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Abstract

A Golomb ruler is a sequence of distinct integers (the markings of the ruler)

whose pairwise di↵erences are distinct. Golomb rulers, also known as Sidon sets
and B2 sets, can be traced back to additive number theory in the 1930s and have

attracted recent research activities on existence problems, such as the search for

optimal Golomb rulers (those of minimal length given a fixed number of markings).

Our goal is to enumerate Golomb rulers in a systematic way: we study

gm(t) := #
�
x 2 Zm+1

: 0 = x0 < x1 < · · · < xm = t, all xj � xk distinct
 
,

the number of Golomb rulers with m + 1 markings and length t. Our main result

is that gm(t) is a quasipolynomial in t which satisfies a combinatorial reciprocity

theorem: (�1)
m�1gm(�t) equals the number of rulers x of length t with m + 1

markings, each counted with its Golomb multiplicity, which measures how many

combinatorially di↵erent Golomb rulers are in a small neighborhood of x. Our

reciprocity theorem can be interpreted in terms of certain mixed graphs associated

to Golomb rulers; in this language, it is reminiscent of Stanley’s reciprocity theorem

for chromatic polynomials. Thus in the second part of the paper we develop an
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analogue of Stanley’s theorem to mixed graphs, which connects their chromatic

polynomials to acyclic orientations.

Keywords: Golomb ruler; Sidon set; combinatorial reciprocity theorem; lattice

point; inside-out polytope; Ehrhart quasipolynomial; mixed graph; proper coloring;

acyclic orientation

1 Introduction

A Golomb ruler is a sequence of n distinct integers whose pairwise di↵erences are distinct:
one can picture an actual ruler with n markings having the property that all possible
measurements are of distinct length. Golomb rulers have natural applications to phased
array radio antennas [2], x-ray analysis of crystal structures [5], and error-correcting codes
[13]. Golomb rulers also go by the names of Sidon sets and B2 sets ; they can be traced
back to additive number theory in the 1930s [9, 18] (see also the survey article [15]).

In the more recent past, researchers have typically studied existence problems, such
as the search for optimal Golomb rulers (those of minimal length given a fixed number
of markings), often with an eye toward computational complexity. Figure 1 shows an
optimal ruler of length 6. See, e.g., [1, 6, 7, 14, 17] and the parallel-search project on
Golomb rulers at http://www.distributed.net/Projects.

0 61 4
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4
5

Figure 1: An optimal Golomb ruler with four markings.

Our goal is to enumerate Golomb rulers in a systematic way. We define

gm(t) := #
�
x 2 Zm+1 : 0 = x0 < x1 < · · · < xm�1 < xm = t, all xj � xk distinct

 
,

the number of Golomb rulers with m + 1 markings and length t. Most often it will be
more convenient for us to express this counting function in the equivalent form

gm(t) = #

⇢
z 2 Zm

>0 :
z1 + z2 + · · ·+ zm = t,P

j2U zj 6=
P

j2V zj for all dpcs U, V ⇢ [m]

�
(1)

where [m] := {1, 2, . . . ,m}, and dpcs stands for disjoint proper consecutive subsets, i.e.,
two sets of the form {a, a+ 1, a+ 2, . . . , b}, {c, c+ 1, c+ 2, . . . , d} for some 1 6 a 6 b <
c 6 d 6 m.
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Motivated by (1), we call a point z 2 Zm
>0 with z1 + z2 + · · ·+ zm = t a ruler of length

t; thus a Golomb ruler is a ruler with positive entries satisfying
P

j2U zj 6=
P

j2V zj for
all dpcs U, V ⇢ [m].

We define a real Golomb ruler (with m+1 markings and length t) as a vector z 2 Rm
>0

satisfying

z1 + z2 + · · ·+ zm = t and
X

j2U

zj 6=
X

j2V

zj for all dpcs U, V ⇢ [m] .

Two real Golomb rulers z,w 2 Rm
>0 are combinatorially equivalent if for any dpcs U, V ⇢

[m], X

j2U

zj <
X

j2V

zj ()

X

j2U

wj <
X

j2V

wj ,

in plain English: if their possible measurements satisfy the same order relations. We
define the Golomb multiplicity of a ruler z 2 Zm

>0 to be the number of combinatorially
di↵erent real Golomb rulers in an ✏-neighborhood of z (viewed as a point in Rm), for
su�ciently small ✏ > 0. Thus a Golomb ruler is a ruler with Golomb multiplicity 1.

