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Abstract

By counting flags in finite vector spaces, we obtain a ¢-multinomial analog of a
recursion for g-binomial coefficients proved by Nijenhuis, Solow, and Wilf. We use
the identity to give a combinatorial proof of a known recurrence for the generalized
Galois numbers.

1 Introduction

(I-q@=¢*)---(1—-q"),

For a parameter ¢ # 1, and a positive integer n, let (¢), =
h n > k, the g-binomial coefficient
)n

and (q)o = 1. For non-negative integers n and k, wit ,
or Gaussian polynomial, denoted (Z)q, is defined as (Z)q = @k((qm.
The Rogers-Szegd polynomial in a single variable, denoted H,(t), is defined as

H,(t) = i <Z) qt’“.

k=0

The Rogers-Szego polynomials first appeared in papers of Rogers [16, 17] which led up to
the famous Rogers-Ramanujan identities, and later were independently studied by Szego
[19]. They are important in combinatorial number theory ([1, Ex. 3.3-3.9] and [5, Sec.
20]), symmetric function theory [20], and are key examples of orthogonal polynomials [2].
They also have applications in mathematical physics [11, 13].

The Rogers-Szeg6 polynomials satisfy the recursion (see [1, p. 49])

Hyor(t) = (1+ ) Ho(t) + £(q" — 1) Hp_ o (£). (1.1)
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Letting ¢ = 1, we have H,(1) =) _,_, (Z)q, which, when ¢ is the power of a prime, is the
total number of subspaces of an n-dimensional vector space over a field with ¢ elements.
The numbers G,, = H,(1) are the Galois numbers, and from (1.1), satisfy the recursion

Gn+1 = 2Gn + (q" — 1)Gn_1. (12)

The Galois numbers were studied from the point of view of finite vector spaces by Goldman
and Rota [6], and have been studied extensively elsewhere, for example, in [15, 9]. In
particular, Nijenhuis, Solow, and Wilf [15] give a bijective proof of the recursion (1.2)
using finite vector spaces, by proving, for integers n > k > 1,

(nzl)q:@ﬁ(k:)q*(f*)(z:i)q- (13)

For non-negative integers ki, ko, ..., k,, such that ky + --- + k,, = n, we define the
g-multinomial coefficient of length m as

A
kika, k) o @Ok ( @Dk (@Dk
so that (Z)q = (k;_k)q. If k£ denotes the m-tuple (ki, ..., k), write the corresponding

g-multinomial coefficient as <k1 " ) = (Z) . For a subset J C {1,...,m}, let ¢, denote
geeyfvm q v q

the m-tuple (eq, ..., e,), where

o { 1 ifieJ,

10 ifigJ.
For example, if m = 3, J = {1, 3}, and k = (ky, ko, k3), then (E_"Q)q = (k1_17,?2’k3_1)q. The
main result of this paper, which is obtained in Section 2, Theorem 2.1, is a combinatorial
proof through enumerating flags in finite vectors spaces of the following generalization of
the identity (1.3). For m > 2, and any kq, ..., k,, > 0 such that k; +---+k,, =n+1, we

have . @ .y
n+ _ q)n n+1-—
- Y ey ).
(/ﬂ, e km> ¢ gcq, (q)n7|J|+1 k—e; q

..,m},|J|>0

In Section 3, we prove a recursion which generalizes (1.2). In particular, the generalized
Galois number GU™ is defined as

Gm — "
" Z (klak27"'7km 7
1+ Akm=n q

which, in the case that ¢ is the power of a prime, enumerates the total number of flags
of length m — 1 of an n-dimensional Fg -vector space. Quite recently, the asymptotic

statistics of these generalized Galois numbers have been studied by Bliem and Kousidis
3] and Kousidis [12].
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Directly following from Theorem 2.1, we prove in Theorem 3.1 that, for n > m — 1,

m—1
(m) _ oY1y (@)n (m)

which also follows from a known recurrence for the multivariate Rogers-Szego polynomials.

