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Abstract

We show that the number of partitions of n with alternating sum k such that
the multiplicity of each part is bounded by 2m + 1 equals the number of partitions
of n with k odd parts such that the multiplicity of each even part is bounded by
m. The first proof relies on two formulas with two parameters that are related to
the four-parameter formulas of Boulet. We also give a combinatorial proof of this
result by using Sylvester’s bijection, which implies a stronger partition theorem. For
m = 0, our result reduces to Bessenrodt’s refinement of Euler’s partition theorem.
If the alternating sum and the number of odd parts are not taken into account,
we are led to a generalization of Euler’s partition theorem, which can be deduced
from a theorem of Andrews on equivalent upper bound sequences of multiplicities.
Analogously, we show that the number of partitions of n with alternating sum k
such that the multiplicity of each even part is bounded by 2m+1 equals the number
of partitions of n with k odd parts such that the multiplicity of each even part is
also bounded by 2m + 1. We provide a combinatorial proof as well.
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1 Introduction

The main objective of this paper is to present a unification of a refinement and a gen-
eralization of Euler’s partition theorem. More precisely, we show that the number of
partitions of n with alternating sum k such that the multiplicity of each part is bounded
by 2m+ 1 is equal to the number of partitions of n with k odd parts such that the multi-
plicity of each even part is bounded by m. The algebraic proof of this result relies on two
formulas with two parameters that are related to the four-parameter formulas of Boulet
on the generating function for partitions [9]. Meanwhile, we give a combinatorial proof
by using Sylvester’s bijection [16], which implies a stronger partition theorem.

For the case m = 0, our result reduces to a refinement of Euler’s partition theorem
due to Bessenrodt [6]. From a different perspective, our result is also related to a theorem
of Andrews [3] on equivalent upper bound sequences of multiplicities. If the alternating
sum and the number of odd parts are not taken into account in our theorem, we obtain
a connection between partitions with the multiplicity of each part bounded by 2m +
1 and partitions with the multiplicity of each even parts bounded by m, which is a
generalization of Euler’s theorem. Indeed, it is a special case of a theorem of Andrews.
In the language of Andrews, we may say that the upper bound sequence of multiplicities
(2m+ 2, 2m+ 2, 2m+ 2, . . .) is equivalent to the upper bound sequence of multiplicities
(∞, m+ 1, ∞, m+ 1, . . .). However, when the alternating sums and the number of odd
parts are taken into consideration, there does not seem to be a general theorem on the
equivalent upper bound sequences of multiplicities.

Based on the algebraic proof of the main result, we also show that the number of
partitions of n with alternating sum k such that the multiplicity of each even part is
bounded by 2m + 1 equals the number of partitions of n with k odd parts such that the
multiplicity of each even part is also bounded by 2m + 1. We provide a combinatorial
proof as well. In particular, for m = 0, we find that the number of partitions of n with
alternating sum k such that the even parts are distinct equals the number of partitions
of n with k odd parts such that the even parts are distinct.

Let us give an overview of the theorem of Bessenrodt and the theorem of Andrews.
Throughout this paper, we shall adopt the common notation on partitions used in An-
drews [4]. A partition λ of a positive integer n is a finite sequence of positive integers
λ1, λ2, . . . , λr such that λ1 > λ2 > · · · > λr and λ1 + λ2 + · · · + λr = n. We write
λ = (λ1, λ2, . . . , λr). Each λi is called a part. The part λ1 is called the largest part of λ.
The number of parts of λ is called the length of λ, denoted l(λ). The weight of λ is the sum
of parts of λ, denoted |λ|. The conjugate partition of λ is defined by λ′ = (λ′1, λ

′
2, . . . , λ

′
t),

where λ′i is the number of parts of λ greater than or equal to i. The number of odd parts
in λ is denoted by lo(λ). The alternating sum of λ, namely,

la(λ) = λ1 − λ2 + λ3 − λ4 + · · · .

is denoted by la(λ).
Euler’s partition theorem states that the number of partitions of n into distinct parts

is equal to the number of partitions of n into odd parts. There are many refinements
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of Euler’s partition theorem, see, for examples, Bessenrodt [6], Fine [11, pp.46–47] and
Sylvester [4, p.24]. For m = 0, our partition theorem reduces to a refinement of Euler’s
partition theorem due to Bessenrodt [6], which is a limiting case of the lecture hall theorem
due to Bousquet-Mélou and Eriksson [7, 8]. Bessenrodt derived the following relation from
Sylvester’s bijection [16].