A quasipolynomial of degree d is a function of the form cd(t) td+cd�1(t) td�1+· · ·+c0(t),
where the cj(t) are periodic functions in t. The lcm of their periods is called the period
of this quasipolynomial. Our main result about gm(t) is the following combinatorial
reciprocity theorem.

Theorem 1. The Golomb counting function gm(t) is a quasipolynomial in t of degree
m � 1 with leading coe�cient 1

(m�1)! . Its evaluation (�1)m�1gm(�t) equals the number
of rulers in Zm

>0 of length t, each counted with its Golomb multiplicity. Furthermore,
(�1)m�1gm(0) equals the number of combinatorially di↵erent Golomb rulers with m + 1
markings.

Example 2. Let m = 3. Using James B. Shearer’s Fortran code for Golomb rulers,1

we computed the values of g3(t) for 6 6 t 6 35. Note that if z is a Golomb ruler with
m+ 1 markings, then there is a complementary Golomb ruler z0 given by z0i = zm�i, and
(z0)0 = z. The rulers z and z

0 are always distinct unless m = 1. Shearer’s code computes
only one of each complementary pair, but in Table 1 we double the output values to
account for both. We also note that by inspection, g3(t) = 0 for t < 6.
In Section 2 we show that the period of the quasipolynomial function g3(t) divides 12
and that its leading term is 1

2t
2. Thus from the 24 values g3(0), g3(1), . . . , g3(23) we can

obtain all of the coe�cients by interpolation. The remaining 12 values g3(24), . . . , g3(35)
are consistent with the result of this computation, which is:

g3(t) =

8
>>>>>><

>>>>>>:

1
2t

2
� 4t+ 10 if t ⌘ 0,

1
2t

2
� 3t+ 5

2 if t ⌘ 1, 5, 7, 11,
1
2t

2
� 4t+ 6 if t ⌘ 2, 10,

1
2t

2
� 3t+ 9

2 if t ⌘ 3, 9,
1
2t

2
� 4t+ 8 if t ⌘ 4, 6, 8.

(mod 12)

1
Available at http://www.research.ibm.com/people/s/shearer/programs/grs1.txt
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t g3(t) t g3(t) t g3(t)
6 2 16 72 26 240
7 6 17 96 27 288
8 8 18 98 28 288
9 18 19 126 29 336
10 16 20 128 30 338
11 30 21 162 31 390
12 34 22 160 32 392
13 48 23 198 33 450
14 48 24 202 34 448
15 72 25 240 35 510

Table 1: The Golomb counting function g3(t) for 6 6 t 6 35.

In particular, the coe�cient c1(t) has period 2. The coe�cient c0(t) has period 12 but
obeys the same formula for t ⌘ j (mod 12) as for t ⌘ �j (mod 12) for each j. Note also
that g3(0) = 10; Theorem 1 predicts that there are ten combinatorially di↵erent Golomb
rulers, as we will see in Section 2.

We prove Theorem 1 geometrically, making use of the machinery of inside-out polytopes
[4]. This approach leads us to associate a mixed graph (i.e., a graph that may contain
both undirected and directed edges; see, e.g., [12]) to the set of all Golomb rulers with a
fixed number of markings. In this language, Theorem 1 has an interpretation in terms of
acyclic orientations of mixed graphs, which might be of independent interest (Theorem
5 and Corollary 6, proved in Section 3). This reinterpretation is reminiscent of Stanley’s
reciprocity theorem for the chromatic polynomial of a graph [21]. This leads us to a
natural analogue of Stanley’s theorem for (general) mixed graphs, as follows.

We write a mixed graph G as G = (V,E,A) where E contains undirected edges and
A the directed edges. (We assume that G is simple: that is, that it contains neither
multiple edges—directed or undirected—nor loops.) A t-coloring of a mixed graph G is
a map c : V ! [t]. Such a t-coloring is proper if

• c(v) 6= c(w) for all {v, w} 2 E, and

• c(v) < c(w) for all (v, w) 2 A.

As with undirected graphs, the chromatic number is the minimum t such that G can
be t-colored. This parameter was introduced for mixed graphs by Hansen, Kuplinsky, and
de Werra [11], who discuss bounds, algorithms, and applications to scheduling problems.
Let �G(t) denote the number of proper t-colorings of G. Sotskov and Tanaev [19] (see
also [20] for a more recent article) showed that this function (if not identically zero) is a
polynomial of degree |V | and computed the two leading coe�cients.

