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Abstract

Let f be a binary word and let Fd(f) be the set of words of length d which
do not contain f as a factor (alias words that avoid the pattern f). A word is
called even/odd if it contains an even/odd number of 1s. The parity index of f (of
dimension d) is introduced as the difference between the number of even words and
the number of odd words in Fd(f). A word f is called prime if every nontrivial
suffix of f is different from the prefix of f of the same length. It is proved that
if f is a power of a prime word, then the absolute value of the parity index of f
is at most 1. We conjecture that no other word has this property and prove the
conjecture for words 0r1s0t, r, s, t > 1. The conjecture has also been verified by
computer for all words f of length at most 10 and all d 6 31.

Keywords: binary words; combinatorics on words; words avoiding a pattern; parity
index; generalized Fibonacci cubes.
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1 Introduction

Elements of B = {0, 1} are called bits and an element of Bd is a binary word of length
d. Since all words considered here are binary, we will simply speak about words. A word
u ∈ Bd will be written in the coordinate form as u = u1u2 . . . ud. A word f is a factor of
a word x if f appears as a sequence of |f | consecutive bits of x. A word u is called f -free
if it does not contain f as a factor. For a word f and positive integer d, let

Fd(f) = {u ∈ Bd | u is f−free} .

The product notation will mean concatenation, for example, 1r is the word of length r
with all bits equal 1. A word b is a power of a word c if b = ck for some k > 1. A word is
called even if it contains an even number of 1s and odd otherwise.

Suppose that f is a word and d is a positive integer. Then the generalized Fibonacci
cube, Qd(f), is the graph obtained from the d-dimensional cube Qd by removing all vertices
that contain f as a factor. In other words, V (Qd(f)) = Fd(f), two vertices being adjacent
if they differ in exactly one bit. These graphs were studied for the first time in [4], but
special cases were extensively studied earlier. The most notable special case is formed by
Fibonacci cubes Γd = Qd(11), d > 1, see the survey [6]. The special case of Qd(1

s) was
introduced in [3] (under the same name of generalized cubes) and further investigated
in [8, 12].

The definition of the generalized Fibonacci cubes naturally leads to different problems
on words. The most fundamental problem is to determine the order of these graphs.
This problem was studied earlier under the notion of words avoiding a pattern. Calling
f a pattern, then the number of words avoiding f is just the number of f -free words.
Baccherini, Merlini and Sprugnoli [1] were interested in the number of f -free words that
contain prescribed numbers of 0s and 1s and established that they are closely related to
proper Riordan arrays. This work was extended in [9].

Another natural problem about generalized Fibonacci cubes is when they embed iso-
metrically into hypercubes. This question naturally leads to the concept of the so called
good and bad words. A word f is said to be d-good if for any f -free words u and v of
length d, v can be obtained from u by complementing one by one the bits of u on which
u and v differ, such that all intermediate words are f -free. Then f is good if it is d-good
for any d > 1. The main result of [7] asserts that about eight percent of all words are
good. The study of good words was continued in [5] by introducing the index β(f) of f
as the smallest integer d such that f is not d-good. Among other results it was proved
that β(f) < |f |2 holds for any bad word f .

Our principal motivation for the present paper is a result of [8] asserting that each
Qd(1

r) contains a hamiltonian path. This in particular implies that the bipartition of
Qd(1

r) is balanced. (By the way, it is not difficult to see that every generalized Fibonacci
cube is connected.) Clearly, the bipartition sets of Qd(f) are formed by even and odd
words, respectively. Hence, for a set of words X, let e(X) and o(X) be the number of even
and odd words in X, respectively. Let in addition ∆(X) = e(X) − o(X), in particular
write ∆(x) = ∆({x}) for a word x. That is, ∆(x) = 1 if x is even and ∆(x) = −1 if x is
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odd. Then we define the parity index of f of dimension d as

PId(f) = ∆(Fd(f)) .

Using this notation, a necessary condition for Qd(f) to contain a hamiltonian path is that
|PId(f)| 6 1.

In the next section we introduce prime words and prove that if f is a power of a prime
word then |PId(f)| 6 1 holds for any d. In Section 3 we consider the parity index of the
words 0r1s0t and prove that for any d large enough, |PId(0

r1s0t)| > 2. For the special case
of 0r10r a more precise result is obtained, in particular it is noted that {|PId(010)|}d>3

is the so-called Padovan sequence. In Section 4 we pose a conjecture that powers of
prime words are the only words with the property |PId(f)| 6 1 for any d and verify the
conjecture for all words of length 6 10 and for all d 6 31. We conclude by indicating a
possible approach to the conjecture via generating functions that count the words that
do not contain the binary word as a given factor.