2 Flags in finite vector spaces

In this section, let ¢ be the power of a prime, and let F, denote a finite field with ¢
elements. If V' is an n-dimensional vector space over F,, then the g-binomial coefficient

(Z)q is the number of k-dimensional subspaces of V' (see [10, Thm. 7.1] or [18, Prop.

1.3.18]). So, the Galois number

k=0

is the total number of subspaces of an n-dimensional vector space over F,,.
Now consider the g-multinomial coefficient in terms of vector spaces over [F,. It follows
from the definition of a ¢g-multinomial coefficient and the fact that (Z)q = (nf k)q that we

have

n _(n n—ky n—ky—-—kn_o
(), = (), ("), O ),
B n n — ky n—k— - —kno
_<n—k1)q(n—k1—k2>q'”(n—kl—---—km_g—km_l)q‘

So, if V' is an n-dimensional vector space over [y, the g-multinomial coefficient (k1 " )

is equal to the number of ways to choose an (n — k;)-dimensional subspace W; of V|
an (n — k; — ko)-dimensional subspace Wy of Wi, and so on, until finally we choose an
(n—ky—---—k,,_1)-dimensional subspace W,,_; of some (n—ky—- - - —k,,_o)-dimensional
subspace W,,,_o (see also [14, Sec. 1.5]). That is,

Who1 CWhp o ©C--- CWy CW

is a flag of subspaces of V' of length m — 1, where dim W; =n — 23‘:1 k;.

We now turn to a bijective proof of the identity (1.3), that for integers n >k > 1,

(), 7 (), () i),

While the bijective interpretation of this identity which we give now is different from the
proof given by Nijenhuis, Solow, and Wilf in [15], it is the interpretation which is most
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helpful for the proof of our main result. Fix V' to be an (n + 1)-dimensional F,-vector
space. There are ("H)q ways to choose a k-dimensional subspace W of V. Fix a basis

k
{v1,v9, ..., 041} of V. Any k-dimensional subspace W can be written as span(W’ v)
where W' is a (k — 1)-dimensional subspace of V' = span(vy,...,v,), for some v. We

may choose W in three distinct ways. If v € V') then W is a subspace of V', for which
there are (Z)q choices. Call this a type 1 subspace of V. If v,,.; € W, then we may take

v = vp11, and W is determined by W', for which there are (kﬁl)q choices. We call this a

type 2 subspace of V. Finally, if both W ¢ V' and v,,.1 € W, then we call W a type 3
subspace of V', and it follows from (1.3) (and can be shown directly, as well) that there
are (¢" — 1)(2:})(1 choices for W.

We may now prove our main result.

Theorem 2.1. For m > 2, and any ki, ..., k, > 0 such that k1 +---+k, =n+1, we

have . @ y
n -+ _ q)n n+1-—
e 1_( )
(k1, . ,km)q JciL, (Q)n—|J|+1 k—e; q

..,m},|J|>0

Proof. Fix V to be an (n + 1)-dimensional vector space over F,. Fix a basis of each
subspace U of V', so that we may speak of subspaces of type 1, 2, or 3 of each subspace
U with respect to this fixed basis. Consider a flag F' of subspaces of V.= W,, W,,,_1 C
--- C Wy € Wy, such that if we define k; for 1 < ¢ < m by Z;.:lkj =n+1—dim W,,

then each k; > 0. The total number of such flags is (kln.ﬂcm)q' Consider now a labeling of

such flags in the following way. Given a flag F' as above, define
r=min{l < j <m | W, is a type 1 subspace of W,_;},

and
J={r}u{l<j<r—1] W;is a type 3 subspace of W;_;}.