An orientation of a mixed graph is obtained by keeping each directed edge and orient-
ing each undirected edge; an orientation is acyclic if it does not contain any coherently-
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oriented cycles. A coloring c and an orientation of G are compatible if

c(u) 6 c(v) () u ! v.

Note that c may not be a proper coloring.
Here is our generalization of Stanley’s chromatic reciprocity theorem to mixed graphs.

Our approach (in Section 4) also yields a new proof of polynomiality of �G(t).

Theorem 3. Let G be a mixed graph. For a positive integer t, (�1)|V |�G(�t) equals
the number of t-colorings of G, each counted with multiplicity equal to the number of
compatible acyclic orientations of G.

Corollary 4. For G a mixed graph, (�1)|V |�G(�1) equals the number of acyclic orienta-
tions of G.

In Section 5 we end with some open questions about Golomb rulers suggested by our
geometric approach.

2 Inside-out Polytopes

It is a short step to interpret a Golomb ruler in its measurement representation (as in
(1)) as an integer lattice point confined to the positive orthant in Rm and the a�ne space
defined through

z1 + z2 + · · ·+ zm = t .

More precisely, a Golomb ruler with m+1 markings and length t is a lattice point in the
t’th dilate of

��

m := {z 2 Rm
>0 : z1 + z2 + · · ·+ zm = 1} ,

the (m � 1)-dimensional open standard simplex living in Rm. However, this description
does not yet capture the distinctness condition: a Golomb-ruler lattice point must also
avoid the hyperplanes in Rm given by equations of the form

X

j2U

zj =
X

j2V

zj

for all dpcs U, V ⇢ [m]. Let Gm be the collection of all such hyperplanes. Thus we have
built a geometric setting in which to compute the Golomb counting function as

gm(t) = # ((t��

m \ Gm) \ Zm) . (2)

In the language of [4], (�m,Gm) is an inside-out polytope2 and gm(t) is the (open) Ehrhart
quasipolynomial of (�m,Gm). Figure 2 shows this geometric setting (viewed in the plane
z1 + z2 + z3 = 1) for the case m = 3.

2
To be 100% precise, [4] would compute gm(t) as #

�
(�

�
m \ Gm) \

1
tZ

m
�
, but this is equivalent as the

hyperplanes in Gm are linear.
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z1 = z2

z2 = z3z1 = z3

z1 + z2 = z3

z1 = z2 + z3

Figure 2: The inside-out polytope (�3,G3).

The vertices of this inside-out polytope are

(0, 0, 1) ,
�
1
2 , 0,

1
2

�
,
�
1
4 ,

1
4 ,

1
2

�
,
�
0, 12 ,

1
2

�
,
�
1
3 ,

1
3 ,

1
3

�
,
�
1
2 ,

1
4 ,

1
4

�
, (1, 0, 0) ,

�
1
2 ,

1
2 , 0

�
, (0, 1, 0) .

The lcm of the denominators among all of these coordinates is twelve. This shows that
the period of the quasipolynomial g3(t) divides twelve, as claimed in Example 2. We can
also see that G3 dissects �3 into ten polygons, which correspond to the combinatorially
di↵erent Golomb rulers.

The general setup of an inside-out polytope (P ,H) consists of a rational polytope P

and a rational hyperplane arrangement H in Rd; that is, the linear equations and inequal-
ities defining P and H have integer coe�cients. The goal is to compute the counting
function

L�

P,H(t) := #
�
(P \ H) \ 1

tZ
d
�
,

and it follows from Ehrhart’s theory of counting lattice points in dilates of rational poly-
topes [3, 8] that this function is a quasipolynomial in t whose degree is dim(P ), whose
(constant) leading coe�cient is the normalized lattice volume of P , and whose period di-
vides the lcm of all denominators that appear in the coordinates of the vertices of (P ,H).
Furthermore, [4] established the reciprocity theorem

L�

P�,H(�t) = (�1)dimPL
P,H(t) , (3)

where P
� and P denote the interior and closure of P , respectively, and

LP,H(t) :=
X

m2
1
t Zd

multP,H(m) (4)

where multP,H(m) denotes the number of closed regions of (P ,H) containing m. (A
region of (P ,H) is a connected component of P \ H; a closed region is the closure of a
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region.) It follows from Ehrhart’s work and (4) that

LP,H(0) = # regions of (P ,H). (5)

See [4] for this and several more properties of inside-out polytopes. The concept of inside-
out polytopes has been applied to a number of combinatorial settings; at the heart of any
such application is an interpretation of the regions of (P ,H), which we will now give for
the Golomb inside-out polytope (�m,Gm).