2 Powers of prime words

A word f of length d is prime if for any k, 1 6 k 6 d − 1, the suffix of f of length k is
different from the prefix of f of the same length. In particular, words 0 and 1 are prime,
and if d > 2, then the first bit and the last bit of a prime word are different. For instance,
001101 is a prime word which easily follows from the fact that the factor 00 appears only
at its beginning. On the other hand the word 01101011 is not prime as it starts and ends
with 011.

For a word f of length ` let Sd(f) = Bd \ Fd(f), that is,

Sd(f) = {b = b1b2 . . . bd | b contains factor f} .

For i = 1, 2, . . . , d− `+ 1 let in addition

S(i)
d (f) = {b = b1b2 · · · bd | b ∈ S, bibi+1 · · · bi+`−1 = f} .

Then Sd(f) =
⋃d−`+1

i=1 S(i)
d (f).

By
(
X
k

)
we denote the set of all k-subsets of the set X.

Lemma 1. Let f be a word of length `. Then

∆(Sd(f)) =
d−`+1∑
k=1

(−1)k−1
∑

I⊆(Nd−`+1
k )

∆
(
∩i∈IS(i)

d (f)
)
.

Proof. Let χA be the characteristic function of a set A:

χA(x) =

{
1; x ∈ A,
0; otherwise .
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Since Sd(f) =
⋃d−`+1

i=1 S(i)
d (f), the inclusion and exclusion principle implies that for every

x ∈ Sd(f),
d−`+1∑
k=1

(−1)k−1
∑

I⊆(Nd−`+1
k )

χ∩i∈IS(i)d (f)
(x) = 1 .

Therefore,

∆(Sd(f)) =
∑

x∈Sd(f)

∆(x)

=
∑

x∈Sd(f)

∆(x)

d−`+1∑
k=1

(−1)k−1
∑

I⊆(Nd−`+1
k )

χ∩i∈IS(i)d (f)
(x)


=

d−`+1∑
k=1

(−1)k−1
∑

I⊆(Nd−`+1
k )

∑
x∈Sd(f)

∆(x)χ∩i∈IS(i)d (f)
(x)

=
d−`+1∑
k=1

(−1)k−1
∑

I⊆(Nd−`+1
k )

∆(∩i∈IS(i)
d (f)) .

Theorem 2. Let f be a power of a prime word. Then |PId(f)| 6 1 for any d > 1.

Proof. Let d > 1. Suppose first that f is a prime word. When d < `, we have Fd(f) = Bd

and if d = `, then Fd(f) contains all but the word f . Hence we may assume in the rest
that d > `. Since e(Bd) = o(Bd), we have e(Fd(f)) + e(Sd(f)) = o(Fd(f)) + o(Sd(f)).
Hence PId(f) = ∆(Fd(f)) = −∆(Sd(f)). It thus suffices to prove that |∆(Sd(f))| 6 1.

We first note that ∆(S(i)
d (f)) = 0. Indeed, the first i− 1 bits and the last d− `− i+ 1

bits of the words from S(i)
d (f) are arbitrary, hence S(i)

d (f) contains 2d−`−1 even words and

the same number of odd words. Consider now X = ∩i∈IS(i)
d (f) where I = {i1, i2, . . . , ik}

and i1 < i2 < · · · < ik. Because f is a prime word, X = ∅ as soon as for some index j,
ij+1 − ij < `. Moreover, by the same argument as the one used for ∆(S(i)

d (f)), ∆(X) = 0
as soon as for some index j, ij+1− ij > `. Hence ∆(X) can be nonzero only when k` = d
and ij = (j − 1)`+ 1 for each 1 6 j 6 k. Therefore, applying Lemma 1,

∆(Sd(f)) =


0; ` - d,
−1; `|d, k odd, f contains odd number of 1s,

1; otherwise .

The proof is complete for a prime word f .
Assume now that f = (f ′)r, where f ′ is a prime word and r > 2. Let |f ′| = `′. The

proof continues similarly as in the case when f was prime. The only difference is that
now X = ∅ as soon as for some index j, the difference ij+1− ij is not a multiple of `′ and
so ∆(X) can be nonzero only when d is a multiple of `′.
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3 Non-prime words

In this section we study the parity index of words consisting of three blocks, that is,
of words 0r1s0t, r, s, t > 1. Clearly, none of these words is prime. In our main result
(Theorem 4) we prove that for no such word f , |PId(f)| 6 1 holds for all d. Before that
we separately give a more precise result for the special case of 0r10r. The obtained results
in particular imply that Qd(0

r1s0t) does not contain a hamiltonian path as soon as d is
large enough.