Theorem 1.1. The number of partitions of n into distinct parts with alternating sum l is
equal to the number of partitions of n into odd parts with length l. In terms of generating
functions, we have ∑

λ∈D

yla(λ)q|λ| =
∑
µ∈O

yl(µ)q|µ|, (1.1)

where D denotes the set of partitions with distinct parts and O denotes the set of partitions
with odd parts.

There is another refinement of Euler’s partition theorem due to Glaisher [12]. A
unification of the refinements of Bessenrodt [6] and Glaisher [12] has been obtained by
Chen, Gao, Ji and Li [10] which can be deduced from Boulet’s four-parameter formula
[9]. A combinatorial proof of this unification is given in [10].

In another direction, there are several generalizations of Euler’s partition theorem,
see, for example, Alder [1], Andrews [2, 3, 5], Glaisher [12] and Moore [14]. Andrews
[3] proved the following theorem on equivalent upper bound sequences of multiplicities,
see also Pak [15]. An upper bound sequence of multiplicities is defined to be an infinite
sequence a = (a1, a2, a3, . . .) of nonnegative integers or infinity. Let supp(a) be the set of
indices i such that ai is finite. We say that two upper bound sequences of multiplicities
a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .) are equivalent, if there exists a one-to-one
correspondence π : supp(a)→ supp(b) such that iai = jbj, for all j = π(i).

Theorem 1.2. Let a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .) be two upper bound se-
quences of multiplicities. If a and b are equivalent, then the number of partitions λ =
(1m12m2 · · · ) of n such that mi < ai for all i equals the number of partitions µ =
(1m12m2 · · · ) of n such that mi < bi for all i.

In the language of Andrews, we may say that the upper bound sequence of multi-
plicities a = (2m + 2, 2m + 2, 2m + 2, . . .) is equivalent to the upper bound sequence
of multiplicities b = (∞, m + 1, ∞, m + 1, . . .). To be more specific, let π be the map
i → 2i, then we have iai = π(i)bπ(i). In this case, we have the following consequence,
which can be considered as a generalization of Euler’s partition theorem.

Corollary 1.3. The number of partitions of n with the multiplicity of each part bounded
by 2m + 1 equals the number of partitions of n with the multiplicity of each even part
bounded by m.

It can be seen that our main result is a unification of Theorem 1.1 and Corollary
1.3. This paper is organized as follows. In Section 2, we provide two formulas on two-
parameter generating functions for partitions that are related to Boulet’s four-parameter
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formula by imposing an upper bound sequence of multiplicities. In Section 3, we use the
two formulas presented in Section 2 to prove the main theorem. We also prove the second
result of this paper, that is, the number of partitions of n with alternating sum k such
that each even part appears at most 2m + 1 times equals the number of partitions of n
with k odd parts such that each even part appears at most 2m + 1 times. In Section
4, we give a combinatorial proof of the main result based on Sylvester’s bijection and
obtain a stronger version concerning the number of odd parts, the largest odd part and
the largest part with odd multiplicity. Finally, we provide a combinatorial proof of our
second theorem in the last section.

2 Two-parameter Formulas

To prove the main result of this paper, we need two formulas on two-parameter generating
functions for partitions. The first formula (Theorem 2.3) can be deduced from Boulet’s
four-parameter formula [9]. It seems that there are typos in the formula of Boulet. A
corrected version with a technical condition added is presented in Theorem 2.2. The first
two-parameter formula (Theorem 2.3) can be deduced from Theorem 2.2 for the case
i = 0, k = 1, a = b and c = d. We provide the second two-parameter formula (Theorem
2.4) from a two-parameter formula which is a specialization of Theorem 2.1 by setting
a = c and b = d. The proof is similar to that of Boulet’s four-parameter formula [9]. It
should be noted that Theorem 2.3 can be considered as an extension of the two-parameter
formula obtained from Theorem 2.1 by setting a = b and c = d. The proof of the first
two-parameter formula (Theorem 2.3) is analogous to that of Theorem 2.4, and hence it
is omitted.

To state Boulet’s four-parameter formula, let λ be a partition, and let a, b, c, d be
commuting indeterminants. Define

ω(λ) = a
∑
i>1dλ2i−1/2eb

∑
i>1bλ2i−1/2cc

∑
i>1dλ2i/2ed

∑
i>1bλ2i/2c. (2.2)

The above four-parameter weight is introduced by Boulet [9]. Let

Φ(a, b, c, d) =
∑
λ

ω(λ),

where the sum is over all partitions. Boulet [9] obtained the following formula.