Proof of Theorem 1. The first statement follows immediately from the fact that (�m,Gm)
is a rational inside-out polytope and �m is a unimodular (m� 1)-dimensional simplex.

Viewing (3) from (2), we know that (�1)m�1gm(�t) equals the number of rulers in
�\

1
tZ

m, each counted with multiplicity given by the number of closed regions of (�m,Gm)
it lies in. These regions, in turn, are defined by inequalities of the form

X

j2U

zj <
X

j2V

zj

for some dpcs U, V ⇢ [m], and thus the multiplicity of a ruler z is precisely given by the
number of combinatorially di↵erent real Golomb rulers in a neighborhood of z.

The last statement of Theorem 1 follows from (5).

3 The Regions of (�m,Gm)

For each positive integer m, we define the Golomb graph �m to be a mixed graph whose
vertices are all proper consecutive subsets of [m]. The underlying graph is complete and
an edge UV is directed (U ! V ) if and only if U ⇢ V . All other edges are undirected.
Acyclic orientations of a Golomb graph allow us to give an interpretation of the regions
of (�m,Gm) in the following sense.

Theorem 5. The regions of the Golomb inside-out polytope (�m,Gm) are in one-to-one
correspondence with the acyclic orientations of the Golomb graph �m that satisfy the
relation

A ! B () U ! V . (6)

for all proper consecutive subsets A and B of [m] of the form A = U [W and B = V [W
for some nonempty disjoint sets U, V,W

Proof. Let R be a region of (�m,Gm). Thus R is the intersection of �m with halfspaces
defined by inequalities of the form

X

j2U

zj <
X

j2V

zj (7)

for some dpcs U, V ⇢ [m]. So UV is an undirected edge of �m; assign it the orientation
U ! V .
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1 2 3

12 23

1 2 3

12 23

Figure 3: The mixed graph �3 (left) and an acyclic orientation of �3 (right).

The directed edges of �m are of the form UV for U ⇢ V , so we still need to orient
edges of the form AB where A = U [W and B = V [W for some nonempty disjoint sets
U, V,W . We orient these according to (6) (note that the corresponding halfspace defined
through

P
j2A zj <

P
j2B zj is identical to that given by (7)). The resulting orientation

of �m is acyclic since a coherently-oriented cycle gives rise to the nonsensical inequalityP
j2M zj <

P
j2M zj for some multiset M .

Conversely, suppose we are given an acyclic orientation of �m that satisfies (6). Index
the variables yU of a vector in Rm(m+1)/2�1 by the proper consecutive subsets U of [m]
and consider the braid arrangement given by the hyperplanes yU = yV in Rm(m+1)/2�1.
It is a famous observation of Greene [10] that the acyclic orientations of a graph are in
one-to-one correspondence with the region of the corresponding graphical arrangement
(in our case, the above braid arrangement, since our underlying graph is complete). Now
consider the function Rm(m+1)/2�1

! Rm defined through

yU 7!

X

j2U

zj .

This is a linear map of full rank, i.e., the regions of the braid arrangement, being full-
dimensional sets in the domain, are mapped to full-dimensional sets in the range. Fur-
thermore, since the all-ones vector is in each closed region, we can project further to the
a�ne space defined by z1 + z2 + · · ·+ zm = 1.

This theorem allows us to rephrase Theorem 1 in terms of acyclic orientations of �m.
We call a ruler z 2 Zm

>0 and an orientation of �m compatible if

X

j2U

zj 6
X

j2V

zj () U ! V .

Corollary 6. The evaluation (�1)m�1gm(�t) equals the number of rulers in Zm
>0 of length

t, each counted with multiplicity equal to the number of compatible acyclic orientations of
�m that satisfy (6). Furthermore, (�1)m�1gm(0), the number of combinatorially di↵erent
Golomb rulers, equals the number of acyclic orientations of �m that satisfy (6).
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4 Mixed Graph Coloring Reciprocity

Our proof of Theorem 3 closely follows the proof of Stanley’s chromatic reciprocity theo-
rem given in [4]. Given a mixed graph G = (V,E,A) with V = [n], define the polytope

P(G) := {x 2 [0, 1]n : xj 6 xk whenever (j, k) 2 A}

and the hyperplane arrangement H(G) consisting of the hyperplanes xj = xk for all
{vj, vk} 2 E. The following result is the mixed-graph analogue of [10].