Theorem 3. Let r > 1. Then

|PId(0
r10r)| =

{
0; d 6 2r, 2r + 2 6 d 6 3r + 1 ,
1; d = 2r + 1, 3r + 2 6 d 6 4r + 3 .

Moreover, for any d > 4r + 4, |PId(0
r10r)| > 2.

Proof. Suppose first that d 6 2r. Then Fd(0
r10r) = Bd and hence PId(0

r10r) = 0. Since
F2r+1(0

r10r) = Bd \ {0r10r} we have PI2r+1(0
r10r) = 1.

Let d > 2r + 2. Recall that −PId(0
r10r) = ∆(Sd(f)) =

∑
b∈Sd(f) ∆(b). By Lemma 1,

−PId(f) =
d−`+1∑
k=1

(−1)k−1
∑

I⊆(Nd−`+1
k )

∆(∩i∈IS(i)
d (f)) .

Suppose that for a set X = ∩i∈IS(i)
d (f) there exists an index i such that if w ∈ X then

also w + ei ∈ X. Then ∆(X) = 0. It follows that ∆(X) 6= 0 if and only if there exist
k > 0 and r 6 rj 6 2r for all 1 6 j 6 k, such that

X = {0r10r110r21 · · · 0rk10r} .

Moreover, in that case ∆(X) = ∆(0r10r110r21 · · · 0rk10r) = (−1)k+1.
Hence let k > 0 and r 6 rj 6 2r, 1 6 j 6 k, and set b = 0r10r110r21 · · · 0rk10r. Let

v = br1+2bt1+3 · · · bd be the word obtained from b by omitting the first r1 + 1 bits, so that
v ∈ Bd−r1−1. Since b has one more bit of 1 than v does, ∆(v) = −∆(b).

Note that v starts with 0r1. Then

v ∈
⋂
j∈J

S
(j)
d−r1−1(f) if and only if b ∈ S(1)

d (f)
⋂(
∩j∈JS(j+r1+1)

d (f)
)
.

Now we can compute as follows:

PId(0
r10r) = −∆(Sd(f)) = −

∑
b∈Sd(f)

∆(b)

= −

 ∑
b∈Sd(f)
r1=r

∆(b) +
∑

b∈Sd(f)
r1=r+1

∆(b) + · · ·+
∑

b∈Sd(f)
r1=2r

∆(b)


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= −

( ∑
v∈Sd−r−1(f)

−∆d−r−1(v) +
∑

v∈Sd−r−2(f)

−∆d−r−2(v) + · · ·

+
∑

v∈Sd−2r−1(f)

−∆d−2r−1(v)

)
=

∑
v∈Sd−r−1(f)

∆d−r−1(v) +
∑

v∈Sd−r−2(f)

∆d−r−2(v) + · · ·

+
∑

v∈Sd−2r−1(f)

∆d−2r−1(v)

=
∑

r6r162r

∑
v∈Sd−r1−1(f)

∆d−r1−1(v)

=
∑

r6r162r

∆d−r1−1

 ⋃
v∈Sd−r1−1(f)

v


=

∑
r6r162r

∆d−r1−1(Sd−r1−1(f))

= −
∑

r6r162r

PId−r1−1(0
r10r) . (1)

It follows that |PId(0
r10r)| = |

∑
r6r162r PId−r1−1(0

r10r)|.
As the values PId−r1−1(0

r10r) have the same sign for all r 6 r1 6 2r, from Equation (1)
we get

|PId(0
r10r)| =

∑
r6r162r

|PId−r1−1(0
r10r)| . (2)

Set ad = |PId(0
r10r)| for all d. We already know that ad = 0 for all d 6 2r and that

a2r+1 = 1. Let d > 2r + 2. If d 6 3r + 1 and there is a word b ∈ Sd(f), then there is an
index i such that if w ∈ X then also w + ei ∈ X and hence ∆(X) = 0.