Theorem 2.1. We have

Φ(a, b, c, d) =
∞∏
j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)
. (2.3)

Boulet generalized the above formula by considering an upper bound sequence of
multiplicities. We shall adopt the notation in Boulet [9]. Let R be a subset of positive
integers, and let ρ be a map from R to the set E of even positive integers. Boulet defined
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Par(i, k;R, ρ) as the set of partitions λ with parts congruent to i (mod k) such that for
any r ∈ R the multiplicity of r in λ is less than ρ(r). In other words, ρ can be viewed as
an upper bound sequence of multiplicities for partitions in Par(i, k;R, ρ). Let

Φi,k;R,ρ(a, b, c, d) =
∑
λ

ω(λ), (2.4)

where the sum is over all partitions in Par(i, k;R, ρ).
Boulet [9] derived a formula for Φi,k;R,ρ(a, b, c, d), which seems to contain typos. This

formula can be corrected as follows. First, we impose a further condition on the definition
of Par(i, k;R, ρ), that is, for i 6= 0, the length of λ is even and the part i appears at most
once. Then the formula for Φi,k;R,ρ(a, b, c, d) takes the following form.

Theorem 2.2. We have
Φi,k;R,ρ(a, b, c, d) = ST, (2.5)

where

S =
∞∏
j=1

(1 + ad
jk+i

2
ebb

jk+i
2
ccd

(j−1)k+i
2

edb
(j−1)k+i

2
c)

(1− ad jk+i2
ebb

jk+i
2
ccd

jk+i
2
edb

jk+i
2
c)(1− ajkbjkc(j−1)kd(j−1)k)

and
T =

∏
r∈R

(1− ad
r
2
e ρ(r)

2 bb
r
2
c ρ(r)

2 cd
r
2
e ρ(r)

2 db
r
2
c ρ(r)

2 ).

For the purpose of this paper, we only need the special case of (2.5), which is the case
for k = 1, i = 0, a = b and c = d. For this special case, we define

ω1(λ) = a
∑
i>1dλ2i−1/2ea

∑
i>1bλ2i−1/2cb

∑
i>1dλ2i/2eb

∑
i>1bλ2i/2c. (2.6)

For notational simplicity, we denote by Par(R, ρ) the set of partitions such that any
element r in R appears as a part with multiplicity less than ρ(r). Set

ΦR,ρ(a, a, b, b) = Φ0,1;R,ρ(a, a, b, b) =
∑
λ

ω1(λ),

where the sum is over all partitions in Par(R, ρ). We can deduce the following formula
from (2.5).

Theorem 2.3. We have

ΦR,ρ(a, a, b, b) =
∞∏
j=1

(1 + ad
j
2
e+b j

2
cbd

j−1
2
e+b j−1

2
c)

(1− ad j2 e+b j2 cbd j2 e+b j2 c)(1− a2jb2j−2)

×
∏
r∈R

(1− a(d
r
2
e+b r

2
c) ρ(r)

2 b(d
r
2
e+b r

2
c) ρ(r)

2 ).
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Bear in mind that the condition that ρ(r) is even for any r ∈ R is required in Theorem
2.3. However, as will be seen, we can obtain similar formulas for any upper bound sequence
of multiplicities as long as we have a = c and b = d. So we define

ω2(λ) = a
∑
i>1dλ2i−1/2eb

∑
i>1bλ2i−1/2ca

∑
i>1dλ2i/2eb

∑
i>1bλ2i/2c. (2.7)

To be more specific, let γ be a map from R to positive integers. Let

ΨR,γ(a, b, a, b) =
∑
λ

ω2(λ),

where the sum is over partitions in Par(R, γ + 1). To derive our main theorem, we need
the following extension of a two-parameter formula, that is, the generating function for
ΨR,γ(a, b, a, b). The proof of the following two-parameter formula is analogous to that of
Boulet’s four-parameter formula [9].

Theorem 2.4. We have
ΨR,γ(a, b, a, b) = UV,

where

U =
∞∏
j=1

(1 + ad
j
2
ebb

j
2
cad

j−1
2
ebb

j−1
2
c)

(1− a2d j2 eb2b j2 c)(1− a2j−1b2j−1)
and

V =
∏
r∈R

(1− ad
r
2
e(γ(r)+1)bb

r
2
c(γ(r)+1)).