Proposition 7. The regions of Rn
\ H(G) that intersect P(G) are in bijection with the

acyclic orientations of G.

Proof. Let R be an open region ofH(G) that intersects P(G), hence also intersects P(G)�.
Then for each hyperplane xi = xj in H(G), R is entirely on one side, hence determines an
orientation ↵ as follows: for each edge {i, j} 2 E, choose i ! j if xi < xj in R, or j ! i
if xi > xj in R. In the set R \ P(G)�, we also have xi < xj for all (i, j) 2 A. Since R,
being open, intersects the interior of P(G)�, all of these inequalities must be consistent.
That is, ↵ is acylic.

Since two di↵erent regions must be on opposite sides of at least one hyperplane, they
determine di↵erent orientations. Finally, if ↵ is an ayclic orientation of G, choose any
total order ⇡ of the vertices that is consistent with ↵, including the fixed directions on the
arrows A. Then if R is the region containing the points of Rn that satisfy x⇡1 < · · · < x⇡n ,
then Rmaps to ↵ under the rule given above. That is, the map from regions to orientations
is both injective and surjective.

We say that G is acylic if the directed graph (G,A) contains no directed cycles. Note
that in this case there exists at least one total order on the vertices compatible with the
directed edges. Orienting the undirected edges according to such an order, we can always
obtain an acyclic orientation on all of G. Note that if G is not acyclic, then there exist
no proper t-colorings for any t. On the other hand, if G is acyclic then there exist proper
t-colorings for all su�ciently large t, and in particular for all t > n.

Lemma 8. If the mixed graph G is acyclic then the polytope P(G) is full dimensional.

Proof. The polytope P(G) depends only on the directed graph D = (V,A). Since D is
acyclic, there is a total order i1 � i2 � · · · � in on [n] such that j � k for all (vj, vk) 2 A.
Thus

P(G) ◆ {x 2 Rn : 0 6 xi1 6 xi2 6 . . . 6 xin 6 1}

which is a full-dimensional simplex in Rn, so P(G) is full-dimensional.

Lemma 9. For any acyclic mixed graph G, the inside-out polytope (P(G),H(G)) is in-
tegral.

Proof. Any closed region of (P(G),H(G)) is defined by a collection of inequalities of the
form xj �xk 6 0 and xj > 0. In particular, the left-hand sides of these inequalities are all
vectors of the form ej � ek or �ej. Any matrix whose rows are all such vectors is totally
unimodular. This implies that all vertices of the region are integral [16].
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Proof of Theorem 3. Set P := P(G) and H := H(G) . Using the identification of maps
c : V ! Z with lattice points in Rn, we see that for t > 1, c is a (t�1)-coloring (respecting
the directed edges A) if c 2 tP�(G) and c /2 H. That is, �G(t � 1) = E�

P�,H(t), which
equals (�1)nEP,H(�t) by (3). Using Lemma 9, we see that the functions EP,H and E�

P�,H

are polynomials and hence the reciprocity extends to all values of t. In particular, for
s a positive integer we have �G(�s � 1) = E�

P�,H(�s) = (�1)nEP,H(s). Now EP,H(s)
counts each point c 2 sP with multiplicity equal to the number of closed regions of H
that intersect the interior of P and contain c. By Proposition 7, regions correspond to
acyclic orientations of G. The closed region corresponding to an orientation ↵ contains c
if and only if c(u) 6 c(v) for each edge u ! v in ↵.

Example 10. Let G = ([3], {{1, 3}, {2, 3}}, {(1, 2)}), a triangle with one directed edge
and two undirected edges. Of the four orientations of G, three are acyclic and each of
these three determines a total order � on the vertices. These three orders are:

1 � 2 � 3, 1 � 3 � 2, 3 � 1 � 2 .

The polytope P(G) is the half-cube given by the five inequalities

0 6 x1 6 x2 6 1, 0 6 x3 6 1 .