Assume d > 3r+ 2. When 3r+ 2 6 d 6 4r+ 2, PId(0
r10r) = ∆(0r10d−2r−210r) = 1 or

−1 and hence ad = 1. When d = 4r + 3, ad = a2r+2 + · · ·+ a3r+2 = 1. Let d = 4r + 3 + u
for some u > 1. Then by Equation (2), a4r+3+u = a2r+2+u + · · ·+ a3r+2+u. If u 6 r, then
2r+2+u 6 3r+2 < 3r+2+u 6 4r+2 and therefore ad > 2. Assume u > r+1. Let u′ =
u−r. Then d = 5r+3+u′ for u′ > 1. By Equation (2), a5r+3+u′ = a3r+2+u′+· · ·+a4r+2+u′ .
If u′ 6 r, then 3r + 2 6 3r + 2 + u′ < 4r + 3 6 4r + 2 + u′ and therefore ad > 2. Assume
u′ > r + 1. Then let u′′ = u′ − r. Then d = 6r + 3 + u′′ for u′′ > 1. By Equation (2),
a6r+3+u′′ = a4r+2+u′′ + · · ·+ a5r+2+u′′ . As 3r+ 2 6 4r+ 2 +u′′ < 5r+ 2 +u′′, ad > 2. Thus
when d > 4r + 4, ad > 2.

The special case of Theorem 3 when r = 1 deserves a special attention. In that case,

|PId(010)| = |PId−2(010)|+ |PId−3(010)|
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with initial conditions |PI3(010)| = 1, |PI4(010)| = 0, |PI5(010)| = 1 which is the Padovan
sequence, see sequence A000931 from [11].

Theorem 4. Let r, s, t > 1. Let z be the integer such that (z − 1)t+ 2 6 r + s 6 zt+ 1.
Then

|PId(0
r1s0t)|


= 0; d < r + s+ t,

y(r + s+ t) < d < (y + 1)(r + s) + t for 1 6 y 6 z ,
> 1; d = r + s+ t,

(y + 1)(r + s) + t 6 d 6 (y + 1)(r + s+ t) for 1 6 y 6 z,
d = (z + 1)(r + s+ t) + 1 .

Moreover, for any d > (z + 1)(r + s+ t) + 2, |PId(0
r1s0t)| > 2.

Proof. Since PId(0
r1s0t) = PId(0

t1s0r), it suffices to prove the result for words 0r1s0t with
r > t. By the same argument as in the proof of Theorem 3, ∆(X) 6= 0 if and only if there
exist k > 0 and r 6 rj 6 r + t for all 1 6 j 6 k such that

X = {0r1s0r11s0r21s · · · 0rk1s0t}

where ∆(X) = (−1)(k+1)s. Also

|PId(0
r1s0t)| =

∑
r6r16r+t

|PId−r1−s(0
r1s0t)| . (3)

Set ad = |PId(0
r1s0t)| for all d. We already know that ad = 0 for all d < r+ s+ t and

that ar+s+t = 1. Let d > r+ s+ t+ 1. In the first part of the proof, we prove the theorem
for d 6 (z + 1)r+ (z + 1)s+ (z + 1)t by induction on y for 1 6 y 6 z. Then we prove the
theorem for d > (z+1)r+(z+1)s+(z+1)t+1. The idea of the proof is as follows. From
the first part of the proof, we notice that for each y > 1, ad = 0 for r + s − (y − 1)t − 1
consecutive numbers of d and then ad > 1 for the next yt + 1 consecutive numbers of d.
As y increases, r + s − (y − 1)t − 1 decreases to zero and yt + 1 increases. While, by
Equation (3), ad = ad−r−s−t + · · ·+ ad−r−s, which is a sum of t+ 1 consecutive numbers,
where t+ 1 is a constant for given 0r1s0t. Therefore for large enough d, ad > 2.

