On Zudilin's q-question about Schmidt's problem

Victor J. W. Guo ${ }^{1}$ and Jiang Zeng ${ }^{2}$
${ }^{1}$ Department of Mathematics, East China Normal University Shanghai 200062, People's Republic of China
jwguo@math.ecnu.edu.cn, http://math.ecnu.edu.cn/~jwguo

${ }^{2}$ Université de Lyon; Université Lyon 1; Institut Camille Jordan, UMR 5208 du CNRS; 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

```
zeng@math.univ-lyon1.fr, http://math.univ-lyon1.fr/~zeng
```

Submitted: Apr 8, 2012; Accepted: Jun 30, 2012; Published: Jul 12, 2012 Mathematics Subject Classifications: 05A10, 05A30, 11B65

Abstract

We propose an elemantary approach to Zudilin's q-question about Schmidt's problem [Electron. J. Combin. 11 (2004), \#R22], which has been solved in a previous paper [Acta Arith. 127 (2007), 17-31]. The new approach is based on a q-analogue of our recent result in [J. Number Theory 132 (2012), 1731-1740] derived from q-Pfaff-Saalschütz identity.

1 Introduction

In 2007, answering a question of Zudilin [7], the following result was proved in [3].
Theorem 1.1. Let $r \geqslant 1$. Then there exists a unique sequence of polynomials $\left\{c_{i}^{(r)}(q)\right\}_{i=0}^{\infty}$ in q with nonnegative integral coefficients such that, for any $n \geqslant 0$,

$$
\sum_{k=0}^{n} q^{r\binom{n-k}{2}+(1-r)\binom{n}{2}}\left[\begin{array}{l}
n \tag{1.1}\\
k
\end{array}\right]^{r}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]^{r}=\sum_{i=0}^{n} q^{\binom{n-i}{2}+(1-r)\binom{i}{2}}\left[\begin{array}{c}
n \\
i
\end{array}\right]\left[\begin{array}{c}
n+i \\
i
\end{array}\right] c_{i}^{(r)}(q)
$$

Here, the q-binomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]$ are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]= \begin{cases}\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}, & \text { if } 0 \leqslant k \leqslant n \\
0, & \text { otherwise }\end{cases}
$$

where $(q)_{0}=1$ and $(q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)$ for $n=1,2, \ldots$. It is well known that $\left[\begin{array}{c}n \\ k\end{array}\right]$ is a polynomial in q with nonnegative integral coefficients of degree $k(n-k)$ (see [2, p. 33]).

The proof of (1.1) given in [3] is a q-analogue of Zudilin's [7] approach to Schmidt's problem (see $[5,6]$) by first using the q-Legendre inversion formula to obtain a formula for $c_{k}^{(r)}(q)$ and then applying a basic hypergeometric identity due to Andrews [1] to show that the latter expression is indeed a polynomial in q with nonnegative integral coefficients. In this paper, we shall propose a new and elementary approach to Zudilin's q-question, which yields not only a new proof of Theorem 1.1, but also more solutions to Zudilin's q-question about Schmidt's problem.

Our starting point is the following q-version of Lemma 4.2 in [4].
Lemma 1.2. Let $k \geqslant 0$ and $r \geqslant 1$. Then there exists a unique sequence of Laurent polynomials $\left\{P_{k, i}^{(r)}(q)\right\}_{i=k}^{r k}$ in q with nonnegative integral coefficients such that, for any $n \geqslant k$,

$$
\left[\begin{array}{c}
n \tag{1.2}\\
k
\end{array}\right]^{r}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]^{r}=\sum_{i=k}^{\min \{n, r k\}} q^{(r k-i) n}\left[\begin{array}{c}
n \\
i
\end{array}\right]\left[\begin{array}{c}
n+i \\
i
\end{array}\right] P_{k, i}^{(r)}(q)
$$

Moreover, the polynomials $P_{k, i}^{(r)}(q)$ can be computed recursively by $P_{k, k}^{(1)}(q)=1$ and

$$
P_{k, k+j}^{(r+1)}(q)=\sum_{i=k}^{r k} q^{(j-i)(j+k)}\left[\begin{array}{c}
k+i \tag{1.3}\\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i-j
\end{array}\right]\left[\begin{array}{c}
k+j \\
j
\end{array}\right] P_{k, i}^{(r)}(q), 0 \leqslant j \leqslant r k
$$

To derive Theorem 1.1 from Lemma 1.2 we first consider a more general problem. Let $f(x, y)$ and $g(x, y)$ be any polynomials in x and y with integral coefficients. Multiplying (1.2) by $q^{-n k r+f(k, r)}$ and summing over k from 0 to n we obtain

$$
\sum_{k=0}^{n} q^{-n k r+f(k, r)}\left[\begin{array}{l}
n \tag{1.4}\\
k
\end{array}\right]^{r}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]^{r}=\sum_{i=0}^{n} q^{-n i-g(i, r)}\left[\begin{array}{c}
n \\
i
\end{array}\right]\left[\begin{array}{c}
n+i \\
i
\end{array}\right] \sum_{k=0}^{i} T_{k, i}^{(r)}(q)
$$

where

$$
\begin{equation*}
T_{k, i}^{(r)}(q)=q^{f(k, r)+g(i, r)} P_{k, i}^{(r)}(q), 0 \leqslant k \leqslant i, \text { and } P_{k, i}^{(r)}(q)=0 \text { if } i>k r . \tag{1.5}
\end{equation*}
$$

Obviously, $T_{k, i}^{(r)}(q)$ are Laurent polynomials in q with nonnegative integral coefficients. For example, taking $f=g=0$, we immediately obtain the following result.

