), then there
is a powerful method for computing its characteristic polynomial. Given a prime number
p, let Fp be the finite field of order p. If H is a hyperplane of A in Qn, by multiplying a
proper integer to the equation of H, we can regard all the coefficients of the equation of
H as integers. In this case we can take coefficients modulo p and get an arrangement Ap

in Fn
p . It is well known that there are all but finitely many primes p such that L(A) is

isomorphic to L(Ap).

Theorem 3 (Crapo, Rota [CR70]; Orlik, Terao [OT92]; Athanasisadis [Ath96b]). Let A
be an arrangement in Qn. If L(A) ∼= L(Aq) for some prime q, then

χA(q) =

∣∣∣∣∣∣ Fn
q −

⋃
H∈Aq

H

∣∣∣∣∣∣ = qn −

∣∣∣∣∣∣
⋃

H∈Aq

H

∣∣∣∣∣∣ ,

which is called the finite field method.

2.3 Shi arrangement and threshold arrangement

Now we consider two special hyperplane arrangements. The Shi arrangement Sn is given
by

xi − xj = 0, 1, 1 6 i < j 6 n,

which was first appeared in [Shi86, §7]. Using Poincaré polynomials, Headley [Hea97]
found that the characteristic polynomial of Sn is

χSn(t) = t(t− n)n−1. (2)

Athanasiadis [Ath96b] proved it by the finite field method.
Applying Zaslavsky’s theorem to the equation (2), we have

r(Sn) = (n + 1)n−1. (3)

Pak and Stanley [Sta98, §4] and Athanasiadis and Linusson [AL99] proved (3) bijectively.
They gave bijections from R(Sn) to the set of all parking functions on [n].

The threshold arrangement Tn is given by

xi + xj = 0, 1 6 i < j 6 n.

The notation “threshold” comes from threshold graphs that were introduced by Chvátal
and Hammer [CH77]. There is a canonical bijection from Tn to the set of threshold graphs
on [n]. Therefore the exponential generating function for the number of regions of Tn is
given by ∑

n>0

r(Tn)
xn

n!
=

ex(1− x)

2− ex
. (4)
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Later, Stanley [Sta07, p. 473] showed that the exponential generating function for the
characteristic polynomial of Tn is given by∑

n>0

χTn(t)
xn

n!
= (1 + x)(2ex − 1)(t−1)/2. (5)

Note that it is open to find a combinatorial interpretation of each coefficient of χTn(t) as
the number of certain threshold graphs.

3 Shi threshold arrangement

As a generalized threshold arrangement, we consider an arrangement defined by

xi + xj = 0, 1, 1 6 i < j 6 n.

Stanley [Sta07, p. 473] introduced the arrangement and called the Shi threshold arrange-
ment. Let ST n denote the Shi threshold arrangement. We will find the characteristic
polynomial of Shi threshold arrangement and its exponential generating function.

3.1 Characteristic polynomial of ST n

From the finite field method, there exist infinitely many odd primes q = 2r + 1 such that

χST n(q) =
∣∣ {(a1, . . . , an) ∈ Fn

q | ai + aj 6= 0, ai + aj 6= 1, for i < j}
∣∣ . (6)

Let X be the set {(a1, . . . , an) ∈ Fn
q | ai + aj 6= 0, ai + aj 6= 1, for i < j}. Clearly we have

|X| = χST n(q). Given a sequence (u1, . . . , uq) = (0, 1,−1, 2,−2, . . . , r,−r) of Fq, let Y be
the set of all n-tuples (b1, . . . , bn) ∈ Fn

q satisfying the following conditions:

• | {i ∈ [n] | bi = 0} | 6 1 and | {i ∈ [n] | bi = −r} | 6 1.

• If uj ∈ {bi | i ∈ [n]} for some j ∈ [q], then {uj−1, uj+1} ∩ {bi | i ∈ [n]} = ∅.

It is obvious that X and Y are the same set which depends on q. Thus, to give χST n(q),
it suffices to find the cardinality of Y .

Lemma 4. For positive integers m and n, let u = (u1, . . . , um) be a sequence of distinct
m elements. From the set {u1, . . . , um}, choose n-tuples (b1, . . . , bn) in {u1, . . . , um}n such
that no consecutive elements can be chosen. Then the number of such ways is∑

16j6min(n,bm+1
2

c)

(
m− j + 1

j

)
S(n, j) j!, (7)

where S(n, j) is the Stirling number of the second kind.
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Proof. let Z be the set of all functions f : [n] → [m] such that the inverse images f−1({i})
or f−1({i + 1}) are empty for all i = 1, . . . ,m − 1. Correspond an element (b1, . . . , bn)
satisfying the condition to a function f ∈ Z via f(i) := j, where bi = uj. It is obvious
that the correspondence indeed a bijection. If f ∈ Z then the image f([n]) = A is the
subset of [m] such that no consecutive numbers belong to A. Thus the number of selecting
such A is equal to

(
m−j+1

j

)
. Once A is chosen, the number of surjective functions from [n]

to A is equal to j! S(n, j), which completes the equation (7).