By a similar argument as in the proof of Theorem 3, ad = 0 if d < 2r+2s+t and ad = 1
if 2r+2s+ t 6 d 6 2r+2s+2t. Thus the statement is true for y = 1. Let y > 2. Suppose
the statement is true for all 1 6 y0 < y. Let d = yr + ys + yt + u for some u > 1. Then
by Equation (3), ayr+ys+yt+u = a(y−1)r+(y−1)s+(y−1)t+u + · · · + a(y−1)r+(y−1)s+yt+u. When
d < (y + 1)r + (y + 1)s + t, i.e., u < r + s − (y − 1)t, (y − 1)r + (y − 1)s + (y − 1)t <
(y−1)r+(y−1)s+(y−1)t+u < (y−1)r+(y−1)s+yt+u < yr+ys+t and hence by the
induction assumption, ad = 0. When d = (y+ 1)r+ (y+ 1)s+ t, i.e., u = r+ s− (y− 1)t,
(y − 1)r + (y − 1)s + yt + u = yr + ys + t and hence by the induction assumption,
ad > ayr+ys+t > 1. Assume d > (y + 1)r + (y + 1)s+ t+ 1, i.e., u > r + s− (y − 1)t+ 1.
Let u′ = u − r − s + (y − 1)t. Then d = (y + 1)r + (y + 1)s + t + u′ where u′ > 1. By
Equation (3), ad = ayr+ys+u′ + · · · + ayr+ys+t+u′ . If d 6 (y + 1)r + (y + 1)s + (y + 1)t,
i.e., u′ 6 yt, then yr + ys+ u′ 6 yr + ys+ yt. Considering that yr + ys+ t < yr + ys+
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t + u′, ad > ayr+ys+t + ayr+ys+t+1 or ad > ayr+ys+u′ + ayr+ys+u′+1 depending on whether
yr + ys + u′ < yr + ys + t or not. Therefore by the induction assumption, ad > 1. Thus
the theorem is proved for all d 6 (z + 1)r + (z + 1)s+ (z + 1)t.

Assume d > (z + 1)r + (z + 1)s + (z + 1)t + 1 > (z + 2)r + (z + 2)s + t. Let d =
(z+2)r+(z+2)s+ t+u′′ where u′′ > 0. Then by Equation (3), ad = a(z+2)r+(z+2)s+t+u′′ =
a(z+1)r+(z+1)s+u′′ + · · · + a(z+1)r+(z+1)s+t+u′′ . Note that (z + 1)r + (z + 1)s + t + u′′ >
(z+1)r+(z+1)s+ t. Assume d = (z+2)r+(z+2)s+ t, i.e., u′′ = 0. Then (z+1)r+(z+
1)s+ t+u′′ = (z+ 1)r+ (z+ 1)s+ t. If r+ s > zt, then (z+ 1)r+ (z+ 1)s > zr+ zs+ zt
and hence ad = a(z+1)r+(z+1)s+t > 1. If r+ s 6 zt, then (z + 1)r+ (z + 1)s 6 zr+ zs+ zt
and hence ad > azr+zs+zt + a(z+1)r+(z+1)s+t > 2.

Let d > (z + 2)r + (z + 2)s + t, i.e., u′′ > 0. Then (z + 1)r + (z + 1)s + t + u′′ >
(z+1)r+(z+1)s+t. First assume d < (z+2)r+(z+2)s+(z+2)t, i.e., u′′ < (z+1)t. Then
(z + 1)r+ (z + 1)s+ u′′ < (z + 1)r+ (z + 1)s+ (z + 1)t. Therefore ad > a(z+1)r+(z+1)s+t +
a(z+1)r+(z+1)s+t+1 or ad > a(z+1)r+(z+1)s+u′′ + a(z+1)r+(z+1)s+u′′+1 depending on whether
(z+ 1)r+ (z+ 1)s+ u′′ < (z+ 1)r+ (z+ 1)s+ t or not. Thus ad > 2 in any case. Second
assume d = (z+2)r+(z+2)s+(z+2)t, i.e., u′′ = (z+1)t. Then (z+1)r+(z+1)s+u′′ =
(z + 1)r + (z + 1)s + (z + 1)t and hence ad > a(z+1)r+(z+1)s+u′′ + a(z+1)r+(z+1)s+u′′+1 > 2
considering that (z + 1)r+ (z + 1)s+ (z + 1)t < (z + 1)r+ (z + 1)s+ u′′ + 1 < (z + 2)r+
(z + 2)s+ (z + 2)t. Finally assume d > (z + 2)r + (z + 2)s+ (z + 2)t, i.e., u′′ > (z + 1)t.
Suppose there is u′′ > (z + 1)t such that ad 6 1. Let u′′0 be the smallest such an integer
and d0 = (z+2)r+(z+2)s+t+u′′0. Then ad0 = a(z+1)r+(z+1)s+u′′0

+ · · ·+a(z+1)r+(z+1)s+t+u′′0
.

Since (z+1)r+(z+1)s+u′′0 > (z+1)r+(z+1)s+(z+1)t and (z+1)r+(z+1)s+t+u′′0 < d0,
ad0 > 2, which is a contradiction. Thus the statement is true for all d.