Proof. In view of the definition of ΨR,γ(a, b, c, d), it is easy to see that Ψ∅,γ(a, b, a, b) equals
Φ(a, b, a, b) as given in Theorem 2.1. Hence we obtain

Ψ∅,γ(a, b, a, b) =
∞∏
j=1

(1 + ajbj−1aj−1bj−1)(1 + ajbjajbj−1)

(1− ajbjajbj)(1− ajbjaj−1bj−1)(1− ajbj−1ajbj−1)

=
∞∏
j=1

(1 + ad
j
2
ebb

j
2
cad

j−1
2
ebb

j−1
2
c)

(1− a2d j2 eb2b j2 c)(1− a2j−1b2j−1)
,

which is the generating function for Par(∅, γ + 1).
In order to obtain the generating function for Par(R, γ+1), we notice that any partition

λ in Par(∅, γ+ 1) can be expressed as a bipartition (µ, ν) such that µ ∈ Par(R, γ+ 1) and
ν ∈ L, where L is the set of partitions with parts r ∈ R occurring a multiple of γ(r) + 1
times. In other words, there is a bijection between Par(∅, γ + 1) and Par(R, γ + 1)×L.
Clearly, any part r ∈ R occurring a multiple of γ(r) + 1 times can be represented as a
multiple of the following block

a b a b · · · a b
a b a b · · · a b
· · · · · · · · · · · · · · · · · · · · ·
a b a b · · · a b︸ ︷︷ ︸

r


repeated γ(r) + 1 times.
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The weight of the above block is ad
r
2
e(γ(r)+1)bb

r
2
c(γ(r)+1). Thus the generating function for

L equals

V −1 =
∏
r∈R

1

(1− ad r2 e(γ(r)+1)bb
r
2
c(γ(r)+1))

It follows that
ΨR,γ(a, b, a, b) = UV.

This completes the proof.

3 Two Partition Theorems

In this section, we provide two partition theorems. The first one is stated as follows.

Theorem 3.1. For k,m, n > 0, the number of partitions of n with alternating sum k
such that each part appears at most 2m + 1 times equals the number of partitions of n
with k odd parts such that each even part appears at most m times.

For example, the following table illustrates the case for n = 7 and m = 1.

la Each part appears at most three times lo Each even part appears only once
1 (22, 13) (23, 1) (3, 2, 12) (32, 1) (4, 3) 1 (4, 2, 1) (4, 3) (5, 2) (6, 1) (7)
3 (3, 22) (4, 13) (4, 2, 1) (5, 2) 3 (3, 2, 12) (32, 1) (4, 13) (5, 12)
5 (5, 12) (6, 1) 5 (2, 15) (3, 14)
7 (7) 7 (17)

If the alternating sum and the number of odd parts are not taken into account, we
are led to Corollary 1.3, which can be regarded as a generalization of Euler’s partition
theorem and a special case of Theorem 3.1. Meanwhile, it is easy to see that Theorem
3.1 reduces to Theorem 1.1 when m = 0.

The second partition theorem is concerned with the alternating sum, the number of
odd parts and an upper bound 2m+ 1 on the multiplicity of each even part.

Theorem 3.2. For k,m, n > 0, the number of partitions of n with alternating sum k
such that each even part appears at most 2m+ 1 times equals the number of partitions of
n with k odd parts such that each even part appears at most 2m+ 1 times.

For example, for n = 7 and m = 0, the partitions in Theorem 3.2 are listed in the
following table.

la Each even part appears only once lo Each even part appears only once
1 (17) (2, 15) (3, 2, 12) (32, 1) (4, 3) 1 (4, 2, 1) (4, 3) (5, 2) (6, 1) (7)
3 (3, 14) (4, 13) (4, 2, 1) (5, 2) 3 (3, 2, 12) (32, 1) (4, 13) (5, 12)
5 (5, 12) (6, 1) 5 (2, 15) (3, 14)
7 (7) 7 (17)
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To give the proofs of the above theorems, we shall adopt the common notation for the
q-shifted factorials

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n > 1,

and
(a; q)∞ = lim

n→∞
(1− a)(1− aq)(1− aq2) · · · ,

where 0 6 |q| < 1, see Gasper and Rahman [13].
Notice that the generating functions for partitions in Theorem 3.1 and Theorem 3.2

can be expressed in the notation ΦR,ρ(a, b, c, d) and ΨR,γ(a, b, c, d) defined in the previous
section, where ρ and γ are upper bound sequences of multiplicities. More precisely,
ΦR,ρ(a, b, c, d) is the generating function for partitions such that each part r ∈ R appears
less than ρ(r) times with ρ(r) being an even number, and ΨR,γ(a, b, c, d) is the generating
function for partitions such that each part r ∈ R appears at most γ(r) times.