Theorem 1.3. Let $r \geqslant 1$. Then there exists a unique sequence of Laurent polynomials $\left\{b_{i}^{(r)}(q)\right\}_{i=0}^{\infty}$ in q with nonnegative integral coefficients such that, for any $n \geqslant 0$,

$$
\sum_{k=0}^{n} q^{-r k n}\left[\begin{array}{l}
n \tag{1.6}\\
k
\end{array}\right]^{r}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]^{r}=\sum_{i=0}^{n} q^{-n i}\left[\begin{array}{c}
n \\
i
\end{array}\right]\left[\begin{array}{c}
n+i \\
i
\end{array}\right] b_{i}^{(r)}(q)
$$

Moreover, we have $b_{i}^{(r)}(q)=\sum_{k=0}^{i} P_{k, i}^{(r)}(q)$.

Now, we look for a sufficient condition for $T_{k, i}^{(r)}(q)$ in (1.4) to be a polynomial. It follows from (1.3) that

$$
T_{k, i}^{(r+1)}(q)=\sum_{j=k}^{r k} q^{A}\left[\begin{array}{c}
k+j \tag{1.7}\\
j
\end{array}\right]\left[\begin{array}{c}
k \\
i-j
\end{array}\right]\left[\begin{array}{c}
i \\
k
\end{array}\right] T_{k, j}^{(r)}(q)
$$

where

$$
\begin{equation*}
A=f(k, r+1)+g(i, r+1)-f(k, r)-g(j, r)+i(i-k-j) \tag{1.8}
\end{equation*}
$$

Hence, the positivity of A will ensure that $T_{k, i}^{(r)}(q)$ is a polynomial in q.
We shall first prove Lemma 1.2 in the next section and then prove Theorem 1.1 in Section 3 by choosing special polynomials f and g. Some open problems are raised in Section 4.

2 Proof of Lemma 1.2

We proceed by induction on r. We need the following form of Jackson's q-Pfaff-Saalschütz identity (see [2, pp. 37-38] or [5] for example):

$$
\left[\begin{array}{c}
m+n \tag{2.1}\\
M
\end{array}\right]\left[\begin{array}{c}
n \\
N
\end{array}\right]=\sum_{j \geqslant 0} q^{(N-j)(M-m-j)}\left[\begin{array}{c}
M-m \\
j
\end{array}\right]\left[\begin{array}{c}
N+m \\
m+j
\end{array}\right]\left[\begin{array}{c}
m+n+j \\
M+N
\end{array}\right]
$$

Substituting $m \rightarrow k-i, n \rightarrow n+i, M \rightarrow n-i$ and $N \rightarrow i$ in (2.1), we get

$$
\left[\begin{array}{c}
n+k \\
n-i
\end{array}\right]\left[\begin{array}{c}
n+i \\
i
\end{array}\right]=\sum_{j=0}^{i} q^{(i-j)(n-k-j)}\left[\begin{array}{c}
n-k \\
j
\end{array}\right]\left[\begin{array}{c}
k \\
i-j
\end{array}\right]\left[\begin{array}{c}
n+k+j \\
n
\end{array}\right]
$$

which can be rewritten as

$$
\left[\begin{array}{c}
n \tag{2.2}\\
i
\end{array}\right]\left[\begin{array}{c}
n+i \\
i
\end{array}\right]=\sum_{i=0}^{i} q^{(i-j)(n-k-j)} \frac{(q)_{k+i}(q)_{j}}{(q)_{k+j}(q)_{i}}\left[\begin{array}{c}
k \\
i-j
\end{array}\right]\left[\begin{array}{c}
n-k \\
j
\end{array}\right]\left[\begin{array}{c}
n+k+j \\
j
\end{array}\right]
$$