The arrangement H(G) consists of the two hyperplanes x1 = x3 and x2 = x3, and the
inside-out polytope (P(G),H(G)) has three open regions in bijection with the acyclic
orientations of G:

R123 =
�
x 2 R3 : 0 < x1 < x2 < x3 < 1

 

R132 =
�
x 2 R3 : 0 < x1 < x3 < x2 < 1

 

R312 =
�
x 2 R3 : 0 < x3 < x1 < x2 < 1

 
.

For this graph it is easy to compute �G(t) directly. In any coloring c, we must choose
c(1) < c(2) and then we can choose c(3) to be any remaining color. Thus there are�
t
2

�
(t � 2) = t(t�1)(t�2)

2 t-colorings for any nonnegative integer t. Then (�1)3�G(�1) =

�
(�1)(�2)(�3)

2 = 3, which is the number of regions of (P(G),H(G)) as stated in Theorem 3.
As we know from the proof of Theorem 3, we can also use Ehrhart reciprocity to

interpret the evaluation of �G at other negative integers. Specifically, ��G(�t) is the
number of lattice points in (t � 1)P with multiplicities, where the multiplicity of each
point is the number of closed regions of the inside-out polytope that contain it. For
instance, ��G(�2) = (�1) (�2)(�3)(�4)

2 = 12 and ��G(�3) = (�1) (�3)(�4)(�4)
2 = 30. In

Table 2, we list the lattice points in P and 2P and the regions that contain each point.
Indeed, the multiplicities add up to 12 and 30, respectively.

Note that in this example, H(G) is not transverse to P(G). The two hyperplanes
x1 = x3, x2 = x3 in H(G) meet in a flat given by x1 = x2 = x3. This flat intersects only
the boundary of P since the equation x1 = x2 is a supporting hyperplane of P .
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point z 2 P \ Z3 regions containing z multiplicity of z
(0, 0, 0) R123, R132, R312 3
(0, 0, 1) R123 1
(0, 1, 0) R132, R312 2
(0, 1, 1) R123, R132 2
(1, 1, 0) R312 1
(1, 1, 1) R123, R132, R312 3

point z 2 2P \ Z3 regions containing z multiplicity of z
(0, 0, 0) R123, R132, R312 3
(0, 0, 1) R123 1
(0, 0, 2) R123 1
(0, 1, 0) R132, R312 2
(0, 1, 1) R123, R132 2
(0, 1, 2) R123 1
(0, 2, 0) R132, R312 2
(0, 2, 1) R132 1
(0, 2, 2) R132, R132 2
(1, 1, 0) R312 1
(1, 1, 1) R123, R132, R312 3
(1, 1, 2) R123 1
(1, 2, 0) R312 1
(1, 2, 1) R132, R312 2
(1, 2, 2) R123, R132 2
(2, 2, 0) R312 1
(2, 2, 1) R312 1
(2, 2, 2) R123, R132, R312 3

Table 2: Lattice points in P and 2P and the regions that contain each point.

5 Open Problems

The search for optimal Golomb rulers remains a challenging open problem. This problem
is related to our paper: the smallest positive integer that is not a root of gm(t) gives the
length of an optimal Golomb ruler with m+ 1 markings. Our methods present new open
problems, from the computation of gm(t) to specific questions, e.g., about the period of
gm(t) and the number of combinatorially di↵erent Golomb rulers with a given number
of markings (this sequence starts with 1, 2, 10, 114, 2608, and 107498). Our reciprocity
theorem for chromatic polynomials of mixed graphs suggest open problems about these
polynomials, from classification problems (which polynomials are chromatic polynomials
of mixed graphs?) to interpretations of and relations between its coe�cients.
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Corrigendum to

“Enumeration of Golomb Rulers and Acyclic

Orientations of Mixed Graphs”

[Electron. J. Combin. 19(3) (2012) #P42]

Submitted by the authors, Sep 8, 2023.

Theorem 5, which states that there is a bijection between the regions of the Golomb

inside-out polytope (∆m,Gm) and the orientations of the Golomb mixed graph Γm, is

not correct. The first half of the proof of this theorem constructs an injective map from

regions to orientations. The second half of the proof aims to show that this map is also

surjective. However, this is not true for m ! 5, as shown by Bogart and Cuéllar in [21] via

an explicit counterexample. Since there exists an injection from one finite set (regions) to

another (orientations) that is not a surjection, in fact these sets cannot be in bijection.
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