In the above notation, it is easy to check that

ΦN,2m+2(xq, xq, x
−1q, x−1q)

is the generating function for partitions such that each part appears at most 2m+1 times
and the exponent of x is the alternating sum. We also observe that

ΨE,m(xq, x−1q, xq, x−1q)

is the generating function for partitions such that each even part appears at most m times
and the exponent of x is the number of odd parts.

Based on the above interpretations of the functions ΦN,2m+2(xq, xq, x
−1q, x−1q) and

ΨE,m(xq, x−1q, xq, x−1q), one can deduce Theorem 3.1 from the following relation.

Theorem 3.3. We have

ΦN,2m+2(xq, xq, x
−1q, x−1q) = ΨE,m(xq, x−1q, xq, x−1q) =

(−xq; q2)∞(q2m+2; q2m+2)∞
(q2; q2)∞(x2q2; q4)∞

.

Proof. Setting a = xq, b = xq, R = N, and ρ = 2m+ 2 in Theorem 2.3, we obtain

ΦN,2m+2(xq, xq, x
−1q, x−1q)

=
∞∏
j=1

(1 + (xq)d
j
2
e(xq)b

j
2
c(x−1q)d

j−1
2
e(x−1q)b

j−1
2
c)

(1− (xq)d
j
2
e(xq)b

j
2
c(x−1q)d

j
2
e(x−1q)b

j
2
c)(1− (xq)j(xq)j(x−1q)j−1(x−1q)j−1)

×
∏
r∈N

(1− (xq)d
r
2
e 2m+2

2 (xq)b
r
2
c 2m+2

2 (x−1q)d
r
2
e 2m+2

2 (x−1q)b
r
2
c 2m+2

2 )

=

∏∞
j=1(1 + (xq)j(xq)j(x−1q)j(x−1q)j−1)

∏∞
j=1(1 + (xq)j(xq)j−1(x−1q)j−1(x−1q)j−1)∏∞

j=1(1− (xq)d
j
2
e(xq)b

j
2
c(x−1q)d

j
2
e(x−1q)b

j
2
c)
∏∞

j=1(1− x2q4j−2)
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×
∏
r∈N

(1− (xq)d
r
2
e(m+1)(xq)b

r
2
c(m+1)(x−1q)d

r
2
e(m+1)(x−1q)b

r
2
c(m+1))

=

∏∞
j=1(1 + xq4j−1)

∏∞
j=1(1 + xq4j−3)∏∞

j=1(1− q4j)(1− q4j−2)
∏∞

j=1(1− x2q4j−2)
×
∞∏
r=1

(1− q4r(m+1))(1− q(4r−2)(m+1))

=
(−xq; q2)∞(q2m+2; q2m+2)∞

(q2; q2)∞(x2q2; q4)∞
.

Meanwhile, setting a = xq, b = x−1q, R = E (the set of even positive integers) and γ = m
in Theorem 2.4, we find that

ΨE,m(xq, x−1q, xq, x−1q)

=
∞∏
j=1

(1 + (xq)d
j
2
e(x−1q)b

j
2
c(xq)d

j−1
2
e(x−1q)b

j−1
2
c)

(1− (xq)2d
j
2
e(x−1q)2b

j
2
c)(1− (xq)2j−1(x−1q)2j−1)

×
∏
r∈E

(1− (xq)d
r
2
e(m+1)(x−1q)b

r
2
c(m+1))

=

∏∞
j=1(1 + (xq)j(x−1q)j(xq)j(x−1q)j−1)

∏∞
j=1(1 + (xq)j(x−1q)j−1(xq)j−1(x−1q)j−1)∏∞

j=1(1− (xq)2d
j
2
e(x−1q)2b

j
2
c)
∏∞

j=1(1− q4j−2)

×
∞∏
r=1

(1− (xq)r(m+1)(x−1q)r(m+1))

=

∏∞
j=1(1 + xq4j−1)

∏∞
j=1(1 + xq4j−3)∏∞

j=1(1− q4j)(1− x2q4j−2)
∏∞

j=1(1− q4j−2)
×
∞∏
r=1

(1− q2r(m+1))

=
(−xq; q2)∞(q2m+2; q2m+2)∞

(q2; q2)∞(x2q2; q4)∞
.