It is clear that (1.2) holds for $r=1$ with $P_{k, k}^{(r)}(q)=1$. Suppose that (1.2) holds for some $r \geqslant 1$. Multiplying both sides of (1.2) by $\left[\begin{array}{c}n \\ k\end{array}\right]\left[\begin{array}{c}n+k \\ k\end{array}\right]$ and applying (2.2), we immediately get

$$
\begin{align*}
{\left[\begin{array}{c}
n \\
k
\end{array}\right]^{r+1}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]^{r+1}=} & \sum_{i=k}^{r k} q^{(r k-i) n}\left[\begin{array}{c}
n \\
k
\end{array}\right]\left[\begin{array}{c}
n+k \\
k
\end{array}\right] P_{k, i}^{(r)}(q) \\
& \times \sum_{j=0}^{i} q^{(i-j)(n-k-j)} \frac{(q)_{k+i}(q)_{j}}{(q)_{k+j}(q)_{i}}\left[\begin{array}{c}
k \\
i-j
\end{array}\right]\left[\begin{array}{c}
n-k \\
j
\end{array}\right]\left[\begin{array}{c}
n+k+j \\
j
\end{array}\right] \\
= & \sum_{j=0}^{r k} q^{(r k-j) n}\left[\begin{array}{c}
n \\
k+j
\end{array}\right]\left[\begin{array}{c}
n+k+j \\
k+j
\end{array}\right] P_{k, k+j}^{(r+1)}(q), \tag{2.3}
\end{align*}
$$

where $P_{k, k+j}^{(r+1)}(q)$ is given by (1.3). By the induction hypothesis, these $P_{k, k+j}^{(r+1)}(q)$ are Laurent polynomials in q with nonnegative integral coefficients. Hence Lemma 1.2 is true for $r+1$.

3 Proof of Theorem 1.1

In (1.4), taking $f(k, r)=r\binom{k+1}{2}, g(i, r)=(r-2)\binom{i}{2}-i$, and multiplying by $q^{\binom{n}{2}}$, we obtain (1.1) with

$$
\begin{equation*}
c_{i}^{(r)}(q)=q^{(r-2)\binom{i}{2}-i} \sum_{k=0}^{i} q^{r\binom{k+1}{2}} P_{k, i}^{(r)}(q) \tag{3.1}
\end{equation*}
$$

By (1.8), the corresponding A reads as follows:

$$
A=(r-2)\left[\binom{i}{2}-\binom{j}{2}\right]+\binom{i-k}{2}+(i-1)(i-j) .
$$

If $r \geqslant 2$, since $i \geqslant j$, we have $A \geqslant 0$. If $r=1$, then (1.7) implies that $j=k$ and $A=2\binom{i-k}{2} \geqslant 0$. Thus $c_{i}^{(r)}(q)$ in (3.1) is a polynomial in q. For example, by (1.5) we have

$$
T_{k, i}^{(2)}(q)=q^{2\binom{i-k}{2}}\left[\begin{array}{c}
2 k \\
i
\end{array}\right]\left[\begin{array}{c}
i \\
k
\end{array}\right]^{2},
$$

and

$$
c_{i}^{(2)}(q)=\sum_{k=0}^{i} q^{2(\underset{2}{i-k})}\left[\begin{array}{c}
2 k \\
i
\end{array}\right]\left[\begin{array}{c}
i \\
k
\end{array}\right]^{2},
$$

which coincides with $[3,(3,1)]$.

4 Open problems

For any positive integers r and s, it is easy to see that there are uniquely determined rational numbers $c_{k}^{(r, s)}(k \geqslant 0)$, independent of $n(n \geqslant 0)$, satisfying

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{r}\binom{n+k}{k}^{r}=\sum_{k=0}^{n}\binom{n}{k}^{s}\binom{n+k}{k}^{s} c_{k}^{(r, s)} \tag{4.1}
\end{equation*}
$$

When $s=1$ and $r \geqslant 1$, the integrality of $c_{k}^{(r, s)}$ is the original problem of Schmidt [5]. When $s>1$ and $r>s$, we observe that the numbers $c_{k}^{(r, s)}$ are not always integers. From arithmetical point of view, the following problems may be interesting.

Conjecture 4.1. For any $s>1$ and $n \geqslant 0$, there is an integer $r>s$ such that all the numbers $c_{k}^{(r, s)}(0 \leqslant k \leqslant n)$ are integers.

For $s=2$, via Maple, we find that the least such integers $r:=r(n, s)$ are $r(0,2)=$ $r(1,2)=r(2,2)=3, r(3,2)=7, r(4,2)=32, r(5,2)=212$.
Conjecture 4.2. For any $r>s>1$, there is a positive integer n such that $c_{n}^{(r, s)}$ is not an integer.

Acknowledgments. This work was partially supported by the Fundamental Research Funds for the Central Universities.

References

[1] G.E. Andrews, Problems and prospects for basic hypergeometric functions, In: The Theory and Application of Special Functions, R. Askey, Ed., Academic Press, New York, 1975, pp. 191-224.
[2] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[3] V.J.W. Guo, F. Jouhet, and J. Zeng, Factors of alternating sums of products of binomial and q-binomial coefficients, Acta Arith. 127 (2007), 17-31.
[4] V.J.W. Guo, J. Zeng, Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials, J. Number Theory 132 (2012), 1731-1740.
[5] A.L. Schmidt, Generalized q-Legendre polynomials, J. Comput. Appl. Math. 49 (1993), 243-249.
[6] V. Strehl, Binomial identities - combinatorial and algorithmical aspects, Discrete Math. 136 (1994), 309-346.
[7] W. Zudilin, On a combinatorial problem of Asmus Schmidt, Electron. J. Combin. 11 (2004), \#R22.