For convention we allow j = 0 in (7), because S(n, 0) = 0 if n > 0. For nonnegative
integers m and n, let am(n) be

am(n) :=
∑

06j6n

(
m− j + 1

j

)
S(n, j) j! , (8)

where S(n, k) is the Stirling number of the second kind. Now we go back to Shi threshold
arrangements, i.e.,

u = (u1, . . . , uq) = (0, 1,−1, 2,−2, . . . , r,−r).

To enumerate the set Y , we should regard the additional condition: Each 0 and −r can
be chosen at most once. So we have three cases to consider.

1. Neither 0 nor −r are selected.

2. Either 0 or −r is selected.

3. Both 0 and −r are selected.

By Lemma 4, the number of elements (b1, . . . , bn) of the first case is∑
06j6min(n,r)

(
2r − j

j

)
S(n, j) j!,

which becomes a2r−1(n) for r > n, i.e., for infinitely many sufficiently large primes q =
2r+1. Similarly, the second case is 2n a2r−2(n−1) and the third case is n(n−1) a2r−3(n−2)
for infinitely many sufficiently large primes q = 2r +1. Thus we have the following result:

Theorem 5. The characteristic polynomial of the Shi-threshold arrangement ST n is given
by

χST n(t) =
∑
j>0

(t− j − 1)j S(n, j) + 2n
∑
j>0

(t− j − 2)j S(n− 1, j)

+ n(n− 1)
∑
j>0

(t− j − 3)j S(n− 2, j),

where (x)k is defined by (x)0 = 1 and (x)k = x(x− 1) · · · (x− k + 1) for k > 1.
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For instance χST 0(t) = 1, χST 1(t) = t, χST 2(t) = t2 − 2t, and

χST 3(t) = t3 − 6t2 + 12t− 8

χST 4(t) = t4 − 12t3 + 60t2 − 142t + 130

χST 5(t) = t5 − 20t4 + 180t3 − 870t2 + 2190t− 2252.

Applying the Zaslovsky’s Theorem, we have the followings.

Corollary 6. The number of regions in the Shi-threshold arrangement ST n is given by

r(ST n) =
∑
j>0

(
2j + 1

j

)
j! (−1)n−jS(n, j) + 2n

∑
j>0

(
2j + 2

j

)
j! (−1)n−jS(n− 1, j)

+ n(n− 1)
∑
j>0

(
2j + 3

j

)
j! (−1)n−jS(n− 2, j) .

The sequence {r(ST n)}n>0 starts with

1, 1, 3, 27, 345, 5513, 106619, 2426819, . . .

which is not listed in the “Online Encyclopedia of Integer Sequences”.

3.2 Generating function for χST n
(t)

Recall the definition of am(n) in equation (8). By exponential formula we have

am(n) =
∑
j>0

(
m− j + 1

j

) [
xn

n!

]
(ex − 1)j,

where
[

xn

n!

]
F (x) is the coefficient of xn

n!
in the power series F (x). Thus

∑
n>0

am(n)
xn

n!
=

∑
j>0

(
m− j + 1

j

)
(ex − 1)j. (9)

It is well known (for example [Wil94, p. 54]) that∑
j>0

(
2j + α

j

)
zj =

C(z)α

√
1− 4z

, (10)

where C(z) is the generating function for the Catalan number, i.e.,

C(z) =
1−

√
1− 4z

2z
=

∑
n>0

1

n + 1

(
2n

n

)
zn.
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Substitute α = −m− 2 and z = −(ex − 1) then∑
j>0

(
2j + α

j

)
zj =

∑
j>0

(
m− j + 1

j

)
(ex − 1)j . (11)

Combining (9), (10), and (11) yields that

∑
n>0

am(n)
xn

n!
=

C(1− ex)−m−2

√
4ex − 3

.

In Theorem 5, χST n(t) is expressed by a linear combination of am(n)’s. So, with simple
calculations, we can deduce the exponential generating function for χST n(t), which is∑

n>0

χST n(t)
xn

n!
=

C(1− ex)−t

√
4ex − 3

(x C(1− ex) + 1)2 . (12)

Put t = −1 and x = −x in (12) to get∑
n>0

r(ST n)
xn

n!
=

C(1− e−x)√
4e−x − 3

(
x C(1− e−x)− 1

)2
. (13)

Unfortunately, it looks like that right hand sides of equations (12) and (13) cannot be
simplified.

4 Remarks

A similar problem was solved by Athanasiadis in his PhD thesis [Ath96a, Cor 7.3.3], about
the arrangement defined by

xi + xj = 0, 1 1 6 i 6 j 6 n. (14)

The difference between this arrangement and the Shi-threshold arrangement is whether
i 6 j or i < j. In fact, the arrangement (14) is exponentially stable [Ath96a, p. 97],
but the Shi-threshold arrangement is not, so we cannot apply his method in [Ath96a,
Thm 7.3.2].

Ardila [Ard07, Thm 4.5] computed the Tutte polynomials of various arrangements
including the threshold arrangement. It would be interesting to find the Tutte polynomial
of Shi threshold arrangement.

Finally consider a “generalized” threshold arrangement such as

xi + xj = −l,−l + 1, . . . ,m− 1, m 1 6 i 6 j 6 n. (15)

It would be desirable to find the characteristic polynomial or the Tutte polynomial for
the arrangement (15).
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