This completes the proof.

Similarly, one can check that

ΦE,2m+2(xq, xq, x
−1q, x−1q)

is the generating function for partitions such that each even part appears at most 2m+ 1
times and the exponent of x is the alternating sum. Moreover, one sees that

ΨE,2m+1(xq, x
−1q, xq, x−1q)

is the generating function for partitions such that each even part appears at most 2m +
1 times and the exponent of x is the number of odd parts. Thus Theorem 3.2 is a
consequence of the following relation.
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Theorem 3.4. We have

ΦE,2m+2(xq, xq, x
−1q, x−1q) = ΨE,2m+1(xq, x

−1q, xq, x−1q) =
(−xq; q2)∞(q4m+4; q4m+4)∞

(q2; q2)∞(x2q2; q4)∞
.

Proof. Making the substitutions a = xq, b = xq, R = E (the set of even positive integers)
and ρ = 2m+ 2 in Theorem 2.3, we find that

ΦE,2m+2(xq, xq, x
−1q, x−1q)

=
∞∏
j=1

(1 + (xq)d
j
2
e(xq)b

j
2
c(x−1q)d

j−1
2
e(x−1q)b

j−1
2
c)

(1− (xq)d
j
2
e(xq)b

j
2
c(x−1q)d

j
2
e(x−1q)b

j
2
c)(1− (xq)j(xq)j(x−1q)j−1(x−1q)j−1)

×
∏
r∈E

(1− (xq)d
r
2
e 2m+2

2 (xq)b
r
2
c 2m+2

2 (x−1q)d
r
2
e 2m+2

2 (x−1q)b
r
2
c 2m+2

2 )

=

∏∞
j=1(1 + (xq)j(xq)j(x−1q)j(x−1q)j−1)

∏∞
j=1(1 + (xq)j(xq)j−1(x−1q)j−1(x−1q)j−1)∏∞

j=1(1− (xq)d
j
2
e(xq)b

j
2
c(x−1q)d

j
2
e(x−1q)b

j
2
c)
∏∞

j=1(1− x2q4j−2)

×
∞∏
r=1

(1− (xq)r(m+1)(xq)r(m+1)(x−1q)r(m+1)(x−1q)r(m+1))

=

∏∞
j=1(1 + xq4j−1)

∏∞
j=1(1 + xq4j−3)∏∞

j=1(1− q4j)(1− q4j−2)
∏∞

j=1(1− x2q4j−2)
×
∞∏
r=1

(1− q4r(m+1))

=
(−xq; q2)∞(q4m+4; q4m+4)∞

(q2; q2)∞(x2q2; q4)∞
.

On the other hand, making the substitutions a = xq, b = x−1q, R = E and γ = 2m+1
in Theorem 2.4, we get

ΨE,2m+1(xq, x
−1q, xq, x−1q)

=
∞∏
j=1

(1 + (xq)d
j
2
e(x−1q)b

j
2
c(xq)d

j−1
2
e(x−1q)b

j−1
2
c)

(1− (xq)2d
j
2
e(x−1q)2b

j
2
c)(1− (xq)2j−1(x−1q)2j−1)

×
∏
r∈E

(1− (xq)d
r
2
e(2m+1+1)(x−1q)b

r
2
c(2m+1+1))

=

∏∞
j=1(1 + (xq)j(x−1q)j(xq)j(x−1q)j−1)

∏∞
j=1(1 + (xq)j(x−1q)j−1(xq)j−1(x−1q)j−1)∏∞

j=1(1− (xq)2d
j
2
e(x−1q)2b

j
2
c)
∏∞

j=1(1− q4j−2)

×
∞∏
r=1

(1− (xq)2r(m+1)(x−1q)2r(m+1))

=

∏∞
j=1(1 + xq4j−1)

∏∞
j=1(1 + xq4j−3)∏∞

j=1(1− q4j)(1− x2q4j−2)
∏∞

j=1(1− q4j−2)
×
∞∏
r=1

(1− q4r(m+1))
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=
(−xq; q2)∞(q4m+4; q4m+4)∞

(q2; q2)∞(x2q2; q4)∞
.

This completes the proof.