Define the flag F' to be a type J flag of V. That is, for any nonempty J C {1,...,m}, we
may speak of flags of type J of V. We shall prove that

(_1)|J1ﬂ<"+1_ |J|) (2.1)

(Q)n—\J|+1 k—e;

is the number of type J flags of length m — 1 of the F-space V. Once this claim is
proven, we will have accounted for all 2" — 1 terms on the right-side of the desired result
of Theorem 2.1, and all possible ways to choose our flag.

We prove the claim by induction on m, where the base case of m = 2 follows from
(1.3) and its interpretation in terms of subspaces of types 1, 2, and 3, as given above.
We must consider each possible nonempty J C {1,...,m}, and show that in each case,
the quantity (2.1) counts the number of type J flags. So, consider a flag of subspaces
W1 C -+ C Wy C W, of V, where dim W; :n+1—Z;:1kj.

First, if J = {1}, then the number of ways to choose W, to be a type 1 subspace of V' of
dimension n+1—k; is (n Jrf: kl)q’ while the number of ways to choose the remaining length
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m — 2 flag W,y C --- C W; of W is exactly ("H*kl) . Thus, the total number of ways

kzeeskim
to choose our flag of type J with J = {1} is (n+f_k1)q(2;1_k]:)q = (kl_l’kg 77777 km)q’ which is

exactly the expression (2.1) for J = {1}, as claimed. So, we now suppose J # {1}, so if
r is the maximum element of .J, we have r > 1. We consider the cases of whether 1 € J
or 1 ¢ J separately.

Suppose that 1 ¢ J. Then, we must choose our flag so that W] is a type 2 subspace of
V', of which there are (nfkl)q such subspaces. Now, if we define I = J—1={j—1 | j € J},

so that I C {1,...,m — 1} and |I| = |J|, we must choose the rest of our type J flag of
V by choosing a type I flag of W, of length m — 2. If we let k' = (ko, ..., k), then by
our induction hypothesis, the number of type I flags of length m — 2 of the (n 4+ 1 — ky)-
dimensional space W is

(—1)H1-1 (@n—ks (” +1—Fk - |I|> .

(@ n—ter—|1+1 kK —e;

So, the total number of ways to choose the type J flag of length m — 1 in V' is

< n ) (_1)|I|—1 (q)nfkl (n + 1— kl - ’[|) ]
n—ky q (Q)n7k17|1|+1 K — €r q
A direct computation yields
( n ) @ors (@) ( n1-1] )
n —k; q(Q)n—k1—|I|+1 (Dn—jrj41 \n — k1 — 1]+ 1 q’
and further note that
n+1—|I n+1—k -\  (n+1-1]J|
n—k1—|l\—|—1 q E/_ﬁj q_ E_QJ q7
where k = (kq, ..., k,,). Together, these give
( n ) (_1)\I|—1 <Q)n*k1 (n +1- kl - |I|)
n— ki q (Dt (141 K —er q
_ (_1)|J|—1 (Q)n (77, +1- “”) :
q

(Dnjy1\ kE—e¢y

giving the claim that when 1 ¢ J, the number of type J subspaces of length m — 1 of V/
is given by (2.1).

Finally, suppose that 1 € J, and J # {1}. So, we must choose our flag so that
Wy is a type 3 subspace of V, and there are (¢" — 1) (g:;l)q such subspaces. If we let
I =(J—1)\{0} (so that now |J| = |I|+ 1), then we must choose the rest of our flag as a
type I flag of length m — 2 of W,. Letting again k" = (ks, ..., k), then by our induction
hypothesis, the total number of flags of type J of length m — 1 of V' is given by

R N G e (g O B
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A computation gives

@ =1 <:—_k11)q#:?ﬂ+l =D (;)q:]' (n - Zl_—||lf|| + 1>q7

and also note
n— I n+1—k -\ _ (n+1-1]J]|
n_kl_u“i‘l q E/_ﬁj q_ E_QJ q7

where k = (kq,...,kn), since |I| = |J| — 1. We finally obtain that

(i) e (),
_ (et _Dn (”“_'J') ,

(Q)n—|J|+1 k—e;

is the the number of type J subspaces of length m — 1 of V', as claimed. O]