4 Computer evidence and conjecture

Using computer we obtained the parity index for all words f of length at most 10 and all
d 6 31. Since Qd(f) is isomorphic to Qd(f), where f is the binary complement of f , we
have restricted the computation to words f that contain not more 1s than 0s. From the
same reason reversed words need not to be considered. In Table 1 all words f of length
at most 8 and with |PId(f)| 6 1 for d 6 31 are collected.

It can be checked that every word from the table is a power of a prime word. Moreover,
the same was verified also for the obtained words of length 9 and 10 (not given in the
table). Based on this experiment and Theorems 2 and 4 we pose:

Conjecture 5. Let f be a word such that |PId(f)| 6 1 holds for any d. Then f is a
power of a prime word.

A possible approach to the conjecture would be to prove that if f is not a power of
a prime word, then the sequence {|PId(f)|}d satisfies a certain recurrence relation from
which we can deduce the behavior of the sequence. For instance, one can establish the
recurrent formula

|PId(01110)| = |PId−4(01110)|+ |PId−5(01110)|,
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length f

3 001

4 0001, 0011, 0101

5 00001, 00011, 00101

6 000001, 000011, 000101, 000111
001001, 001011, 001101, 010101

7 0000001, 0000011, 0000101, 0000111
0001001, 0001011, 0001101, 0010011
0010101, 0011101

8 00000001, 00000011, 00000101, 00000111
00001001, 00001011, 00001101, 00001111
00010001, 00010011, 00010101, 00010111
00011001, 00011011, 00011101, 00100011
00100101, 00101011, 00101101, 00110011
00110101, 00111101, 01010101

Table 1: List of words f with |f | 6 8 and |PId(f)| 6 1 for d 6 31

with initial conditions |PI5(01110)| = 1, |PI6(01110)| = |PI7(01110)| = |PI8(01110)| = 0
and |PI9(01110)| = 1. Similarly, either by applying Equation (3) or by a tedious case
analysis yields, one can get:

|PId(000001000)| = |PId−6(000001000)|+ |PId−7(000001000)|
+|PId−8(000001000)|+ |PId−9(000001000)|,

with initial conditions |PI9(000001000)| = 1, |PI10(000001000)| = |PI11(000001000)| =
|PI12(000001000)| = |PI13(000001000)| = |PI14(000001000)| = 0, |PI15(000001000)| =
|PI16(000001000)| = |PI17(000001000)| = 1.

In Fig. 1 the values of |PId(01110)| and |PId(000001000)| for 5 6 d 6 55 are plotted.
Note that the sequence |PId(f)| does not need to be monotone, but it seems that starting
from some large enough dimension the sequence is strictly increasing.

5 Concluding remarks

Another approach to get further insight into the parity index of a binary word (in par-
ticular into Conjecture 5) would be to investigate the relationship with the generating
function counting the words that do not contain the binary word as a given factor. To
explicitly state these functions we need the following concepts from [2], see also [10,
page 374] and [1, 9]. Let f = f0f1 . . . fd−1 be a word of length d, then its autocorre-
lation c[f ] = c0c1 . . . cd−1 is the binary word with ci defined to be 1 if fj = fi+j for all
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Figure 1: Values of |PId(f)| for f = 01110 and f = 000001000

0 6 j 6 d− 1− i, and defined to be ci = 0 otherwise. (In other words, ci = 1 if f and its
shift by i bits agree in their intersection. In the terminology from [7] we could also say
that ci = 1 when f has a 0-error overlap of length d− i.) For instance, the autocorrelation
of 1100111 is 1000011 and the one of 101010 is 101010. The autocorrelation polynomial
C [f ](x, y) is the polynomial with coefficients given by the autocorrelation of f . More pre-

cisely, the coefficient of xjyi is 1 if c
[f ]
j+i = 1 and the suffix of f (of length i + j) contains

j ones and i zeros. For instance, C [1100111](x, y) = 1 + x3y2 + x4y2. Then the generating
function counting the binary words that do not contain f as a factor is (see [1, 9]):

F [f ](x, y) =
C [f ](x, y)

(1− x− y)C [f ](x, y) + xd1yd0
,

where d1 and d0 are the numbers of ones and zeros in f , respectively, and the symbols x
and y count the number of ones and zeros in the words.

It could be interesting to notice the relation between the forbidden words studied here
and the shape of the corresponding autocorrelation polynomials as well as to approach
|PId(f)| in terms of F [f ](x, y). To these two ideas we also add that it could also be
interesting to relate the r-error overlap studies from [7] with the respective autocorrelation
polynomials.
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