4 Combinatorial Proof of Theorem 3.1

In this section, we present a combinatorial proof of Theorem 3.1. We need a property of
Sylvester’s bijection between the set D(n) = {λ : |λ| = n and the parts of λ are distinct}
and the set O(n) = {λ : |λ| = n and all parts of λ are odd}, see also Pak [15]. Bessenrodt
[6] showed that Sylvester’s bijection maps a partition λ ∈ D(n) to a partition τ ∈ O(n)
such that

λ1 = l(τ) + (τ1 − 1)/2 (4.8)

and the alternating sum of λ equals the number of odd parts of τ , that is,

la(λ) = lo(τ). (4.9)

We shall give a bijection Ψ between the set Am(n) of partitions of n such that each
part appears at most 2m + 1 times and the set Bm(n) of partitions of n such that each
even part appears at most m times. Moreover, for any partition α in Am(n), we show
that the alternating sum of α is equal to the number of odd parts of Ψ(α) in Bm(n).

Let α be a partition in Am(n). The map Ψ from Am(n) to Bm(n) can be described as
follows.

1. Write α as a bipartition φ1(α) = (λ, µ) subject to the following conditions. First, set
λ and µ to be the empty partition. For each part t of α, if t appears an odd number
times, then add one part t to λ and move the remaining parts t to µ; otherwise,
move all parts t of α to µ. Clearly, λ is a partition with distinct parts and each part
in µ appears an even number times. Moreover, each part of µ appears at most 2m
times.

2. We apply Sylvester’s bijection φ2 to λ to obtain a partition φ2(λ) = τ containing
only odd parts.

3. Since each part t in µ appears an even number times, we merge two parts t into a
single part 2t. This leads to a partition φ3(µ) = ν consisting of even parts such that
each even part appears at most m times.

4. Putting the parts of τ and ν together, we obtain a partition φ4(τ, ν) = β. It is clear
that β ∈ Bm(n).

Let β be a partition in Bm(n). The inverse map Ψ−1 from Bm(n) to Am(n) can be
described as follows.
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1. Write β as a bipartition φ−14 (β) = (τ, ν), where τ consists of the odd parts of β
and ν consists of the even parts of β. Since each even part of β appears at most m
times, the multiplicity of each part in ν does not exceed m.

2. Decompose each even part 2t of ν into two equal parts t. We obtain a partition
φ−13 (ν) = µ such that each part in µ appears an even number times. Clearly, each
part of µ appears at most 2m times.

3. Since τ is a partition with odd parts, we can apply Sylvester’s bijection φ−12 to τ to
obtain a partition φ−12 (τ) = λ with distinct parts.

4. Putting the parts of λ and µ together, we obtain a partition φ−11 (λ, µ) = α. It is
easy to see that α ∈ Am(n).

It is readily seen that the above map Ψ is a bijection. Here is an example for m = 2
and n = 48. Let

α = (1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 7, 7, 7) ∈ A2(48).

We decompose α into a bipartition

φ1(α) = (λ, µ) = ((1, 2, 7), (2, 2, 2, 2, 4, 4, 4, 4, 7, 7)).

Then we apply Sylvester’s bijection to λ to obtain

φ2(λ) = τ = (1, 1, 1, 1, 3, 3).

Merging equal parts in µ, we get

φ3(µ) = ν = (4, 4, 8, 8, 14).

Finally, putting the parts of τ and µ together we obtain

φ4(τ, ν) = β = (1, 1, 1, 1, 3, 3, 4, 4, 8, 8, 14) ∈ B2(48).

The above bijection Ψ leads to a combinatorial proof of Theorem 3.1.

Proof of Theorem 3.1. For a partition α ∈ Am(n), let β = Ψ(α) ∈ Bm(n). We aim to
show that the alternating sum of α is equal to the number of odd parts in β.

For φ1(α) = (λ, µ) and any part in µ appears an even number times in µ, the alternat-
ing sum of α is equal to the alternating sum of λ. Using Bessenrodt’s refinement [6], it is
easy to see that the alternating sum of λ is equal to the number of odd parts in τ . Since
all the parts in ν are even numbers, the number of odd parts in τ is just the number of
odd parts of β. Consequently, we see that the alternating sum of α is equal to the number
of odd parts in β. Hence Theorem 3.1 holds.
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We conclude with a stronger version of Theorem 3.1 based on the above bijection Ψ.
Let Aϕ(n) be the set of partitions of n such that the number of appearances of part i is
at most 2ϕ(i) + 1, for any i > 0. Let Bϕ(n) be the set of partitions of n such that the
number of appearances of part 2i is at most ϕ(i), for any i > 0. Notice that for any map
ϕ from N to N, the bijection Ψ can be applied to Aϕ(n) and Bϕ(n).