3 Generalized Galois numbers

Define the homogeneous Rogers-Szego polynomial in m variables for m > 2, denoted

Hn(t17t27 ) 7tm)7 by

Hyltr by tm) = > (k1 " k)t’fl---tfnm,
yorhm /g

ki+-+km=n

and define the Rogers-Szegd polynomial in m — 1 variables, denoted H,,(t1,...,t,_1), by
Hn(tb .. .tmfl) - ]Z[(tl, e ,tmfl, 1)

The homogeneous multivariate Rogers-Szegd polynomials were first defined by Rogers [16]
in terms of their generating function, and several of their properties are given by Fine
[5, Section 21]. The definition of the multivariate Rogers-Szegd polynomial H,, is given
by Andrews in [1, Chap. 3, Ex. 17|, along with a generating function, although there
is little other study of these polynomials elsewhere in the literature (however, there is a
non-symmetric version of a bivariate Rogers-Szegd polynomial [4]).

The multivariate Rogers-Szeg6 polynomials satisfy a recursion which generalizes (1.1),
although it seems not to be very well-known, as the only proof and reference to it that the
author has found is in the physics literature, in papers of Hikami [7, 8]. For any finite set
of variables X, let e;(X) denote the ith elementary symmetric polynomial in the variables
X. Then the Rogers-Szego polynomials in m — 1 variables satisfy the following recursion:

m—1
Hyq(ty, o tmr) = Z eir1(t, .. tmo1,1)(—1) (((;)I)n Hy ity b)) (3.1)
i=0 net
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The sum of all g-multinomial coefficients of length m, or the generalized Galois number

Ggm), 18 then
Hn 1 1 DY 1 h— G( ) —_— E n .
( T ’ ) " (k‘l,...,km q

From the discussion at the beginning of Section 2, when ¢ is the power of a prime, G
is exactly the total number of flags of subspaces of length m — 1 in an n-dimensional
F,-vector space.

Since the number of terms in the elementary symmetric polynomial e;,1(t1, . .., 1, 1)
is (ifl), then the following, our last result, follows directly from the formal identity (3.1)

proved by Hikami. However, we give a proof which follows directly from Theorem 2.1,
and is thus a bijective proof through the enumeration of flags in a finite vector space.

Theorem 3.1. The generalized Galois numbers satisfy the recursion, forn > m —1,

m s~ m i (D (m)

=0

Proof. For convenience, whenever any k; < 0, we define the g-multinomial coefficient

(k1 kQ" km) = (0. Granting this, we have Theorem 2.1 holds for all k; > 0. We now begin

with the definition of G nyy as the sum of all g-multinomial coefficients, and we directly
apply Theorem 2.1 to rewrite the sum, as follows:

(m) _ n—+1
Gn+1 - Z (kl ;km)q

frtekm=nt1 N L

IR )

kit km=n+1 JC{1,...m} n—|J|+1
1[>0
= Z S (e (@ <n+1— |J|)
JC{Lm)  k=(kp,km) (D1 \ kE—e; /,

[J]>0 k1+ thkm=n+1

S R )

i=0 JC{1,..., =(k1seeeskm) <Q)”_Z
|J|= z+l k:1+ +km=n+1

:n:l(ifl) 2. _(_1)i(((16>]ini<nk_/i)q

1= k’1+»--+k§n:n—z
k=K k)

m—1
( ) i (Q)n Ggf)i,
i=0 1+ 1 (q)nfz

where the next-to-last equality follows from the fact that each index &' may be obtained

from an index k from any of the (ZTI) subsets J of size i + 1. O
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By a very similar argument, we may see that in fact the recursion for the multinomial
Rogers-Szegd polynomials in (3.1) also follows from Theorem 2.1.
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