Let p(λ) denote the largest odd part in λ, and let q(λ) denote the largest part of λ
with odd multiplicity. Then we have the following correspondence.

Theorem 4.1. Let P (n, ϕ, i, k, t) be the set of partitions α ∈ Aϕ(n) of n such that the
number of appearances of i in α is at most 2ϕ(i) + 1, la(α) = k, and q(α) = t. Let
Q(n, ϕ, i, k, t) be the set of partitions β ∈ Bϕ(n) of n such that the number of appearances
of 2i in β is at most ϕ(i), lo(β) = k, and lo(β) + (p(β) − 1)/2 = t. Then for i > 1 and
k, t > 0, there exists a bijection between P (n, ϕ, i, k, t) and Q(n, ϕ, i, k, t).

Proof. Let α ∈ P (n, ϕ, i, k, t), that is, the number of appearances of i in α is at most
2ϕ(i) + 1, la(α) = k, and q(α) = t. Let Ψ be the map from Aϕ(n) to Bϕ(n). Denote Ψ(α)
by β. We wish to show that β ∈ Q(n, ϕ, i, k, t), that is, the number of appearances of 2i
in β is at most ϕ(i), lo(β) = k, and lo(β) + (p(β)− 1)/2 = t.

First, write α as a bipartition φ1(α) = (λ, µ) based on the following procedure. Set
the initial values of λ and µ to be the empty partition. For each part t of α, if t appears
an odd number of times in α, then add a part t to λ and move the remaining parts t of α
to µ; otherwise, move all parts t of α to µ. Now, λ is a partition with distinct parts with
λ1 = q(α) = t. Moreover, since any part i of α appears at most 2ϕ(i) + 1 times, the part
i in µ appears at most 2ϕ(i) times. It is evident that la(λ) = la(α) = k.

Since λ is a partition with distinct parts, we can apply Sylvester’s bijection φ2 to λ
to obtain a partition of odd parts. Let τ = φ2(λ). Recall that l(τ) + (τ1 − 1)/2 = λ1 = t
and l(τ) = la(λ) = k, as given in (4.8) and (4.9). Furthermore, we can merge every two
equal parts in µ to form a partition with even parts, denoted ν = φ3(µ). Observe that
the number of appearances of part 2i in ν is at most ϕ(i).

Finally, we put the parts of τ and ν together to form a partition β = φ4(τ, ν). It can be
seen that the number of appearances of part 2i in β is at most ϕ(i) and lo(β) = l(τ) = k.
Since ν is partition with even parts, it is easy to see that p(β) = τ1. Using the facts
lo(β) = l(τ), p(β) = τ1 and l(τ) + (τ1 − 1)/2 = t, we obtain that lo(β) + (p(β)− 1)/2 = t.
This completes the proof.

5 Combinatorial Proof of Theorem 3.2

In this section, we prove Theorem 3.2 combinatorially. We perform the same separation
procedure φ1 described in Step 1 of the bijection Ψ on a partition α ∈ B2m+1(n) to obtain
a pair (λ, µ), where λ is a partition into distinct parts and µ is a partition into parts with
even multiplicities. We then apply Sylvester’s bijection φ2 described in Step 2 of Ψ to λ
and denote the resulting partition by τ . For µ, we take each of the odd parts 2i− 1 and
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write its multiplicity m2i−1, which is even, as the sum of powers of 2, namely,

m2i−1 = a12
1 + a22

2 + · · · ,

where aj = 0 or 1. We map the copies of odd parts 2i − 1 from µ to 2j(2i − 1) with
multiplicity aj for j > 1. Since aj = 0 or 1, at most one copy of each even part can be
obtained. Combining these with the even parts of µ, we obtain a partition ν into even
parts with multiplicity at most 2m + 1. We define β to be the partition whose parts are
the union of the parts of τ and ν.

We now show that the map defined above is indeed a bijection. Since the only difference
from the proof of Theorem 3.1 is the map for µ, it is sufficient to show that this map
is reversible. Note that every even integer can be uniquely written as 2j(2i − 1) for
some positive integers i and j. Thus, given a partition ν into even parts 2j(2i − 1) with
multiplicities m2j(2i−1) not exceeding 2m + 1, if m2j(2i−1) is odd, then we transform one
copy of the part 2j(2i − 1) into 2j copies of the part 2i − 1. If m2j(2i−1) is even, then
it is less than 2m + 1 and we do nothing. Thus, we obtain a partition µ, where each
part occurs an even number times and each even parts occurs at most 2m times. This
completes the proof.
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